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ENVIRONMENTAL STUDIES
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Permian Basin, which is among the world’s most prolific oil-producing regions and accounts for >30% of total U.S.
oil production. Based on satellite measurements from May 2018 to March 2019, Permian methane emissions from
oil and natural gas production are estimated to be 2.7 + 0.5 Tg a™", representing the largest methane flux ever
reported from a U.S. oil/gas-producing region and are more than two times higher than bottom-up inventory-
based estimates. This magnitude of emissions is 3.7% of the gross gas extracted in the Permian, i.e., ~60% higher
than the national average leakage rate. The high methane leakage rate is likely contributed by extensive venting
and flaring, resulting from insufficient infrastructure to process and transport natural gas. This work demonstrates
a high-resolution satellite data—based atmospheric inversion framework, providing a robust top-down analytical

tool for quantifying and evaluating subregional methane emissions.

INTRODUCTION

Methane is a potent greenhouse gas with a relatively short average
atmospheric residence time of about a decade and is also a precursor
of tropospheric ozone (I). The emission-based radiative forcing for
methane (including effects on tropospheric ozone and stratospheric
water vapor) is 0.97 W m 2 since preindustrial times, which is about
60% of that for CO, (2). Roughly a third of the contemporary
anthropogenic methane emissions come from the fossil fuel energy
sector worldwide (oil, natural gas, and coal) (~100 to 180 Tga™')
(3, 4, 5). Curbing anthropogenic methane emissions, including those
from the oil/gas sector, is considered an effective strategy to slow the
rate of near-term climate warming (I). However, the rapid increase
in oil and natural gas (O/G) production in the United States since
around 2005, driven primarily by hydraulic fracturing and horizontal
drilling, has led to major concerns about increasing methane emissions
and adverse climate impacts (6). By upscaling data collected from
field measurements in some of the largest O/G production basins in
the United States, Alvarez et al. (7) estimated 13 Tg annual methane
emissions from the national O/G supply chain for 2015, which is
60% higher than the official estimates by the U.S. Environmental
Protection Agency (EPA) (8). The largest discrepancy was found in
the O/G production segment where the estimate by Alvarez et al.
(7) (7.6 Tg a™!) was more than two times that by EPA, which relies
on inventory-based estimates (3.5 Tg a™h) (8).
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While field measurements provide in-depth information about a
particular site or area, it is often challenging to expand the measure-
ment capacity to observe a diverse set of targets distributed globally
over longer periods of time. Additional challenges exist for areas that
are difficult to access for technical or proprietary reasons. On the
other hand, global satellite observations of column atmospheric
methane offer a unique vantage point to identify emission hot spots
and quantify regional emissions (9). Using data from SCanning
Imaging Absorption spectroMeter for Atmospheric CHartographY
(SCIAMACHY) satellite observations averaged between 2003 and
2009, Kort et al. (10) found large anomalous methane levels from
the Four Corners region in the United States, with total methane
emissions associated with natural gas, coal, and coalbed sources
estimated as 0.59 + 0.08 Tga™'. While the SCTAMACHY data were
fairly limited in spatial resolution (30 km x 60 km) and measure-
ment precision [30 parts per billion in volume or (ppbv)] (9), it was
the first time that satellite observations were used to quantify a dense
O/G-related methane emission hot spot. This finding also led to
several dedicated airborne studies to better understand methane
sources in the region (11, 12), which reported methane fluxes com-
parable to the satellite-based estimate (10).

