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E N V I R O N M E N T A L  S T U D I E S

Quantifying methane emissions from the largest  
oil-producing basin in the United States from space
Yuzhong Zhang1,2,3,4*, Ritesh Gautam2*, Sudhanshu Pandey5, Mark Omara2,  
Joannes D. Maasakkers5, Pankaj Sadavarte5,6, David Lyon2, Hannah Nesser1, Melissa P. Sulprizio1, 
Daniel J. Varon1, Ruixiong Zhang7,8, Sander Houweling5,9, Daniel Zavala-Araiza2,10,  
Ramon A. Alvarez2, Alba Lorente5, Steven P. Hamburg2, Ilse Aben5, Daniel J. Jacob1

Using new satellite observations and atmospheric inverse modeling, we report methane emissions from the 
Permian Basin, which is among the world’s most prolific oil-producing regions and accounts for >30% of total U.S. 
oil production. Based on satellite measurements from May 2018 to March 2019, Permian methane emissions from 
oil and natural gas production are estimated to be 2.7 ± 0.5 Tg a−1, representing the largest methane flux ever 
reported from a U.S. oil/gas-producing region and are more than two times higher than bottom-up inventory-
based estimates. This magnitude of emissions is 3.7% of the gross gas extracted in the Permian, i.e., ~60% higher 
than the national average leakage rate. The high methane leakage rate is likely contributed by extensive venting 
and flaring, resulting from insufficient infrastructure to process and transport natural gas. This work demonstrates 
a high-resolution satellite data–based atmospheric inversion framework, providing a robust top-down analytical 
tool for quantifying and evaluating subregional methane emissions.

INTRODUCTION
Methane is a potent greenhouse gas with a relatively short average 
atmospheric residence time of about a decade and is also a precursor 
of tropospheric ozone (1). The emission-based radiative forcing for 
methane (including effects on tropospheric ozone and stratospheric 
water vapor) is 0.97 W m−2 since preindustrial times, which is about 
60% of that for CO2 (2). Roughly a third of the contemporary 
anthropogenic methane emissions come from the fossil fuel energy 
sector worldwide (oil, natural gas, and coal) (~100 to 180 Tg a−1) 
(3, 4, 5). Curbing anthropogenic methane emissions, including those 
from the oil/gas sector, is considered an effective strategy to slow the 
rate of near-term climate warming (1). However, the rapid increase 
in oil and natural gas (O/G) production in the United States since 
around 2005, driven primarily by hydraulic fracturing and horizontal 
drilling, has led to major concerns about increasing methane emissions 
and adverse climate impacts (6). By upscaling data collected from 
field measurements in some of the largest O/G production basins in 
the United States, Alvarez et al. (7) estimated 13 Tg annual methane 
emissions from the national O/G supply chain for 2015, which is 
60% higher than the official estimates by the U.S. Environmental 
Protection Agency (EPA) (8). The largest discrepancy was found in 
the O/G production segment where the estimate by Alvarez et al. 
(7) (7.6 Tg a−1) was more than two times that by EPA, which relies 
on inventory-based estimates (3.5 Tg a−1) (8).

While field measurements provide in-depth information about a 
particular site or area, it is often challenging to expand the measure-
ment capacity to observe a diverse set of targets distributed globally 
over longer periods of time. Additional challenges exist for areas that 
are difficult to access for technical or proprietary reasons. On the 
other hand, global satellite observations of column atmospheric 
methane offer a unique vantage point to identify emission hot spots 
and quantify regional emissions (9). Using data from SCanning 
Imaging Absorption spectroMeter for Atmospheric CHartographY 
(SCIAMACHY) satellite observations averaged between 2003 and 
2009, Kort et al. (10) found large anomalous methane levels from 
the Four Corners region in the United States, with total methane 
emissions associated with natural gas, coal, and coalbed sources 
estimated as 0.59 ± 0.08 Tg a−1. While the SCIAMACHY data were 
fairly limited in spatial resolution (30 km × 60 km) and measure-
ment precision [30 parts per billion in volume or (ppbv)] (9), it was 
the first time that satellite observations were used to quantify a dense 
O/G-related methane emission hot spot. This finding also led to 
several dedicated airborne studies to better understand methane 
sources in the region (11, 12), which reported methane fluxes com-
parable to the satellite-based estimate (10).

