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Abstract: Chronic exposure of children in sub-Saharan Africa to aflatoxins has been associated with 
low birth weight, stunted growth, immune suppression, and liver function damage. Lactobacillus 
species have been shown to reduce aflatoxin contamination during the process of food fermentation. 
Twenty-three Lactobacillus strains were isolated from fecal samples obtained from a cohort of rural 
Ugandan children at the age of 54 to 60 months, typed by 16S rRNA gene sequencing, and 
characterized in terms of their ability to bind aflatoxin B1 in vitro. Evidence for chronic exposure of 
these children to aflatoxin B1 in the study area was obtained by analysis of local foods (maize flour 
and peanuts), followed by the identification of the breakdown product aflatoxin M1 in their urine 
samples. Surprisingly, Lactobacillus in the gut microbiota of 140 children from the same cohort at 24 
and 36 months showed the highest positive correlation coefficient with stunting among all bacterial 
genera identified in the stool samples. This correlation was interpreted to be associated with dietary 
changes from breastfeeding to plant-based solid foods that pose an additional risk for aflatoxin 
contamination, on one hand, and lead to increased intake of Lactobacillus species on the other.  
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1. Introduction 

The warm and humid climate conditions of sub-Saharan Africa promote the growth of fungi and 
associated production of mycotoxins. Approximately 25% of grains harvested annually worldwide 
contain mycotoxins. Ingestion of these contaminated foods can lead to disease and death [1]. 
Aflatoxin is the most prevalent and harmful human mycotoxin reported to date [2]. Aflatoxins are 
common food contaminants produced as secondary metabolites of fungi belonging to genus 
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Aspergillus [3]. Their toxicity leads to carcinogenic and teratogenic effects as well as growth faltering, 
which has been confirmed in animal models, rendering aflatoxins a major food safety concern [4–6]. 

Four major types of aflatoxins such as B1, B2, G1, and G2 are commonly reported as contaminants 
of foods, including maize, ground nut, and cotton seeds. Aflatoxin B1 is the most prevalent, 
contributing to up to 75% of all aflatoxin contamination of foods, and it has been classified as a Group 
1 carcinogen by the International Agency for Research on Cancer (IARC) in 1987 [3]. To minimize the 
risk of aflatoxin ingestion from contaminated foods, maximum levels for aflatoxin in nuts, grains, 
and oil seeds has been set up by many countries. The East Africa Community has proposed the 
maximum allowable level of aflatoxin as 5 µg kg−1 for aflatoxin B1 and 10 µg kg−1 for total aflatoxin 
[7]. Some African countries adopted codex regulatory levels, which vary between 0.5 and 15 µg kg−1 
[8]. In comparison, the European Commission set the regulatory limit at 2 for B1 and 4 µg kg−1 for 
total aflatoxins in human foods [9].  

Despite all these regulatory limits, aflatoxins are still present in dangerously high levels in 
groundnuts, cassava, and corn, which make up the bulk of children’s diets in Africa [10]. 
Approximately 74% of maize flour consumed in Kampala, Uganda, was contaminated with aflatoxins 
at a range from 1.8 to 268 µg kg−1 [11]. These high levels of contamination were further confirmed by 
Muzoora et al. who found that 72% of peanuts collected from different regions of Uganda were 
contaminated with aflatoxins, ranging from 1.6 to 516 µg kg−1 [12]. Due to ingestion of highly 
contaminated foods, Asiki et al. reported that all 100 adults and 92 children out of a total of 96 tested 
children had detectable levels of aflatoxin-albumin adduct [13]. This study also revealed that five 
babies who were exclusively breastfed tested positive for aflatoxin albumin adduct. Although a direct 
causal relationship has not been established, high levels of aflatoxin exposure could contribute to the 
high rate of stunted growth of 46% in Western Uganda [14,15].  

Following ingestion of contaminated food, and reaching the upper small intestine (duodenum), 
aflatoxin is absorbed into the blood stream rapidly [16]. Although there is rapid absorption, aflatoxins 
have been found to affect the gastrointestinal tract by impairing cell growth, causing DNA damage 
and increasing lactate dehydrogenase activity [17]. Moreover, aflatoxins have also been reported to 
affect the gut microbiota. Wang et al. showed that aflatoxin B1 has the ability to alter the gut 
microbiota in a dose-dependent manner in rats; aflatoxin B1 did not affect gut microbiota at the 
phylum level, but some lactic acid bacteria were depleted [18]. Galarza-Seeber et al. also revealed that 
aflatoxins at a dose of one part per million (ppm) significantly decreased total lactic acid bacteria in 
broilers [19]. 