Here, we demonstrate and exploit the capability of a recent space-
borne sensor, the Tropospheric Monitoring Instrument (TROPOMI),
to map atmospheric methane enhancements in the United States
and quantify emissions from the Permian Basin (Fig. 1), which has
become one of the world’s most prolific oil-producing regions in
recent years due to advances in drilling technologies. Located in New
Mexico and Texas in a region of ~400 km x 400 km, Permian is cur-
rently the largest oil-producing basin in the United States. In 2018,
the Permian Basin produced 5.5 x 10° m® (or 3.5 million barrels)
of crude oil and 3.2 x 10® m? (or 11 billion feet’) of natural gas every
day (~30 and ~10% of the U.S. national totals, respectively), which
was 4 and 2.5 times their corresponding levels in 2007 (around the
time of SCTAMACHY observations) (Fig. 2) (13). While the surging
production in the Permian Basin and its importance in the U.S.
oil boom during the last decade have been widely covered in mass
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Fig. 1. Satellite observations of the Permian methane anomaly. TROPOM I satellite data derived elevation-corrected column methane mixing ratio for (A) the conterminous
United States and (B) the Permian Basin containing the Delaware and Midland sub-basins. White shading represents missing data. Purple boundary in (A) indicates the
study domain encompassing the Permian Basin. Methane averages are computed from monthly means of TROPOMI measurements during May 2018 and March 2019.
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Fig. 2. Oil and gas production in the Permian Basin. (A and C) Time series of annual O/G production in black and the corresponding fractions of total U.S. production
in blue [data from the Drilling Productivity Report by EIA (73)]. (B and D) Spatial distribution of oil and gas production for 2018 [data from Enverus Drillinginfo (50)]. Oil
production includes both crude and condensate production. Gas production represents gross (before processing) gas production.

media (14), the scale of associated methane emissions from this critical
O/G basin is unknown, despite reports of increased flaring and
venting activity (15).

Using 11 months of recent data acquired by TROPOMI during
2018-2019, we focus on the distinct methane concentration anomaly
over the Permian Basin and quantify the associated methane emissions
with a state-of-the-art atmospheric inverse modeling framework.
TROPOMI was launched in October 2017 onboard the European
Space Agency’s Sentinel-5P satellite and provides column atmospheric
methane measurements with higher spatial resolution (7 km x 7 km
at nadir) and precision (0.6%) than was previously available (16),
providing near-daily global coverage with its large 2600-km-wide
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swath (17). Our integrated satellite-based approach provides new in-
sights into the dynamic landscape of O/G-related methane emissions
in the United States and should pave the way forward toward routine
quantification, monitoring, and evaluation of methane emissions from
source regions distributed globally.

RESULTS

Satellite observations of the Permian methane anomaly
Figure 1A shows a map of column-averaged dry-air methane mixing
ratio over the conterminous United States, retrieved from TROPOMI
measurements, with correction for the topography effect (denoted
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as XCH}; see Materials and Methods). The data are averaged from
May 2018 to March 2019. Substantial enhancements of XCH] rela-
tive to the surrounding background, up to ~30 ppbv, are found over
the Permian Basin, indicating strong methane emissions. Other
notable enhancements are observed in California’s central valley,
coastal Southeast, and the Mississippi River Valley, likely associated
with anthropogenic (agriculture, dairy) and natural (wetland) sources.
The elevated methane levels in central California were also seen earlier
in the SCTAMACHY analysis (10).

The methane enhancements over the Permian Basin show a
characteristic two-branch pattern, which aligns with the two major
O/G production sub-basins, the Delaware basin to the west and
the Midland basin to the east (Fig. 1B). The enhancement over the
Delaware basin, where extensive new exploitation has taken place
during the last 5 years (18) (fig. S1), is larger than that over the Midland
basin (Fig. 1B). Intensive O/G production activity in these two sub-
basins is also captured by satellite observations of radiant heat from
gas flaring [Fig. 3A; nighttime observations by the Visible Infrared
Imaging Radiometer Suite (VIIRS)] a nd NO; tropospheric column
densities (Fig. 3B; daytime observations by TROPOMI). Flaring is a
common practice in O/G operations to burn off unwanted or excess
gas, and NO; is a gaseous pollutant released during gas flaring and
other combustion activities in O/G fields (19, 20). On the basis of
measurements by the VIIRS instrument onboard the Suomi National
Polar-orbiting Partnership satellite, we estimate an average flaring rate
of 5.9 + 1.2 billion m® a™* during the period of this study, about 4.6% of the
gross gas production (see text S1). A fourfold increase in flaring intensity
since 2012, observed by the VIIRS instrument, is indicative of the
rapid growth in O/G production across the Permian Basin (fig. S1).