Here, we demonstrate and exploit the capability of a recent space-
borne sensor, the Tropospheric Monitoring Instrument (TROPOMI), 
to map atmospheric methane enhancements in the United States 
and quantify emissions from the Permian Basin (Fig. 1), which has 
become one of the world’s most prolific oil-producing regions in 
recent years due to advances in drilling technologies. Located in New 
Mexico and Texas in a region of ~400 km × 400 km, Permian is cur-
rently the largest oil-producing basin in the United States. In 2018, 
the Permian Basin produced 5.5 × 105 m3 (or 3.5 million barrels) 
of crude oil and 3.2 × 108 m3 (or 11 billion feet3) of natural gas every 
day (~30 and ~10% of the U.S. national totals, respectively), which 
was 4 and 2.5 times their corresponding levels in 2007 (around the 
time of SCIAMACHY observations) (Fig. 2) (13). While the surging 
production in the Permian Basin and its importance in the U.S. 
oil boom during the last decade have been widely covered in mass 
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media (14), the scale of associated methane emissions from this critical 
O/G basin is unknown, despite reports of increased flaring and 
venting activity (15).

Using 11 months of recent data acquired by TROPOMI during 
2018–2019, we focus on the distinct methane concentration anomaly 
over the Permian Basin and quantify the associated methane emissions 
with a state-of-the-art atmospheric inverse modeling framework. 
TROPOMI was launched in October 2017 onboard the European 
Space Agency’s Sentinel-5P satellite and provides column atmospheric 
methane measurements with higher spatial resolution (7 km × 7 km 
at nadir) and precision (0.6%) than was previously available (16), 
providing near-daily global coverage with its large 2600-km-wide 

swath (17). Our integrated satellite-based approach provides new in-
sights into the dynamic landscape of O/G-related methane emissions 
in the United States and should pave the way forward toward routine 
quantification, monitoring, and evaluation of methane emissions from 
source regions distributed globally.

RESULTS
Satellite observations of the Permian methane anomaly
Figure 1A shows a map of column-averaged dry-air methane mixing 
ratio over the conterminous United States, retrieved from TROPOMI 
measurements, with correction for the topography effect (denoted 

Fig. 1. Satellite observations of the Permian methane anomaly. TROPOMI satellite data derived elevation-corrected column methane mixing ratio for (A) the conterminous 
United States and (B) the Permian Basin containing the Delaware and Midland sub-basins. White shading represents missing data. Purple boundary in (A) indicates the 
study domain encompassing the Permian Basin. Methane averages are computed from monthly means of TROPOMI measurements during May 2018 and March 2019.

Fig. 2. Oil and gas production in the Permian Basin. (A and C) Time series of annual O/G production in black and the corresponding fractions of total U.S. production 
in blue [data from the Drilling Productivity Report by EIA (13)]. (B and D) Spatial distribution of oil and gas production for 2018 [data from Enverus Drillinginfo (50)]. Oil 
production includes both crude and condensate production. Gas production represents gross (before processing) gas production.
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as ​XC ​H​4​ t ​​; see Materials and Methods). The data are averaged from 
May 2018 to March 2019. Substantial enhancements of ​​XCH​4​ t ​​ rela-
tive to the surrounding background, up to ~30 ppbv, are found over 
the Permian Basin, indicating strong methane emissions. Other 
notable enhancements are observed in California’s central valley, 
coastal Southeast, and the Mississippi River Valley, likely associated 
with anthropogenic (agriculture, dairy) and natural (wetland) sources. 
The elevated methane levels in central California were also seen earlier 
in the SCIAMACHY analysis (10).

The methane enhancements over the Permian Basin show a 
characteristic two-branch pattern, which aligns with the two major 
O/G production sub-basins, the Delaware basin to the west and 
the Midland basin to the east (Fig. 1B). The enhancement over the 
Delaware basin, where extensive new exploitation has taken place 
during the last 5 years (18) (fig. S1), is larger than that over the Midland 
basin (Fig. 1B). Intensive O/G production activity in these two sub-
basins is also captured by satellite observations of radiant heat from 
gas flaring [Fig. 3A; nighttime observations by the Visible Infrared 
Imaging Radiometer Suite (VIIRS)] a	nd NO2 tropospheric column 
densities (Fig. 3B; daytime observations by TROPOMI). Flaring is a 
common practice in O/G operations to burn off unwanted or excess 
gas, and NO2 is a gaseous pollutant released during gas flaring and 
other combustion activities in O/G fields (19, 20). On the basis of 
measurements by the VIIRS instrument onboard the Suomi National 
Polar-orbiting Partnership satellite, we estimate an average flaring rate 
of 5.9 ± 1.2 billion m3 a−1 during the period of this study, about 4.6% of the 
gross gas production (see text S1). A fourfold increase in flaring intensity 
since 2012, observed by the VIIRS instrument, is indicative of the 
rapid growth in O/G production across the Permian Basin (fig. S1).