The human gut microbiota is composed of trillions of bacteria that play an important role in 
maintaining health [20]. The gut microbiota provides a protective barrier for the host against the 
proliferation of pathogenic bacteria. Gut bacteria also play a crucial role in the digestion of a wide 
range of foods as well as the binding and degradation of toxins [21]. Therefore, the intake of probiotics 
and lactic acid bacteria via fermented foods could help to reduce the uptake of aflatoxins [22]. In a 
study carried out on young men from Guangzhou, China, significant reduction of urinary aflatoxin 
was noted after administration of Lactobacillus rhamnosus LC705 and Propionibacterium freudenreichii 
compared to placebo [23]. A similar study showed that administration of L. casei Shirota significantly 
decreased the level of aflatoxin B1-lysine adduct [24]. Furthermore, a number of other studies 
confirmed the ability of lactic acid bacteria to bind aflatoxin B1 [25,26]. 

Despite the evidence for the toxic effects of aflatoxins, there is generally poor awareness of the 
risk of these toxins and a lack of proper detection methods to monitor levels in food [27]. Therefore, 
a portable immunosensor was developed, validated, and used to measure aflatoxin levels in maize 
from markets and households in Kampala [11,28], indicating that consumers, including children, are 
exposed to relatively high concentrations of aflatoxin. A strategy was proposed to detoxify aflatoxin 
in end products by fermentation with the probiotic gut isolate Lactobacillus rhamnosus yoba 2012 [29]. 
In this study, the exposure to aflatoxins was evaluated for 10 children (aged 54–60 months) from a 
cohort of 511 children. Their foods (maize flour and peanuts) were analyzed for the presence of 
aflatoxin B1 and their urine for aflatoxin M1. The aflatoxin B1 binding ability was tested of Lactobacillus 
species isolated from the gut microbiota of these children, and the correlation of gut Lactobacillus 
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species with stunting for 140 children was analyzed from the same cohort at the ages of 20–24 and at 
36 months.  

2. Materials and Methods 

2.1. Study Design and Sample Collection 

In the current study, a small sample of ten children aged 54–60 months was selected on the basis 
of their previous growth indices at 36 months (5 stunted and 5 non-stunted children). These children 
took part in a randomized trial in the two districts of Kabale and Kisoro, located in the southwestern 
part of Uganda (Figure 1). The trial assessed the effect of an educational intervention (focusing on 
nutrition, hygiene, and stimulation) on their growth and development as described in detail in 
previous publications [30,31]. Samples of the stool and urine were taken from every child in this 
study. The stool was sampled using a sterile disposable stool sampling container. The stool samples 
from every child were put in two separate containers: one container was filled with mineral oil and 
kept at room temperature for the purpose of cultivation, and the other container was filled with two 
milliliters of 15% glycerol. The stool samples with glycerol were immediately kept on ice and 
transferred to the Uganda Industrial Research Institute for storage at −80 °C. Urine was sampled into 
a sterile, disposable plastic container and immediately stored at low temperature (0–8 °C). The ten 
children were widely spread across the districts of Kabale and Kisoro as indicated by subject 
identification number (Figure 1). 

Anthropometric measurements were taken as described by Muhoozi et al. [30] and used to 
compute height-for-age Z–scores (HAZ) [32]. The frequently consumed regional foods (hulled and 
dehulled maize, and peanuts) at risk of aflatoxin contamination were identified based on a short food 
frequency questionnaire (Supplementary File S1). Common diet for the age group and last week’s 
diet of the children were evaluated. The foods were sampled and immediately stored at low 
temperature (0–8 °C). The in vitro measurements were carried out at the Uganda Industrial Research 
Institute (Kampala, Uganda) and at the Department of Molecular Cell Biology, Vrije Universiteit 
(Amsterdam, The Netherlands). The Lactobacillus species were isolated, and their ability to bind 
aflatoxin B1 was assessed. The concentration of aflatoxin B1 was determined in the food samples and 
aflatoxin M1 in the children’s urine. 

 
Figure 1. Map of Kabale and Kisoro showing subcounties where stool, urine, hulled maize, dehulled 
maize flour, and peanuts were sampled in this study. The geographic locations of the ten children 
(aged 54 to 60 months) are indicated by child identification number. 
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2.2. Aflatoxin B1 in Food and Daily Intake 

Hulled, dehulled maize flour, and peanut were analyzed using the ELISA Ridascreen® 
Aflatoxin B1 with a reported limit of detection of 1.0 µg kg−1 (R-Biopharm, Darmstadt, Germany). The 
enzyme immunoassay was first calibrated by the use of an aflatoxin B1 standard (0, 1, 5, 10, 20, and 
50 µg l−1) in 10% (v/v) methanol as indicated in Supplementary File S2. A competitive enzyme 
immunoassay was used for the determination of aflatoxin B1 in cereals similar to the method 
described by Wacoo et al. [11]. Briefly, 5 g of homogenized maize flour was weighed into 50 mL 
centrifuge tubes, followed by addition of 25 mL of 70% (v/v) methanol and thorough mixing using a 
VWR ADC 3500 Shaker (BioSurplus, Inc, San Diego, CA, USA) for 5 minutes. In the case of peanuts, 
0.4 g of sodium chloride was added to the suspension and thoroughly mixed. The suspension was 
then centrifuged for 10 minutes at 3500× g at room temperature. An aliquot of 50 µL of each 
supernatant was used for aflatoxin B1 determination using the ELISA kit.  