Methane emission quantification

We quantify the methane emission rate from the Permian Basin and
its spatial distribution with atmospheric inverse modeling, which
optimizes spatially resolved methane emission rates by drawing
information from TROPOMI observations and the prior emission
estimate following the Bayesian rule. The inversion seeks to optimize
monthly methane emission rates resolved at 0.25° x 0.3125° horizontal
resolution in a study domain containing the Permian Basin and the
surrounding region (29°-34°N, 100°~106°W). The solution to the
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Fig. 3. Satellite observations of gas flaring radiant heat and NO, tropospheric
column density over the Permian Basin. (A) Gas flaring radiant heat is the annual
average of 2018 measured by the VIIRS satellite instrument, and (B) NO, tropospheric
column density is the 3-month average (June, July, and August of 2018) measured
by the TROPOMI instrument, indicating colocated hot spots over the Delaware
and Midland sub-basins.
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optimization is found analytically with closed-form characterization
of the error statistics (3). An atmospheric transport model (a nested
version of GEOS-Chem over North America with a 0.25° x 0.3125°
horizontal resolution) (21) is used as the forward model to relate
atmospheric methane columns with ground-level emissions in the
study domain and the contributions from outside the domain. The
optimization by the inversion significantly reduces the observation-
model mismatch with decreased root mean square error (prior, 23
ppbv; posterior, 14 ppbv) and increased correlation (R; prior, 0.30;
posterior, 0.62) (fig. S2). See Materials and Methods for more details
about the configurations of the inverse modeling including error
accounting and prior information.

When aggregating monthly spatially resolved posterior emissions
to the basin-level annual average, we find a methane emission flux
0f2.9+0.5Tg a”! from the Permian Basin (30°-34°N, 101°~105°W)
(Fig. 4A; see Materials and Methods for the uncertainty analysis).
This estimate is more than a factor of 2 larger than the bottom-up
estimate based on an extrapolation of EPA greenhouse gas inventory
data (Elgy, 1.2 Tg a’l; see Materials and Methods) (Fig. 4A), sug-
gesting that current methane emissions in the Permian are under-
represented in national bottom-up emission inventories (22). Our
inversion result is in close agreement with a basin-level estimate
based on extrapolation of limited ground-based site-level measure-
ments in the Permian (Elvg, 2.8 Tg a’h (Fig. 4A). It should be noted
that these site-level measurements were primarily conducted in
the New Mexico portion of the Permian Basin and covered only a
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Fig. 4. Methane emission quantification for the Permian Basin. (A) Annual
methane emissions from the Permian Basin from two prior emission inventories
(Elgy and Elyg), and TROPOMI satellite data-based atmospheric inversion and a
mass balance method. The breakdown for Delaware, Midland, and non-O/G sources
is shown in pink, red, and white for Elgy, Elmg, and atmospheric inversion, respectively.
The estimate for the Permian Basin is compared with total emissions from 11 U.S.
basins reported in literature (7, 24, 25) (table S1). (B) Leakage rates for the Permian
Basin and two sub-basins, in comparison with the average leakage reported for the
entire United States (7).
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small fraction of production sites (see Materials and Methods and
text S2). As a comparison, we also apply a fast mass balance method
following Buchwitz et al. (23) to estimate basin-level emissions, which
yields an annual mean emission rate of 3.2 + 2.0 Tg a~* for the
Permian Basin. This result is consistent with that derived from a full
atmospheric inversion. Despite the large uncertainty of the mass
balance method, this data-driven approach provides an independent
estimate of emissions derived primarily using TROPOMI data (see
text S3 for more discussion).

Removing the non-O/G sources (0.2 Tg a™") from the total flux
obtained via the inversion (2.9 Tg a™!), we estimate the methane
emissions related to O/G activity to be 2.7 Tga™' in the Permian
Basin. Put in the context of national emissions, this value is approx-
imately one quarter of total emissions from all U.S. oil and gas produc-
tion areas in 2015 (10.9 Tga™', including emissions from production,
gathering, and processing, which largely occur in the production
areas) (7). Our estimated emission rate for the Permian is signifi-
cantly higher than those reported in the literature for other major
U.S. O/G-producing basins. Table S1 summarizes methane emission
estimates for 11 U.S. basins (7, 24, 25) from previous aircraft-based studies
[i.e., Haynesville (24, 26), Barnett (24, 27), Northeast Pennsylvania
(26, 28), Southwest Pennsylvania (25), San Juan (12), Fayetteville
(26, 29), Bakken (24, 30), Uinta (31), Weld (32), West Arkoma (26),
Eagle Ford (24), and the Denver Basin (24)]. Our estimate for the
Permian (2.7 Tg a™') is about a factor of 4 higher than the largest
methane emissions from these previously reported O/G basins [i.e.,
Eagle Ford, 0.73 Tg a ' (24)] and is even comparable to the 11-basin
sum (3.7 Tg a™h (Fig. 4A and table S1). This comparison with recent
literature indicates that the Permian Basin is likely the largest observed
methane-emitting O/G basin in the United States and a substantial
contributor to national O/G-related emissions.