Methane emission quantification
We quantify the methane emission rate from the Permian Basin and 
its spatial distribution with atmospheric inverse modeling, which 
optimizes spatially resolved methane emission rates by drawing 
information from TROPOMI observations and the prior emission 
estimate following the Bayesian rule. The inversion seeks to optimize 
monthly methane emission rates resolved at 0.25° × 0.3125° horizontal 
resolution in a study domain containing the Permian Basin and the 
surrounding region (29°–34°N, 100°–106°W). The solution to the 

optimization is found analytically with closed-form characterization 
of the error statistics (3). An atmospheric transport model (a nested 
version of GEOS-Chem over North America with a 0.25° × 0.3125° 
horizontal resolution) (21) is used as the forward model to relate 
atmospheric methane columns with ground-level emissions in the 
study domain and the contributions from outside the domain. The 
optimization by the inversion significantly reduces the observation-
model mismatch with decreased root mean square error (prior, 23 
ppbv; posterior, 14 ppbv) and increased correlation (R; prior, 0.30; 
posterior, 0.62) (fig. S2). See Materials and Methods for more details 
about the configurations of the inverse modeling including error 
accounting and prior information.

When aggregating monthly spatially resolved posterior emissions 
to the basin-level annual average, we find a methane emission flux 
of 2.9 ± 0.5 Tg a−1 from the Permian Basin (30°–34°N, 101°–105°W) 
(Fig. 4A; see Materials and Methods for the uncertainty analysis). 
This estimate is more than a factor of 2 larger than the bottom-up 
estimate based on an extrapolation of EPA greenhouse gas inventory 
data (EIBU, 1.2 Tg a−1; see Materials and Methods) (Fig. 4A), sug-
gesting that current methane emissions in the Permian are under-
represented in national bottom-up emission inventories (22). Our 
inversion result is in close agreement with a basin-level estimate 
based on extrapolation of limited ground-based site-level measure-
ments in the Permian (EIME, 2.8 Tg a−1) (Fig. 4A). It should be noted 
that these site-level measurements were primarily conducted in 
the New Mexico portion of the Permian Basin and covered only a 

Fig. 3. Satellite observations of gas flaring radiant heat and NO2 tropospheric 
column density over the Permian Basin. (A) Gas flaring radiant heat is the annual 
average of 2018 measured by the VIIRS satellite instrument, and (B) NO2 tropospheric 
column density is the 3-month average (June, July, and August of 2018) measured 
by the TROPOMI instrument, indicating colocated hot spots over the Delaware 
and Midland sub-basins.
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Fig. 4. Methane emission quantification for the Permian Basin. (A) Annual 
methane emissions from the Permian Basin from two prior emission inventories 
(EIBU and EIME), and TROPOMI satellite data–based atmospheric inversion and a 
mass balance method. The breakdown for Delaware, Midland, and non-O/G sources 
is shown in pink, red, and white for EIBU, EIME, and atmospheric inversion, respectively. 
The estimate for the Permian Basin is compared with total emissions from 11 U.S. 
basins reported in literature (7, 24, 25) (table S1). (B) Leakage rates for the Permian 
Basin and two sub-basins, in comparison with the average leakage reported for the 
entire United States (7).
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small fraction of production sites (see Materials and Methods and 
text S2). As a comparison, we also apply a fast mass balance method 
following Buchwitz et al. (23) to estimate basin-level emissions, which 
yields an annual mean emission rate of 3.2 ± 2.0 Tg a−1 for the 
Permian Basin. This result is consistent with that derived from a full 
atmospheric inversion. Despite the large uncertainty of the mass 
balance method, this data-driven approach provides an independent 
estimate of emissions derived primarily using TROPOMI data (see 
text S3 for more discussion).