The minimum daily aflatoxin B1 intake of children in southwestern Uganda (expressed in ng 
kg−1 day−1) was estimated on basis of the measured concentrations of aflatoxin B1 in maize flour and 
peanut sampled in each subcounty, the estimated amounts of maize and peanut consumed, and the 
measured body weight of the child [33]. The frequency of intake of maize flour and peanut in 
southwestern Uganda was obtained by a food frequency questionnaire (Supplemental File S1). The 
amount of maize and peanut consumed was based on the previously reported intake estimate for 
maize flour and products of 60 g per day for children at the age of 24 to 59 months in southwestern 
Uganda [34].  

2.3. Aflatoxin M1 in Urine 

Quantitative determination of aflatoxin M1 in urine samples was carried out using the ELISA 
Ridascreen® Aflatoxin M1 designed with a limit of detection of 5 ng L−1. The ELISA kit was validated 
as described by the International Conference on Harmonization (ICH) (1995) [35]. The limit of 
detection (LOD), precision, and accuracy were determined by using concentrations of aflatoxin M1 
standard (0, 125, 250, 500, 1000, and 2000 ppt) spiked in urine (Supplementary File S2). Briefly, the 
pH of the urine samples was first adjusted to seven. A volume of 50 µL of either standard or urine 
samples was pipetted and put into separate wells, followed by addition of 50 µL of enzyme conjugate 
and 50 µL of anti-aflatoxin M1 antibody solution. The microwell plate was then mixed by shaking 
gently and incubated for 10 minutes at room temperature. The liquid was removed and the wells 
were washed three times using 250 µL of washing buffer. Then, the wells were filled with 100 µL of 
substrate and incubated for 5 minutes at room temperature. The reaction was stopped with 100 µL 
of stop solution and the absorbance taken at 450 nm wavelength using a microplate reader. The 
results of the standard solution were used to develop a calibration curve, and the aflatoxin M1 levels 
in each urine sample were determined from this curve. Urine creatinine concentrations were 
determined spectrophotometrically by the modified Jaffe method [36]. The aflatoxin M1 concentration 
from each sample was subsequently normalized to creatinine concentration in the urine. The 
percentage of aflatoxin, which is excreted as aflatoxin M1 in urine, was calculated on basis on the 
estimated dietary aflatoxin intake per kg body weight per day (ng), the concentration of aflatoxin M1 
in urine (ng/mg creatinine), and the reported levels of excreted creatinine in urine per day of 15.4 mg 
per kg body weight per day for boys and 14.3 mg per kg body weight per day for girls [37,38]. 

2.4. Enumeration and Isolation of Lactic Acid Bacteria  

Serial dilutions of samples were prepared in physiological saline. Total counts of lactic acid 
bacteria (LAB) from stool samples were determined by streaking selected serial dilutions on sterile 
de Man, Rogosa, Sharpe (MRS) agar (Oxoid limited, Hampshire, United Kingdom) containing 0.1% 
Tween 80. The plates were incubated at 37 °C for 48 h. The experiment was performed four times for 
every sample. After total counts of lactic acid bacteria (LAB), five colonies with distinct colony 
morphology were selected from each plate. The colonies were then streaked to freshly prepared MRS 
agar plates for identification.  
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2.5. Identification of Bacterial Isolates 

Isolates were identified as described by Felske et al. [39]. Briefly, 16S rRNA gene fragments were 
amplified and sequenced using primers 8F (5’-AGAGTTTGATYMTGGCTCAG-3’) and 1512R (5’-
ACGGYTACCTTGTTACGACTT-3’). The colony PCR reactions were carried out with 1 µL of each 
primer (10 pmol), 11 µL nuclease-free water (Promega), and 12 µL GoTaq Colorless Master Mix 
(Promega) in a final volume of 24 µL. To the PCR reaction mix, a small amount of a fresh colony was 
added using a sterile toothpick. The PCR program was set as follows: initial denaturation was carried 
out at 94 °C for 5 min, followed by 30 amplification cycles (30 s at 94 °C, 30 s at 55 °C, and 30 s at 72 
°C), and a final extension step at 72 °C for 8 min. The PCR products were verified by electrophoresis 
on 1.5% (w/v) agarose gel, and sequencing was done by the Sanger sequencing method (Macrogen 
Inc., The Netherlands). Sequences were compared to sequences deposited in GenBank by using the 
(Basic Local Alignment Search Tool) BLAST algorithm, National Library of Medicine, Bethesda MD, 
USA [40]. All isolated strains are accessible from the strain collection of the Department of Molecular 
Cell Biology, Vrije Universiteit Amsterdam, The Netherlands, as well as the Department of 
Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, 
Uganda, in order to assure benefit sharing in accordance with the Nagoya protocol [41]. The 
correlation between the Lactobacillus species isolated at 54–60 months and microbiota at 20–24 and 36 
months was assessed by matching the V4 amplicon sequences of our nearly full-length 16S rRNA 
sequences with our previously collected microbiota data (Sequence Read Archive SUB4476421) [31].  