Distribution of methane emissions

High-resolution observations from TROPOMI enable us to resolve
methane emissions at an unprecedented spatial and temporal reso-
lution, relative to the previous generation of satellite instruments
such as the Greenhouse gases Observing SATellite (GOSAT) and
SCIAMACHY (9). Figure 5 presents the spatial distribution of
methane emissions in the Permian Basin at about a quarter-degree
resolution derived from our atmospheric inversion. Compared to the
prior inventory Elgy, our inversion finds larger methane emissions
near the center of the Delaware and Midland sub-basins. Sensitivity
inversions further show that this spatial pattern is robust against prior
emissions of varied magnitudes and distributions (fig. S3), demonstrat-
ing that it is primarily informed by satellite observations.

The spatial distribution of methane emissions derived from inver-
sion is closely correlated with that of gross gas production (R = 0.78),
but to a lesser degree with that of oil production (R = 0.53) and that
of the well number density (R = 0.31) (fig. S4). Similarly, when we
sum up the O/G-related emissions for two sub-basins, the ratio of
methane emissions between Delaware and Midland (1.7/1.0 Tg
a~! = 1.7) is closest to the ratio of gas production (1.4), compared to
that of oil production (1.0) and well number density (0.7). Because
unconventional wells tend to have much higher production per well
than conventional wells (33), the dependence of methane emissions
on gross gas production rather than the well number density sug-
gests that unconventional wells and infrastructure associated with
these wells (e.g., gathering stations), which have been developed re-
cently, are likely the major methane emitters in the Permian Basin.
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Fig. 5. Spatial distribution of methane emission rates in the Permian Basin.
(A) Bottom-up emission inventory Elg, extrapolated from EPA greenhouse gas in-
ventory data (prior). (B) TROPOMI observation—derived emissions using Bayesian
atmospheric inverse modeling (posterior). The prior and posterior basin-total
emissions, indicated on top of the figure, are computed over the area enclosed by
the solid blue boundary, with contributions from two sub-basins, the Delaware (left
of the dashed line) and Midland (right of the dashed line).

In addition to the spatial distribution, our monthly inversion
also provides information about the temporal variation of methane
emissions during the 11 months of observation (fig. S5). Although
the inversion’s ability to resolve the spatial distribution of emissions
varies from month to month because of uneven monthly sampling
of TROPOMI (fig. S5), our inversion ensemble (table S2 and fig. S5)
generally results in consistent monthly basin-level emission esti-
mates (see also uncertainty analysis in Materials and Methods). We
speculate that high emissions in December 2018 may be related to a
very low in-basin gas price toward the end of 2018, resulting from
insufficient gas gathering and transmission capacity in the Permian
Basin (33,34). That said, we do not find an apparent increasing
trend in methane emissions, although natural gas production from
the Permian Basin increased steadily by ~20% during the over-
lapping 11-month period (fig. S6). Further investigation is required
to delineate factors controlling the temporal variations of O/G-related
methane emissions.

DISCUSSION
Using an inverse analysis of TROPOMI satellite observations, we
estimate a total methane flux of 2.9 + 0.5 Tg a”' in the Permian
Basin, with 2.7 Tg a~' coming from O/G-related activity. Methane
losses of this magnitude represent a waste of an important resource;
for instance, this is enough natural gas to supply 7 million house-
holds in the state of Texas (35). Moreover, the 2.7 Tg a~! methane
emitted in Permian results in the same radiative forcing as ~260 Tg
a' CO, over a 20-year time horizon (86 Tg CO,a ™" over a 100-year
time horizon) (global warming potential of 96 for 20 years and
32 for 100 years) (7, 36), about the same as annual CO, emissions from
the entire U.S. residential sector (290 Tg CO, a~tin 2017) (22).
Our estimate (2.7 Tga™') equates to a production-normalized
(73 Tg CHya ™, derived from 127 billion m> a~" natural gas produc-
tion during the study period using 80% methane content by volume)
emission rate (or methane leakage rate) of 3.7 £ 0.7%, which is
~60% higher than the national average of 2.3 + 0.3% (7) (Fig. 4B).
The leakage rate is even higher for the rapidly developing Delaware
sub-basin (4.1%). Comparable high leakage rates have also been re-
ported in other oil production-focused basins such as the Bakken
(24) (table S1), but these basins produce much lower natural gas
than the Permian Basin does. Previous studies summarized in table
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S1 show an inverse relationship between the basin-level leakage rate
and gas production (24); however, the Permian Basin is an outlier with
high oil production, high gas production, and a high leakage rate.