Removing the non-O/G sources (0.2 Tg a−1) from the total flux 
obtained via the inversion (2.9 Tg a−1), we estimate the methane 
emissions related to O/G activity to be 2.7 Tg a−1 in the Permian 
Basin. Put in the context of national emissions, this value is approx-
imately one quarter of total emissions from all U.S. oil and gas produc-
tion areas in 2015 (10.9 Tg a−1, including emissions from production, 
gathering, and processing, which largely occur in the production 
areas) (7). Our estimated emission rate for the Permian is signifi-
cantly higher than those reported in the literature for other major 
U.S. O/G-producing basins. Table S1 summarizes methane emission 
estimates for 11 U.S. basins (7, 24, 25) from previous aircraft-based studies 
[i.e., Haynesville (24, 26), Barnett (24, 27), Northeast Pennsylvania 
(26, 28), Southwest Pennsylvania (25), San Juan (12), Fayetteville 
(26, 29), Bakken (24, 30), Uinta (31), Weld (32), West Arkoma (26), 
Eagle Ford (24), and the Denver Basin (24)]. Our estimate for the 
Permian (2.7 Tg a−1) is about a factor of 4 higher than the largest 
methane emissions from these previously reported O/G basins [i.e., 
Eagle Ford, 0.73 Tg a−1 (24)] and is even comparable to the 11-basin 
sum (3.7 Tg a−1) (Fig. 4A and table S1). This comparison with recent 
literature indicates that the Permian Basin is likely the largest observed 
methane-emitting O/G basin in the United States and a substantial 
contributor to national O/G-related emissions.

Distribution of methane emissions
High-resolution observations from TROPOMI enable us to resolve 
methane emissions at an unprecedented spatial and temporal reso-
lution, relative to the previous generation of satellite instruments 
such as the Greenhouse gases Observing SATellite (GOSAT) and 
SCIAMACHY (9). Figure  5 presents the spatial distribution of 
methane emissions in the Permian Basin at about a quarter-degree 
resolution derived from our atmospheric inversion. Compared to the 
prior inventory EIBU, our inversion finds larger methane emissions 
near the center of the Delaware and Midland sub-basins. Sensitivity 
inversions further show that this spatial pattern is robust against prior 
emissions of varied magnitudes and distributions (fig. S3), demonstrat-
ing that it is primarily informed by satellite observations.

The spatial distribution of methane emissions derived from inver-
sion is closely correlated with that of gross gas production (R = 0.78), 
but to a lesser degree with that of oil production (R = 0.53) and that 
of the well number density (R = 0.31) (fig. S4). Similarly, when we 
sum up the O/G-related emissions for two sub-basins, the ratio of 
methane emissions between Delaware and Midland (1.7/1.0 Tg 
a−1 = 1.7) is closest to the ratio of gas production (1.4), compared to 
that of oil production (1.0) and well number density (0.7). Because 
unconventional wells tend to have much higher production per well 
than conventional wells (33), the dependence of methane emissions 
on gross gas production rather than the well number density sug-
gests that unconventional wells and infrastructure associated with 
these wells (e.g., gathering stations), which have been developed re-
cently, are likely the major methane emitters in the Permian Basin.

In addition to the spatial distribution, our monthly inversion 
also provides information about the temporal variation of methane 
emissions during the 11 months of observation (fig. S5). Although 
the inversion’s ability to resolve the spatial distribution of emissions 
varies from month to month because of uneven monthly sampling 
of TROPOMI (fig. S5), our inversion ensemble (table S2 and fig. S5) 
generally results in consistent monthly basin-level emission esti-
mates (see also uncertainty analysis in Materials and Methods). We 
speculate that high emissions in December 2018 may be related to a 
very low in-basin gas price toward the end of 2018, resulting from 
insufficient gas gathering and transmission capacity in the Permian 
Basin (33,34). That said, we do not find an apparent increasing 
trend in methane emissions, although natural gas production from 
the Permian Basin increased steadily by ~20% during the over-
lapping 11-month period (fig. S6). Further investigation is required 
to delineate factors controlling the temporal variations of O/G-related 
methane emissions.

DISCUSSION
Using an inverse analysis of TROPOMI satellite observations, we 
estimate a total methane flux of 2.9 ± 0.5 Tg a−1 in the Permian 
Basin, with 2.7 Tg a−1 coming from O/G-related activity. Methane 
losses of this magnitude represent a waste of an important resource; 
for instance, this is enough natural gas to supply 7 million house-
holds in the state of Texas (35). Moreover, the 2.7 Tg a−1 methane 
emitted in Permian results in the same radiative forcing as ~260 Tg 
a−1 CO2 over a 20-year time horizon (86 Tg CO2 a−1 over a 100-year 
time horizon) (global warming potential of 96 for 20 years and 
32 for 100 years) (7, 36), about the same as annual CO2 emissions from 
the entire U.S. residential sector (290 Tg CO2 a−1 in 2017) (22).