2.6. Aflatoxin B1 Binding to the Isolated Lactobacillus Species 

The aflatoxin B1 binding assay was performed as described by Wacoo et al. [29]. Briefly, the 
isolated Lactobacillus species were cultured in de Man, Rogosa, Sharpe (MRS) broth with 0.1% (v/v) 
Tween 80 at 37 °C for 24 h. The cells were pelleted at 3,200 g for 10 minutes at room temperature and 
subsequently washed twice with physiological saline to remove excess MRS broth. The washed cell 
pellets were re-suspended in 2 mL of physiological saline solution. Each suspension was then serially 
diluted with physiological saline to obtain approximately 108 cfu mL−1. These dilutions were 
centrifuged, and the cell pellets re-suspended in 1.0 mg mL−1 of aflatoxin B1 followed by incubation 
at 37 °C for 30 minutes. After incubation, the aflatoxin B1 cell suspensions were centrifuged at 3200 g 
for 10 minutes at room temperature, and the residual aflatoxin B1 in the supernatant was determined 
using the Fluostar Omega microplate reader (BMG Labtech, Ortenberg, Germany) at an excitation of 
390 nm and an emission 480 nm. Bound aflatoxin B1 was calculated by use of the formula below: ሺInitial	AFB1	 − Residual	AFB1ሻ	x	100Initial	AFB1	  (1) 

2.7. Statistical Analysis 

For comparison between Lactobacillus species at 20–24 and 36 months, species were identified 
with BLAST of 16S rRNA amplicon sequences, and the data were presented in a pie chart of 
Lactobacillus species as the average percentage of the total Lactobacillus per individual. The 
abundances of Lactobacillus species were calculated by the percentage of all V4 16S rRNA sequence 
reads from the 23 isolates showing a 100% identity match in the total pool of unique sequence reads 
at 20–24 months and 36 months. The prevalence of Lactobacillus species was calculated as the 
percentage of gut microbiota compositions from the 140 children containing at least one exact match 
to the specific V4 sequence read from one of the 23 Lactobacillus isolates. A permutational multivariate 
analysis of variance (PERMANOVA) was carried on gut microbiota composition of all rural Ugandan 
children (n = 140) at 20–24 and 36 months and growth development scores. Analysis was performed 
using R version 3.3.2, with PERMANOVA as implemented in the ‘vegan’ package by Oksanen et al. 
using the Bray–Curtis distance measure [42]. The 16S rRNA gene sequencing data were rescaled and 
transformed using Wisconsin double transformation and square root transformation. The 
correlations between Lactobacillus species abundance in stunted (HAZ < −2.0) and nonstunted (HAZ 
> −2.0) children were displayed in violin plots by the use of OriginPro 2019b 9.6.5.169 (Academic).  
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2.8. Ethical Clearance 

The study was approved by the Research Ethics committee of The AIDS Support Organization 
(no. TASOREC/06/15-UG-REC-009) and by the Uganda National Council for Science and Technology 
(no. UNCST HS 1809). 

3. Results 

3.1. Aflatoxin B1 Contamination in Food  

In our survey on the consumption of particular foods for southwestern Uganda, beans were 
found to be the most frequently consumed food (Table S1). This was followed by posho/porridge 
(corn bread or porridge), greens (eshiga), and Irish potatoes, which were consumed at least once a 
day. Sweet potatoes and fermented porridge were consumed five to six times a week. Peanut, millet 
and sorghum porridge were taken four times a month, and dry maize with beans, cassava, and rice 
was eaten two to three times a month. The foods with a very high risk of aflatoxin contamination 
were posho/porridge, which was consumed daily, and peanuts. The intake of these foods may result 
in accumulation of aflatoxin in the body; thus, the ingredients of posho/porridge (maize) and peanuts 
were selected for further analysis. 

The levels of aflatoxin B1 in hulled, dehulled maize, and peanut sampled from Kabale and Kisoro 
district of southwestern Uganda are shown in Figure 2. All of these food ingredients contained mean 
aflatoxin B1 levels above the acceptable East African regulatory limit of 5 µg kg−1 for aflatoxin B1 [7]. 
The mean aflatoxin B1 concentration in hulled maize flour was 9.1 µg kg−1. Only 10% of the hulled 
maize flour samples contained undetectable levels of aflatoxin B1. Dehulled maize flour contained 
comparable concentrations of aflatoxin B1 with a mean of 5.3 µg kg−1, 6% higher than the East African 
regulatory limit of 5 µg kg−1 [7]. Approximately 50% of dehulled maize flour contained detectable 
levels of aflatoxin B1. Peanut samples contained, on average, higher concentrations of aflatoxin B1 
with 12.8 µg kg−1. Approximately, 90% of the peanut samples contained aflatoxin B1 with levels 
ranging from 1.8 to 20.2 µg kg−1. More than 50% of the peanut samples contained aflatoxin B1 levels 
higher than the East African regulatory limit of 5 µg kg−1.  