Overall, the high leakage rate in the Permian Basin appears to be
associated with insufficient infrastructure for natural gas gathering,
processing, and transportation (34, 37), leading to extensive venting
and flaring (Fig. 3), which contributes to high methane emissions.
The greater profitability of oil production contributes to a lack of
investment in natural gas takeaway capacity, which, in turn, has
resulted in excessive supply of associated gas and a very low in-basin
gas price in the Permian (34). In addition, with the rescinding of
U.S. federal requirements on gas capture and fugitive emissions in
2018, current regulations on O/G methane emissions in the Permian
Basin are less stringent at both federal and state levels (see text S4).
All these factors may increase the incentive for operators to vent
and flare their product. On the other hand, the higher-than-average
leakage rate in the Permian Basin implies an opportunity to reduce
methane emissions in this rapidly growing oil and gas-producing
region, through better design, effective management, regulation, and
infrastructure development.

MATERIALS AND METHODS

TROPOMI methane observations

We use daily column-averaged dry air column methane mixing ratio
(XCHy,) data retrieved from TROPOMI measurements (38) between
May 2018 and March 2019. TROPOMI, onboard the polar-orbiting
Sentinel-5 Precursor satellite, is a push-broom imaging spectrometer
that provides near-daily global coverage with a swath width of 2600 km
and a nadir ground pixel size of 7 km x 7 km at approximately 13:30
local overpass time (17). The retrieval algorithm accounts for the
“full physics” of the light path by simultaneously inferring methane
concentrations and physical scattering properties, using the oxygen
A-band in the near infrared (NIR) and the methane absorption band
in the short-wave infrared (SWIR) (39). Only high-quality XCH,4
measurements retrieved under cloud-free conditions are used in this
study (as indicated by the retrieval quality assurance flags in TROPOMI
data product). These measurements are filtered for solar zenith angle
(<70°), low viewing zenith angle (<60°), smooth topography (1 SD
of surface elevation <80 m within 5-km radius), and low aerosol load
(aerosol optical thickness <0.3 in NIR) (40).

The TROPOMI XCH4 product is further corrected for any known
retrieval biases (40). The errors in the TROPOMI XCH, measure-
ments have been assessed against GOSAT XCH, data (38) and were
found to correlate with surface albedo. A global bias correction
linearly dependent on surface albedo was then derived and applied
to the TROPOMI data (40). This bias-corrected TROPOMI XCH,
product is used in this study. Negligible correlation of errors with
other retrieved parameters (e.g., aerosol optical thickness) was found
in the assessment. Validation with independent ground-based mea-
surements from the Total Column Carbon Observing Network shows
that the bias-corrected TROPOMI XCH4 has a bias of —4.3 + 7.4 ppbv,
improved upon the uncorrected XCH,4 product (-12 + 11.5 ppbv)
(40). In addition, we also examine the correlation between bias-corrected
XCHy,4 and other retrieved parameters for the subset of TROPOMI
data over the domain of this study. We find no correlation with
albedo (R* = 0.00) and a negligible correlation with aerosol optical
thickness (R? = 0.07), supporting the idea that the XCH,4 enhance-
ment over the Permian Basin (Fig. 1B) is robust.

Zhang et al., Sci. Adv. 2020; 6 : eaaz5120 22 April 2020

Figure S7A shows the average XCH, over the conterminous
United States and the Permian Basin between May 2018 and March 2019
before the topographical correction. We derive the elevation-corrected
methane column (XCH}) shown in Fig. 1 by applying a third-order
polynomial correction fitted over the U.S. domain following Kort
et al. (10). The mass balance method uses the elevation-corrected
data (XCH;) for emission quantification, while the inversion method
uses XCHy (bias-corrected) directly obtained from the data product,
because the topography effect is taken care of by the atmospheric
transport model.