Our estimate (2.7 Tg a−1) equates to a production-normalized 
(73 Tg CH4 a−1, derived from 127 billion m3 a−1 natural gas produc-
tion during the study period using 80% methane content by volume) 
emission rate (or methane leakage rate) of 3.7 ± 0.7%, which is 
~60% higher than the national average of 2.3 ± 0.3% (7) (Fig. 4B). 
The leakage rate is even higher for the rapidly developing Delaware 
sub-basin (4.1%). Comparable high leakage rates have also been re-
ported in other oil production–focused basins such as the Bakken 
(24) (table S1), but these basins produce much lower natural gas 
than the Permian Basin does. Previous studies summarized in table 
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S1 show an inverse relationship between the basin-level leakage rate 
and gas production (24); however, the Permian Basin is an outlier with 
high oil production, high gas production, and a high leakage rate.

Overall, the high leakage rate in the Permian Basin appears to be 
associated with insufficient infrastructure for natural gas gathering, 
processing, and transportation (34, 37), leading to extensive venting 
and flaring (Fig. 3), which contributes to high methane emissions. 
The greater profitability of oil production contributes to a lack of 
investment in natural gas takeaway capacity, which, in turn, has 
resulted in excessive supply of associated gas and a very low in-basin 
gas price in the Permian (34). In addition, with the rescinding of 
U.S. federal requirements on gas capture and fugitive emissions in 
2018, current regulations on O/G methane emissions in the Permian 
Basin are less stringent at both federal and state levels (see text S4). 
All these factors may increase the incentive for operators to vent 
and flare their product. On the other hand, the higher-than-average 
leakage rate in the Permian Basin implies an opportunity to reduce 
methane emissions in this rapidly growing oil and gas–producing 
region, through better design, effective management, regulation, and 
infrastructure development.

MATERIALS AND METHODS
TROPOMI methane observations
We use daily column-averaged dry air column methane mixing ratio 
(XCH4) data retrieved from TROPOMI measurements (38) between 
May 2018 and March 2019. TROPOMI, onboard the polar-orbiting 
Sentinel-5 Precursor satellite, is a push-broom imaging spectrometer 
that provides near-daily global coverage with a swath width of 2600 km 
and a nadir ground pixel size of 7 km × 7 km at approximately 13:30 
local overpass time (17). The retrieval algorithm accounts for the 
“full physics” of the light path by simultaneously inferring methane 
concentrations and physical scattering properties, using the oxygen 
A-band in the near infrared (NIR) and the methane absorption band 
in the short-wave infrared (SWIR) (39). Only high-quality XCH4 
measurements retrieved under cloud-free conditions are used in this 
study (as indicated by the retrieval quality assurance flags in TROPOMI 
data product). These measurements are filtered for solar zenith angle 
(<70°), low viewing zenith angle (<60°), smooth topography (1 SD 
of surface elevation <80 m within 5-km radius), and low aerosol load 
(aerosol optical thickness <0.3 in NIR) (40).

The TROPOMI XCH4 product is further corrected for any known 
retrieval biases (40). The errors in the TROPOMI XCH4 measure-
ments have been assessed against GOSAT XCH4 data (38) and were 
found to correlate with surface albedo. A global bias correction 
linearly dependent on surface albedo was then derived and applied 
to the TROPOMI data (40). This bias-corrected TROPOMI XCH4 
product is used in this study. Negligible correlation of errors with 
other retrieved parameters (e.g., aerosol optical thickness) was found 
in the assessment. Validation with independent ground-based mea-
surements from the Total Column Carbon Observing Network shows 
that the bias-corrected TROPOMI XCH4 has a bias of −4.3 ± 7.4 ppbv, 
improved upon the uncorrected XCH4 product (−12 ± 11.5 ppbv) 
(40). In addition, we also examine the correlation between bias-corrected 
XCH4 and other retrieved parameters for the subset of TROPOMI 
data over the domain of this study. We find no correlation with 
albedo (R2 = 0.00) and a negligible correlation with aerosol optical 
thickness (R2 = 0.07), supporting the idea that the XCH4 enhance-
ment over the Permian Basin (Fig. 1B) is robust.

Figure S7A shows the average XCH4 over the conterminous 
United States and the Permian Basin between May 2018 and March 2019 
before the topographical correction. We derive the elevation-corrected 
methane column (​​XCH​4​ t ​​) shown in Fig. 1 by applying a third-order 
polynomial correction fitted over the U.S. domain following Kort 
et al. (10). The mass balance method uses the elevation-corrected 
data (​​XCH​4​ t ​​) for emission quantification, while the inversion method 
uses XCH4 (bias-corrected) directly obtained from the data product, 
because the topography effect is taken care of by the atmospheric 
transport model.