 
Figure 2. Aflatoxin B1 levels in maize flour and peanut samples from Kabale and Kisoro, southwestern 
Uganda, and the East African regulatory limit (red dotted line). Values are means ± standard 
deviation (n = 10). 

3.2 Daily intake of Aflatoxin B1 

Estimates for the daily intake of aflatoxin B1 by the children of southwestern Uganda are shown 
in Table 1. The dietary aflatoxin B1 intake varied from 1.12 to 88.6 ng kg−1 day−1. The overall mean 
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dietary aflatoxin B1 exposure was 50.1 ng kg−1 day−1. The mean dietary aflatoxin B1 exposures to 
stunted and nonstunted children were 53.7 and 46.5 ng kg−1 day−1, respectively. Although there was 
a notable difference in the mean dietary aflatoxin B1 exposure to the stunted and nonstunted children, 
statistically the difference was not significant (p > 0.5).  

3.3. Aflatoxin M1 in Urine 

The results of aflatoxin M1 analyzed from the urine samples of both nonstunted and stunted 
children are shown in Table 1, which also shows anthropometric parameters for the same children. 
The aflatoxin M1 levels in the urine samples varied from 14.8 to 168 pg mg−1 of creatinine. There was 
no significant difference between aflatoxin M1 levels in nonstunted children and stunted children (p 
> 0.05). A detectable amount of aflatoxin B1 in maize flour and peanut coincided with detectable levels 
of aflatoxin M1 in urine samples for all children from the different study regions. No positive 
correlation was observed between the minimum estimated daily intake of aflatoxin B1 and the levels 
of aflatoxin M1 found in urine samples. 

3.4. Enumeration of Lactic Acid Bacteria 

Lactic acid bacteria from the stool were counted and the results shown in Table 1. The lactic acid 
bacterial count in the stool samples varied from 8.9 × 106 to 1.9 ×108 cfu g−1. There was no significant 
difference between the bacterial counts between the nonstunted children (on average 7.0 × 107 cfu g−1) 
and stunted children (on average 6.9 × 107 cfu g−1). Approximately 10% of the samples contained lactic 
acid bacteria at the level of 106 cfu g−1. More than 50% of the samples contained lactic acid bacteria at 
the level of 107 cfu g−1 and 30% contained lactic acid bacterial concentrations of 108 cfu g−1.  

Table 1. Height-for-age Z-scores (HAZ), weight, height, lactic acid bacteria (LAB) in stool and 
mycotoxin concentration in urine (AFM1, aflatoxin M1), and estimated daily aflatoxin intake (AFB1, 
aflatoxin B1) of ten Ugandan children from Kabale and Kisoro, southwestern Uganda, at the age of 
54–60 months. Values for lactic acid bacteria (LAB) in stool and AFM1 are means of three independent 
experiments. The estimated daily aflatoxin intake levels were based on measured AFB1 levels in maize 
and peanut in each subcounty (the means are presented in Figure 2). 

Subject 
ID District Subcounty 

Sex 
(M/F) Stunted HAZ 

Weight 
(kg) 

Height 
(cm) 

LAB in 
stool (cfu 

g−1) 

AFM1 
(pg 

mg−1) 

AFB1  
(ng kg−1 

day−1) 

1634 Kabale Ruhija M YES −4.24 12.8 90.6 8.9 × 106 102 52.9 

2288 Kisoro Nyakabande M NO −0.17 19.5 109 5.9 × 107 96.1 79.4 

1553 Kabale Muko F YES −2.64 17.0 96.2 7.4 × 107 146 80.3 

2213 Kisoro Nyakabande M YES −4.72 13.4 92.5 2.8 × 107 58.7 18.5 

2439 Kisoro Nyarusiza M YES −4.15 14.1 89.9 1.1 ×108 14.8 1.1 

2112 Kisoro Muramba F NO −0.64 17.9 106 3.8 × 107 81.2 26.6 

2172 Kisoro Muramba F NO −1.42 17.7 102 4.7 ×107 168 88.6 

1317 Kabale Kamwganguzi M NO −0.98 17.5 105 1.9 × 108 110 77.0 

1161 Kabale Butanda F YES −4.01 15.0 90.0 1.2 × 108 51.2 2.3 

1434 Kabale Kamweesi F NO 0.50 18.8 112 2.9 × 107 99.1 73.8 

3.5. Isolation, Identification, and Aflatoxin B1 Binding Properties of Lactobacillus Species 

In this study, 23 Lactobacillus strains were isolated from fecal samples of 10 children aged 54 to 
60 months (Table 2). The identification of the strains was performed based on 16S rRNA gene 
sequencing [31]. As nearly full-length 16S rRNA sequencing was applied, only one unambiguous 
identification was found on the species level of either L. casei or L. paracasei with both a percentage 
identity of 96% (Supplementary File S3). Though the same species of Lactobacillus was repeatedly 
isolated among subjects, they did not demonstrate equal binding potential to aflatoxin B1. Strains of 
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the species of L. casei were most frequently isolated, accounting for 30% of the total Lactobacillus 
isolates, but it was also the most prevalent appearing in over 50% of the subjects. Both L. plantarum 
and L. brevis accounted for 14% of the total isolates each. However, L. plantarum was isolated in 
approximately 40% and L. brevis was isolated from only 20% of the subjects. 