Atmospheric inverse modeling

We perform an inverse analysis of TROPOMI observations to
derive optimized estimation of monthly methane emissions at
0.25° x 0.3125° horizontal resolution in the Permian Basin. Quanti-
fication of emissions at this combination of relatively high spatial
and temporal resolution, not achievable with previous generations
of satellite observations such as from GOSAT or SCIAMACHY, is
enabled by higher-resolution TROPOMI satellite observations (41).
Figure S7B shows that the Permian Basin is well sampled by TRO-
POMI during the study period, likely because of frequent cloud-free
conditions in the region. A total of ~200,000 TROPOMI XCHj, re-
trievals within the study domain (29°-34°N, 100°-106°W) between
May 2018 and March 2019 are used for the inversion.

Let x be the state vector that we seek to optimize through inver-
sion, including a gridded ensemble of methane emissions and an
additional element representing the regional model bias in XCHj.
The regional model bias term (a monthly scalar uniform over the
inversion domain) is necessary to account for spatially uniform
biases caused by imperfect lateral boundary condition and emission
errors outside the study domain. The inversion solves for an optimal
estimate of x by minimizing the following cost function

J@)=(x-xa) S (x —x2)+ (7 - Kx) 'Sy - Kx) (1)

where TROPOMI XCHj, observations are assembled in y, x is the
prior estimate of x, S, is the prior error covariance matrix, So is
the observational error covariance matrix, and K is the Jacobian
matrix describing the sensitivity of XCH,4 to emissions and the
regional model bias (dy/dx).

Minimization of Eq. 1 at V, J(x) = 0 yields the posterior estima-

tion (¥), the posterior error covariance matrix (§), and the averaging
kernel matrix (A) (42)

R = xa+SAKT(KSAKT +S0) (v - Kxn) 2)
§ = (K'sK+s.)" (3)
A =1,-8s} (4)

Here, I, is an identity matrix where #n is the dimension of the
state vector x. The trace of A, often called as the degrees of freedom
for signal (DOEFS), quantifies the number of pieces of information
constraining the n-dimensional state vector.

To solve for Egs. 2 to 4, the prior estimate (x ) for gridded methane
emissions is required. Using different sources of information, we create
two gridded emission inventories for the study region: one based on
bottom-up information (Elgy) and the other based on extrapolation
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of ground-based site-level measurements (Elyg) (see below for
descriptions of the inventories). Both emission inventories are time
invariant. We use Elpy as the prior estimate in the base inversion,
while we use El g in a sensitivity inversion to evaluate the impact of the
prior estimate (PI_EIyg; see table S2). We perform further evalua-
tions using prior emissions constructed by disaggregating the total
O/G-related emission flux from Elgy with varied spatial proxies
(i.e., well count, PI_EIyer, natural gas production, PI_El,, and oil
production, PI_El;) (table S2 and fig. S3).

The difference between the Elgy and Elyg (Fig. 5A and fig. S3A)
measures the uncertainty of our prior knowledge, and we thus specify
prior errors (Sa) for emissions as the absolute difference between
Elpy and Ely. We also specify the prior error for the regional model
XCH, bias as 10 ppbv. To test the sensitivity to prior errors, we perturb
Sa in two sensitivity inversions by doubling (PE x 2) or halving
(PE x 0.5) prior errors (table S2). Sp is constructed with the residual
error method (43), which results in an error averaged at ~11 ppbv.
Both S and S, are taken to be diagonal matrices. We also perform
a sensitivity inversion to test the impact of error correlations with
off-diagonal terms specified following Cusworth et al. (44) (OE_
Cor; see table S2).