Atmospheric inverse modeling
We perform an inverse analysis of TROPOMI observations to 
derive optimized estimation of monthly methane emissions at 
0.25° × 0.3125° horizontal resolution in the Permian Basin. Quanti-
fication of emissions at this combination of relatively high spatial 
and temporal resolution, not achievable with previous generations 
of satellite observations such as from GOSAT or SCIAMACHY, is 
enabled by higher-resolution TROPOMI satellite observations (41). 
Figure S7B shows that the Permian Basin is well sampled by TRO-
POMI during the study period, likely because of frequent cloud-free 
conditions in the region. A total of ~200,000 TROPOMI XCH4 re-
trievals within the study domain (29°–34°N, 100°–106°W) between 
May 2018 and March 2019 are used for the inversion.

Let x be the state vector that we seek to optimize through inver-
sion, including a gridded ensemble of methane emissions and an 
additional element representing the regional model bias in XCH4. 
The regional model bias term (a monthly scalar uniform over the 
inversion domain) is necessary to account for spatially uniform 
biases caused by imperfect lateral boundary condition and emission 
errors outside the study domain. The inversion solves for an optimal 
estimate of x by minimizing the following cost function

	​ J(x ) = ​(x − ​x​ A​​)​​ T​ ​S​A​ −1​(x − ​x​ A​​ ) + ​(y − Kx)​​ T​ ​S​O​ −1​(y − Kx)​	 (1)

where TROPOMI XCH4 observations are assembled in y, xA is the 
prior estimate of x, SA is the prior error covariance matrix, SO is 
the observational error covariance matrix, and K is the Jacobian 
matrix describing the sensitivity of XCH4 to emissions and the 
regional model bias (∂y/∂x).

Minimization of Eq. 1 at ∇x J(x) = 0 yields the posterior estima-
tion ​(​̂  x​)​, the posterior error covariance matrix (​​  S​​), and the averaging 
kernel matrix (A) (42)

	​​   x​  = ​ x​ A​​ + ​S​ A​​ ​K​​ T​ ​(​KS​ A​​ ​K​​ T​ + ​S​ O​​)​​ 
−1

​(y − K ​x​ A​​)​	 (2)

	​​   S​  = ​ (​K​​ T​ ​S​O​ −1​ K + ​S​A​ −1​)​​ 
−1

​​	 (3)

	​ A  = ​ I​ n​​ − ​  S​ ​S​A​ −1​​	 (4)

Here, In is an identity matrix where n is the dimension of the 
state vector x. The trace of A, often called as the degrees of freedom 
for signal (DOFS), quantifies the number of pieces of information 
constraining the n-dimensional state vector.

To solve for Eqs. 2 to 4, the prior estimate (xA) for gridded methane 
emissions is required. Using different sources of information, we create 
two gridded emission inventories for the study region: one based on 
bottom-up information (EIBU) and the other based on extrapolation 
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of ground-based site-level measurements (EIME) (see below for 
descriptions of the inventories). Both emission inventories are time 
invariant. We use EIBU as the prior estimate in the base inversion, 
while we use EIME in a sensitivity inversion to evaluate the impact of the 
prior estimate (PI_EIME; see table S2). We perform further evalua-
tions using prior emissions constructed by disaggregating the total 
O/G-related emission flux from EIBU with varied spatial proxies 
(i.e., well count, PI_EIwell, natural gas production, PI_EIgas, and oil 
production, PI_EIoil) (table S2 and fig. S3).

The difference between the EIBU and EIME (Fig. 5A and fig. S3A) 
measures the uncertainty of our prior knowledge, and we thus specify 
prior errors (SA) for emissions as the absolute difference between 
EIBU and EIME. We also specify the prior error for the regional model 
XCH4 bias as 10 ppbv. To test the sensitivity to prior errors, we perturb 
SA in two sensitivity inversions by doubling (PE × 2) or halving 
(PE × 0.5) prior errors (table S2). SO is constructed with the residual 
error method (43), which results in an error averaged at ~11 ppbv. 
Both SO and SA are taken to be diagonal matrices. We also perform 
a sensitivity inversion to test the impact of error correlations with 
off-diagonal terms specified following Cusworth et al. (44) (OE_
Cor; see table S2).