Table 2. Lactobacillus species isolated from children of Kabale and Kisoro, southwestern Uganda, aged 
54–60 months with their aflatoxin B1 binding properties and matches in the gut microbiota at 20–24 
and at 36 months presented as percentage abundance and prevalence. Values for bound aflatoxin B1 
(%) are means ± standard deviations of three independent experiments at a cell concentration of 108 
cfu mL−1. 

Subject 
ID 

Identity
* (%) 

Isolate ** 
Bound 

aflatoxin B1 
(%) 

Abundance (%) *** Prevalence (%) *** 
20–24 

months 
36 

months 
20–24 

months 
36 

months 
1634 100 L. plantarum APW1634 34.3 ± 6.7 0.003 0.7 15 45 
2288 99 L. fermentum APW2288 25.1 ± 0.4 0.03 0.2 22.9 34.3 
2288 99 L. rhamnosus APW2288B 13.7 ± 0 0 0.007 0 2.1 
2288 99 L. casei APW2288E 59.6 ± 6.3 0.0005 0.1 3.6 17.9 
1553 99 L. plantarum APW1553A 19.2 ± 0 0.003 0.7 15 45 
1553 99 L. brevis APW1553 45.9 ± 3.1 0.003 0.7 7.9 30 
2213 99 L. casei APW2213 62.6 ± 4.8 0.0005 0.1 3.6 17.9 
2213 99 L. buchneri APW2213E 42.1 ± 8.2 0.0002 0.1 2.1 16.4 
2439 99 L. casei APW2439C 37.9 ± 11.1 0.0005 0.1 3.6 17.9 
2439 96 L. casei APW2439A 35.4 ± 5.5 0.0005 0.1 3.6 17.9 
2112 99 L. plantarum APW2112A 0.9 ± 1.3 0.003 0.7 15 45 
2112 99 L. brevis APW2112 31.8 ± 0.7 0.003 0.7 7.9 30 
2112 99 L. casei APW2112D 46.9 ± 1.5 0.0005 0.1 3.6 17.9 
2172 99 L. casei APW2172A 20.1 ± 0 0.0005 0.1 3.6 17.9 
2172 99 L. casei APW2172C 49.1 ± 3.9 0.0005 0.1 3.6 17.9 
1317 99 L. plantarum APW1317A 49.4 ± 14.7 0.003 0.7 15 45 
1317 99 L. fermentum APW1317 76.1 ± 12.9 0.03 0.2 22.9 34.3 
1161 99 L. casei APW1161 54.5 ± 2.8 0.0005 0.1 3.6 17.9 
1161 99 L. pantheris APW1161C 57.6 ± 1.7 0 0.003 0 4.3 
1161 99 L. paracasei APW1161D 46.7 ± 17.7 0.0005 0.1 3.6 17.9 
1434 99 L. plantarum APW1434B 10.7 ± 0 0.003 0.7 15 45 
1434 99 L. fermentum APW1434 45.9 ± 9.3 0.03 0.2 22.9 34.3 
1434 99 L. casei APW1434D 25.9 ± 0.7 0.0005 0.1 3.6 17.9 

* Identity value is based on the match of the sequenced nearly full-length 16S rRNA gene of the Lactobacillus isolate 
with the 16S rRNA sequence from GenBank. ** Lactobacillus isolates with unique APW strain coding were assigned 
to species with distinct 16S rRNA gene sequences. *** Abundance and prevalence values were based on 100% 
identity matches of the unique V4 regions of the sequenced 16S rRNA genes of the isolates with the V4 sequences 
present in the gut microbiota data of the cohort of rural Uganda children. Values cannot be unambiguously 
assigned to Lactobacillus strains and are only a partial representation of the Lactobacillus species in the gut 
microbiota. 

All isolated Lactobacillus strains were assessed for their ability to bind aflatoxin B1 [30]. All 
Lactobacillus isolates demonstrated binding of aflatoxin B1 in physiological saline as shown in Table 2 
at slightly variable levels. The best aflatoxin B1 binding was registered for L. fermentum APW1317 and 
L. casei APW2213C of 76.1% and 62.6% at 108 cfu mL−1 cell concentration. It should be noted that no 
systematic differences in binding ability were observed between Lactobacillus species or subjects. The 
amount of aflatoxin bound to the bacteria increased with a rise in cell density from 4.0 × 107 to 8.1 × 
107 cfu mL−1. However, some strains indicated higher aflatoxin B1 binding at relatively low cell 
densities. This is attributed to the ability of these bacteria to coagulate and form clumps at high cell 
densities resulting in a smaller cell surface area for binding. 
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The Lactobacillus species in the gut microbiota of the children at 20–24 and 36 months accounted 
for 2.2% and 3.4% of the total sequence reads, respectively. All the isolated Lactobacillus species at the 
age of 54–60 months were found to be present at 20–24 and at 36 months, except for L. rhamnosus and 
L. pantheris, which could not be detected at 20–24 months. Generally, the abundance of Lactobacillus 
species isolated at 54–60 months, which were present at 20–24 months, varied from 0 to 0.03%. The 
food-derived L. fermentum was the most abundant (0.03%) and the most prevalent isolate (22.9%) 
found amongst the 140 children at 20–24 months (Table 2).  