A nested version of the GEOS-Chem chemical transport model
(12.1.0) is used as the forward model in the inversion to link XCHy,
to surface emissions. To account for the vertical sensitivity of the
satellite instrument, we compute simulated XCH,4 by applying
TROPOMI averaging kernels to simulated methane vertical profiles.
We construct the Jacobian matrix K, column by column, with sim-
ulations perturbing each state vector element independently. The
simulations are performed over North America and adjacent oceans
driven by GEOS-FP-assimilated meteorological data from the NASA
Global Modeling and Assimilation Office on a 0.25° x 0.3125° hor-
izontal grid and 47 vertical layers (~30 layers in the troposphere)
(21). The boundary conditions for the nested-grid simulation are
from a 4° x 5° global simulation from May 2018 to March 2019
driven by GEOS-FP meteorological fields. Note that methane emissions
and sinks used in this simulation are optimized with previous-year
(2010-2017) GOSAT satellite data following Maasakkers et al. (3).
Such generated boundary conditions may be biased (i.e., unable to
capture the growth of global methane concentrations; see fig. S9),
and we account for it by introducing a monthly regional model bias
term in the inversion. The retrieved regional model biases may vary
with the extent of the inversion domain. To test this sensitivity, we
also perform an inversion with a larger spatial domain (27°-36°N,
98°-108°W) (Bg_Large; see table S2).

Inversion uncertainty

The posterior error covariance matrix (S, Eq. 2) and averaging kernel
matrix (A, Eq. 3) evaluate the uncertainty of an inversion solution
given inversion parameters (e.g., Sa, So, forward model). Figure S5
shows monthly posterior errors for basin-level emissions (derived
from §) and corresponding DOFS (trace of A) from our base inver-
sion. Overall, the posterior errors for basin-level emissions are <5%
of the estimated emission flux, and the DOFS are between 5 and 30
for the monthly inversion, indicating that the TROPOMI data are
able to constrain basin-level methane emissions and partially resolve
the spatial distribution on a monthly basis. The monthly variations
in the posterior error and DOFS are mainly driven by uneven data
coverage from TROPOMI sampling. For example, poor data coverage
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in November 2018 results in a large posterior error and a small
DOFS (fig. S5).

We also perform an ensemble of sensitivity inversions by per-
turbing the configurations and parameters in the base inversion
(table S2), aiming to characterize the uncertainties resulting from
assumptions made in the inversion not captured by the analytical
posterior error. Our results show that all these sensitivity inversions
lead to consistent basin-level emission estimates. Annual mean fluxes
from sensitivity inversions are within 0.5 Tga of that from our base
inversion (table S2), with general agreement in monthly variations
as well (fig. S5). Because the uncertainty resulting from sensitivity
inversions are significantly larger than that deduced from posterior
error covariance matrix (fig. S5), we report the uncertainty of our
basin-level emission estimate (0.5 Tg a™') as half of the range from
the inversion ensemble (2.4 to 3.4 Tg ah).

Furthermore, to assess the uncertainty due to model transport,
we compare hourly GEOS-FP 10-m wind speed against measurements
at the Midland Airport (MAF) in the Permian Basin during the period
of May 2018 and March 2019. Airport wind measurements are not
assimilated in the GEOS-FP reanalysis (45), so these observations are
independent. We find that the GEOS-FP 10-m wind speed compares
well with the airport measurements in both daytime and nighttime
(fig. S8), with mean biases of less than 6% in the mean wind speed.
We conclude that errors in the model wind fields are unlikely to be
a major source of error in the inversion.

We introduced a regional model bias term in monthly inversions
to correct for regional background biases in simulated methane
concentrations, which result mainly from imperfect boundary con-
ditions. To check our estimate for this regional bias term, we sample
the model simulation to compare with independent observations,
i.e., surface measurements at the Mauna Loa Observatory (MLO; a
Pacific free tropospheric site upwind of the North American conti-
nent) (46), tower measurements at Moody, Texas (WKT) (47), and
aircraft measurements offshore Corpus Christi, Texas (TGC) (48).
The latter two sites are geographically much closer to the Permian
Basin (~400 km from WKT and ~700 km from TGC) than MLO,
but can be affected by local emissions that are not optimized in our
inversion. Our results show that the model simulation, when cor-
rected with monthly regional model biases (derived from monthly
inversions over the Permian Basin), is able to capture the observed
monthly variation in methane concentrations, notably the sharp in-
crease from August to October 2018 in MLO and WKT observations
(fig. S9), supporting that it is necessary to optimize the regional
model bias in the inversion. Better agreement is observed at MLO
and TGC compared to WKT (fig. S9), likely because WKT is located
closer to local sources that are not fully optimized in the inversion.
Opverall, most of the differences between the prior simulation and
TROPOMI observations can be explained by the regional model
biases, except for the mismatch in the vicinity of the Permian Basin
(fig. S2). We further perform a sensitivity inversion with a varied
spatial domain (Bg_Large). Compared to the base inversion, Bg Large
results in a lower regional methane background (by 3 ppbv on average)
and a higher methane emission flux (3.4 Tg a™!) (table S2 and fig. S5),
reflecting the error correlation between regional methane biases and
methane emissions.