A nested version of the GEOS-Chem chemical transport model 
(12.1.0) is used as the forward model in the inversion to link XCH4 
to surface emissions. To account for the vertical sensitivity of the 
satellite instrument, we compute simulated XCH4 by applying 
TROPOMI averaging kernels to simulated methane vertical profiles. 
We construct the Jacobian matrix K, column by column, with sim-
ulations perturbing each state vector element independently. The 
simulations are performed over North America and adjacent oceans 
driven by GEOS-FP–assimilated meteorological data from the NASA 
Global Modeling and Assimilation Office on a 0.25° × 0.3125° hor-
izontal grid and 47 vertical layers (~30 layers in the troposphere) 
(21). The boundary conditions for the nested-grid simulation are 
from a 4° × 5° global simulation from May 2018 to March 2019 
driven by GEOS-FP meteorological fields. Note that methane emissions 
and sinks used in this simulation are optimized with previous-year 
(2010–2017) GOSAT satellite data following Maasakkers et al. (3). 
Such generated boundary conditions may be biased (i.e., unable to 
capture the growth of global methane concentrations; see fig. S9), 
and we account for it by introducing a monthly regional model bias 
term in the inversion. The retrieved regional model biases may vary 
with the extent of the inversion domain. To test this sensitivity, we 
also perform an inversion with a larger spatial domain (27°–36°N, 
98°–108°W) (Bg_Large; see table S2).

Inversion uncertainty
The posterior error covariance matrix (​​  S​​, Eq. 2) and averaging kernel 
matrix (A, Eq. 3) evaluate the uncertainty of an inversion solution 
given inversion parameters (e.g., SA, SO, forward model). Figure S5 
shows monthly posterior errors for basin-level emissions (derived 
from ​​  S​​) and corresponding DOFS (trace of A) from our base inver-
sion. Overall, the posterior errors for basin-level emissions are <5% 
of the estimated emission flux, and the DOFS are between 5 and 30 
for the monthly inversion, indicating that the TROPOMI data are 
able to constrain basin-level methane emissions and partially resolve 
the spatial distribution on a monthly basis. The monthly variations 
in the posterior error and DOFS are mainly driven by uneven data 
coverage from TROPOMI sampling. For example, poor data coverage 

in November 2018 results in a large posterior error and a small 
DOFS (fig. S5).

We also perform an ensemble of sensitivity inversions by per-
turbing the configurations and parameters in the base inversion 
(table S2), aiming to characterize the uncertainties resulting from 
assumptions made in the inversion not captured by the analytical 
posterior error. Our results show that all these sensitivity inversions 
lead to consistent basin-level emission estimates. Annual mean fluxes 
from sensitivity inversions are within 0.5 Tg a−1 of that from our base 
inversion (table S2), with general agreement in monthly variations 
as well (fig. S5). Because the uncertainty resulting from sensitivity 
inversions are significantly larger than that deduced from posterior 
error covariance matrix (fig. S5), we report the uncertainty of our 
basin-level emission estimate (0.5 Tg a−1) as half of the range from 
the inversion ensemble (2.4 to 3.4 Tg a−1).

Furthermore, to assess the uncertainty due to model transport, 
we compare hourly GEOS-FP 10-m wind speed against measurements 
at the Midland Airport (MAF) in the Permian Basin during the period 
of May 2018 and March 2019. Airport wind measurements are not 
assimilated in the GEOS-FP reanalysis (45), so these observations are 
independent. We find that the GEOS-FP 10-m wind speed compares 
well with the airport measurements in both daytime and nighttime 
(fig. S8), with mean biases of less than 6% in the mean wind speed. 
We conclude that errors in the model wind fields are unlikely to be 
a major source of error in the inversion.

We introduced a regional model bias term in monthly inversions 
to correct for regional background biases in simulated methane 
concentrations, which result mainly from imperfect boundary con-
ditions. To check our estimate for this regional bias term, we sample 
the model simulation to compare with independent observations, 
i.e., surface measurements at the Mauna Loa Observatory (MLO; a 
Pacific free tropospheric site upwind of the North American conti-
nent) (46), tower measurements at Moody, Texas (WKT) (47), and 
aircraft measurements offshore Corpus Christi, Texas (TGC) (48). 
The latter two sites are geographically much closer to the Permian 
Basin (~400 km from WKT and ~700 km from TGC) than MLO, 
but can be affected by local emissions that are not optimized in our 
inversion. Our results show that the model simulation, when cor-
rected with monthly regional model biases (derived from monthly 
inversions over the Permian Basin), is able to capture the observed 
monthly variation in methane concentrations, notably the sharp in-
crease from August to October 2018 in MLO and WKT observations 
(fig. S9), supporting that it is necessary to optimize the regional 
model bias in the inversion. Better agreement is observed at MLO 
and TGC compared to WKT (fig. S9), likely because WKT is located 
closer to local sources that are not fully optimized in the inversion. 
Overall, most of the differences between the prior simulation and 
TROPOMI observations can be explained by the regional model 
biases, except for the mismatch in the vicinity of the Permian Basin 
(fig. S2). We further perform a sensitivity inversion with a varied 
spatial domain (Bg_Large). Compared to the base inversion, Bg_Large 
results in a lower regional methane background (by 3 ppbv on average) 
and a higher methane emission flux (3.4 Tg a−1) (table S2 and fig. S5), 
reflecting the error correlation between regional methane biases and 
methane emissions.