3.6. Distribution of Lactobacillus Species in Stool Samples 

The distribution of Lactobacillus species in the stool samples of the Ugandan children is shown 
in Figure 3. At the age of 20–24 months, L. ruminis was the most dominant species of Lactobacillus, 
accounting for approximately 64.2% of the total Lactobacillus species composition of the gut 
microbiota. L. ruminis had an abundance of 1.3% of the total Lactobacillus species at 20–24 months. L. 
salivarius accounted for approximately 30.2% with abundance of 0.6% at 20–24 months. L. delbrueckii 
and L. fermentum accounted for 4.3% and 1% with corresponding abundance of 0.09% and 0.03%, 
respectively. The relative abundance of Lactobacillus species to the gut microbiota increased from 
2.17% to 3.42% of all 16S rRNA sequence counts in children from 20–24 months to 36 months. 
Approximately four more dominant species of Lactobacillus emerged at the age of 36 months at the 
expense of L. salivarius and L. ruminis. There was a notable shift from autochthonous (endogenous) 
to allochtonous (plant derived) Lactobacillus species, most probably resulting from the change in diet 
from breast milk to solid food. The allochtonous Lactobacillus species L. brevis emerged at the age of 
36 months and became the most dominant species with 34.8%, while the endogenous species L. 
salivarius and L. ruminis dropped from 64.2% and 30.2% to 6.1% and 0.4%, respectively. L. plantarum, 
L. delbrueckii, and L. fermentum increased from less than 0.01%, 4.3%, and 1.3% at 20–24 months to 
27.8%, 17.9%, and 5.8% at 36 months, respectively. The other prominent species L. kefiri and L. casei 
were also found at the age of 36 months, accounting for 3.7% and 3.5%, respectively.  

 
Figure 3. The average relative abundance of Lactobacillus sequences from children of Kabale and 
Kisoro, southwestern Uganda, at the age of 20–24 months and at 36 months. Lactobacillus species with 
a relative abundance of ≤ 0.01% were not included. The following combinations of species could not 
be unambiguously resolved as their 16S rRNA V4 amplicon sequence showed identical matches to 
the sequence in the 16S rRNA database: L. delbrueckii and L. leichmannii, L. plantarum and L. pentosus, 
and L. casei and L. paracasei. 

3.7. Lactobacillus Inversely Correlates with Growth  
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The permutational multivariate analysis of variance carried out on gut microbiota composition 
of rural Ugandan children (n = 140) with anthropometric and cognitive development scores indicated 
a number of significant correlations. The most pronounced variable was age (20–24 and 36 months) 
explaining 4.03% of the variance in the microbiota composition with p = 0.001 (Supplementary File 
S4). The anthropometric measures HAZ, and stunting, explained respectively 0.91% and 0.84% of the 
variance in the gut microbiota (p = 0.001). The genus Lactobacillus appeared as the genus with the 
highest correlation coefficient (0.014) for stunting among all 256 taxonomic units of bacterial genera 
identified in the gut microbiota. This was also evident from a representation of Lactobacillus 
abundance in the gut microbiota of Ugandan children at 20–24 and 36 months for stunted and 
nonstunted children (Figure 4A). The average number of Lactobacillus sequence reads was 801 for 
stunted children and 423 for nonstunted children. However, it should be noted that this difference 
was not significant (p > 0.05) in non-parametric tests for non-normally distributed data sets. A closer 
inspection on the Lactobacillus species level (Figure 4B–D) revealed that the most predominant 
Lactobacillus species followed this trend, except for L. salivarius at 36 months, which appeared more 
abundantly present in non-stunted children. 

 
Figure 4. Violin plots showing the abundance of Lactobacillus genus and species in stunted and 
nonstunted children expressed in sequence reads in the gut microbiota of 140 children from Kabale 
and Kisoro, southwestern Uganda, at 20–24 months (n stunted = 77) and 36 months (n stunted = 104). 