In addition, we note that the inversion cannot fully explain the
methane enhancement extending outside the Delaware Basin in
the northwest direction (near 33°N, 105°W), although the inversion
overall substantially improves the agreement between observations
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and model simulations (fig. S2). While our investigations do not
attribute an obvious source of emissions causing the northwestern
enhancement (whether oil/gas or other sources), the basin-level
O/G emission estimates presented here are robust if this enhance-
ment is caused by non-O/G sources, but are conservative if it is
caused by O/G sources.

Emission inventory based on bottom-up information

We create a bottom-up methane emission estimate (Ely) for the study
domain starting from the gridded version of the EPA anthropogenic
greenhouse gas emission inventory for 2012 (49). Maasakkers et al.
(49) developed a procedure to spatially and temporally allocate the
national sectorial methane emissions reported in the U.S. Inventory
of Greenhouse Gas Emissions and Sinks (GHGI) by U.S. EPA on a
0.1° x 0.1° grid, using various databases at the state, county, local,
and point-source level. The emission inventory includes methane emis-
sions from agriculture, coal mining, natural gas systems, petroleum
(oil) systems, waste, and other minor anthropogenic sources.

To reflect the intensifying exploitation activity in recent years in
the Permian Basin, we then make an extrapolation of the methane
emissions from the oil and gas production sector, using 2018 Enverus
Drillinginfo data on well count, well completion, and production
(50). To account for the changes in the national average emission
factors, we further scale the subsectorial production emissions
using the ratio between the latest GHGI (22) and a previous GHGI
that Maasakkers et al. (49) was based on (51) for 2013 emissions.
The updates result in total methane emissions of 1.2 Tg a™" in the
Permian Basin (blue box in Fig. 5A), with 1.0 Tg a™' coming from
O/G-related emissions and the remainder mainly from agriculture.
We use this updated gridded emission inventory (Elgy) as the prior
emission estimate for the inversion. The resulting emissions inventory
dataset (EIgy inventory) is publicly available for our study region
encompassing the entire Permian Basin (https://doi.org/10.7910/
DVN/NWQGHU).

Emission inventory based on site-level emission measurements
An alternative prior estimation of methane emissions is obtained by
extrapolating ground-based methane emission measurements from
a limited sample of oil and gas production sites in the Permian Basin
(primarily in the New Mexico portion of the basin) during July and
August 2018 (52). The measurements found a wide range of site-level
emission rates, which appear to be associated with the complexity
of infrastructure, and were classified into emission rates for simple
(with only wellheads and/or pump jacks) versus complex sites (also
with storage tanks and/or compressors). Extrapolating these site-
level emission rates to the entire Permian gave a basin-level methane
emission rate of 2.3 Tga~' from O/G production. Additional emis-
sions from compressor stations and processing plants are estimated to
be 0.22 and 0.14 Tga ™', respectively, using activity data from Enverus
Drillinginfo’s midstream infrastructure dataset, facility-level emission
factors from literature (53, 54), and blowdown event emission factors
from GHGI (22). We then disaggregate the basin-level O/G-related
emissions to a 0.1° x 0.1° grid by the spatial distribution of gas pro-
duction (Fig. 2D). To complete the inventory, non-O/G anthropogenic
methane emissions (0.2 Tg a™!) are taken from Elgy. This emission
inventory (Elyg), based primarily on extrapolation of limited site-
level measurements, provides an alternative prior estimate for the
inversion and is used to test the sensitivity of the results to the
choice of prior information (fig. S3). See text S2 for detailed infor-
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mation regarding the site-level measurements and the extrapolation
procedure. The resulting emissions inventory dataset (Elyg in-
ventory) is publicly available for our study region encompassing
the entire Permian Basin (https://doi.org/10.7910/DVN/NWQGHU).

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/17/eaaz5120/DC1
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