In addition, we note that the inversion cannot fully explain the 
methane enhancement extending outside the Delaware Basin in 
the northwest direction (near 33°N, 105°W), although the inversion 
overall substantially improves the agreement between observations 
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and model simulations (fig. S2). While our investigations do not 
attribute an obvious source of emissions causing the northwestern 
enhancement (whether oil/gas or other sources), the basin-level 
O/G emission estimates presented here are robust if this enhance-
ment is caused by non-O/G sources, but are conservative if it is 
caused by O/G sources.

Emission inventory based on bottom-up information
We create a bottom-up methane emission estimate (EIBU) for the study 
domain starting from the gridded version of the EPA anthropogenic 
greenhouse gas emission inventory for 2012 (49). Maasakkers et al. 
(49) developed a procedure to spatially and temporally allocate the 
national sectorial methane emissions reported in the U.S. Inventory 
of Greenhouse Gas Emissions and Sinks (GHGI) by U.S. EPA on a 
0.1° × 0.1° grid, using various databases at the state, county, local, 
and point-source level. The emission inventory includes methane emis-
sions from agriculture, coal mining, natural gas systems, petroleum 
(oil) systems, waste, and other minor anthropogenic sources.

To reflect the intensifying exploitation activity in recent years in 
the Permian Basin, we then make an extrapolation of the methane 
emissions from the oil and gas production sector, using 2018 Enverus 
Drillinginfo data on well count, well completion, and production 
(50). To account for the changes in the national average emission 
factors, we further scale the subsectorial production emissions 
using the ratio between the latest GHGI (22) and a previous GHGI 
that Maasakkers et al. (49) was based on (51) for 2013 emissions. 
The updates result in total methane emissions of 1.2 Tg a−1 in the 
Permian Basin (blue box in Fig. 5A), with 1.0 Tg a−1 coming from 
O/G-related emissions and the remainder mainly from agriculture. 
We use this updated gridded emission inventory (EIBU) as the prior 
emission estimate for the inversion. The resulting emissions inventory 
dataset (EIBU inventory) is publicly available for our study region 
encompassing the entire Permian Basin (https://doi.org/10.7910/
DVN/NWQGHU).

Emission inventory based on site-level emission measurements
An alternative prior estimation of methane emissions is obtained by 
extrapolating ground-based methane emission measurements from 
a limited sample of oil and gas production sites in the Permian Basin 
(primarily in the New Mexico portion of the basin) during July and 
August 2018 (52). The measurements found a wide range of site-level 
emission rates, which appear to be associated with the complexity 
of infrastructure, and were classified into emission rates for simple 
(with only wellheads and/or pump jacks) versus complex sites (also 
with storage tanks and/or compressors). Extrapolating these site-
level emission rates to the entire Permian gave a basin-level methane 
emission rate of 2.3 Tg a−1 from O/G production. Additional emis-
sions from compressor stations and processing plants are estimated to 
be 0.22 and 0.14 Tg a−1, respectively, using activity data from Enverus 
Drillinginfo’s midstream infrastructure dataset, facility-level emission 
factors from literature (53, 54), and blowdown event emission factors 
from GHGI (22). We then disaggregate the basin-level O/G-related 
emissions to a 0.1° × 0.1° grid by the spatial distribution of gas pro-
duction (Fig. 2D). To complete the inventory, non-O/G anthropogenic 
methane emissions (0.2 Tg a−1) are taken from EIBU. This emission 
inventory (EIME), based primarily on extrapolation of limited site-
level measurements, provides an alternative prior estimate for the 
inversion and is used to test the sensitivity of the results to the 
choice of prior information (fig. S3). See text S2 for detailed infor-

mation regarding the site-level measurements and the extrapolation 
procedure. The resulting emissions inventory dataset (EIME in-
ventory) is publicly available for our study region encompassing 
the entire Permian Basin (https://doi.org/10.7910/DVN/NWQGHU).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/17/eaaz5120/DC1
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