4. Discussion 

A high exposure to aflatoxin-contaminated food negatively correlates with impaired growth in 
children [4]. The current study provides evidence that Ugandan rural children are exposed to high 
concentrations of aflatoxin B1 on a daily basis through consumption of contaminated food stuffs. 
Analysis of a set of regional maize flour samples indicated higher levels for hulled maize compared 
to dehulled maize. Siwela et al. were able to reduce up to 92% of aflatoxin contamination in maize 
through the process of dehulling [43]. Notably, the hulled maize with relatively high contamination 
levels is the most preferred due to the low costs. The dehulled maize is usually purchased by people 
categorized in the middle income class.  
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The estimated intake level to dietary aflatoxin in Uganda ranges from 10 to 180 ng per kg body 
weight per day [44]. In this study, the minimal estimated dietary aflatoxin intake levels for 80% of 
the children were found to be within this reported range for Uganda. The finding of 20% of the 
children with a minimal aflatoxin intake of less than 10 ng per kg body weight per day could result 
from the coincidental regional sampling of maize with a short storage time. However, lower intake 
values have been reported for other East African countries including Kenya (4−133 ng per kg body 
weight per day) [45]. 

The children’s exposure to aflatoxin B1 was confirmed by analysis of their urine samples for the 
presence of aflatoxin M1. As reported previously, approximately 1.2% to 2.2% of the dietary aflatoxin 
B1 intake can be excreted in urine as aflatoxin M1 [46]. If two minimal intake levels below 10 ng per 
kg body weight are considered outliers, the average percentage of aflatoxins excreted in the urine as 
aflatoxin M1 equals 3.3% ± 2.8%. As in this study minimal intake levels for aflatoxin for B1 were 
determined, this average percentage will decrease if aflatoxin intake from other food sources such as 
millet, sorghum, and beans will be included in the analysis. 

The ability of lactic acid bacteria including Lactobacillus to protect against food mutagens such 
as aflatoxins, heterocyclic amines, and phytate among others has been reported in other studies 
[25,26,47,48]. Physical binding to the bacterial cell wall is reported as one of the mechanisms for the 
mitigation of aflatoxins from the intestine [49]. In the current study Lactobacillus species were isolated, 
characterized and their aflatoxin B1 binding ability was tested. The Lactobacillus strains demonstrated 
a variable ability to bind aflatoxin B1. This variation could be attributed to the differences in structure 
of the proposed binding surfaces such as cell wall polysaccharides, peptidoglycan, teichoic acid, and 
cell wall proteins, which are known to be variable among bacterial strains of the same species [48,50]. 

Previous studies demonstrated that gut microbiota of newborns evolves rapidly during the first 
12 months of life, remains highly dynamic up to the age of 24 of months, and becomes more stable 
afterwards [51]. The diet contributes significantly to this modulation [52]. At the age of 20–24 months, 
most of the children in our cohort of 511 children were still taking breast milk, while at the age of 36 
months this was replaced by solid foods [30]. This could explain the change in composition from the 
autochthonous species L. salivarius and L. ruminis at 20–24 months to the allochthonous species L. 
plantarum, L. brevis, L. delbrueckii, L. casei, and L. fermentum at 36 months. The latter five species 
typically originate from plant-based foods.  

A substantial part of the solid foods prepared for babies is at risk for contamination with 
aflatoxins [53,54]. Food contaminated with aflatoxin B1 was found to affect the gut and injures the 
stomach and the intestine [55]. Studies carried out in animal models have shown that aflatoxin B1 
promotes intestinal damages through perturbation of the intestinal barrier and activation of cell 
apoptosis and cell proliferation [55]. Saran et al. hypothesized that stunted children may fail to grow 
due to injury as a result of recurrent infections to the gut epithelium leading to impaired gut-
mediated immunity, poor nutrient absorption, and poor appetite [56]. Thus, exposure to aflatoxin 
through solid foods from an early age could contribute to the high levels of stunted children observed 
in our cohort of 511 children [30]. 

In this study, the allochthonous Lactobacillus species isolated from the gut microbiota of Uganda 
children, such as L. casei, L. plantarum, L. fermentum, and L. brevis strains were shown to bind aflatoxins 
effectively, as also observed for these species in previous studies [57]. Therefore, it seems 
counterintuitive to find a significant, positive correlation for the abundance of the genus Lactobacillus 
and stunting, as the presence of this bacterial genus in the small intestine could possibly reduce the 
uptake of aflatoxins through binding. However, the abundance of Lactobacillus originating from 
plant-based foods may be indicative for the intake of relatively high levels of aflatoxin-contaminated 
foods. In contrast to the other Lactobacillus species, L. salivarius at 36 months appeared more abundant 
in nonstunted children. This could be related to the fact that this is a true endogenous or 
autochthonous Lactobacillus species in the human gut, and it has been shown to negatively correlate 
to Shigella-induced diarrhea in African children [58].  

At this point it is not clear under which conditions binding of aflatoxin to Lactobacillus in the gut 
is most effective. Our binding assay has been performed in physiological saline with a neutral pH, 
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which is different from the relatively low pH and other environmental conditions in the upper small 
intestine, where aflatoxins are absorbed [59]. As bacterial growth predominantly takes place in the 
colon, leading to concentrations up to 1011 bacteria per mL, concentrations of Lactobacillus in the 
duodenum may be too low (approximately 106 bacteria mL−1) to effectively remove aflatoxin through 
binding [60,61]. Although further studies are needed to warrant their health benefits, we propose that 
the Lactobacillus species isolated from Ugandan children in this study can be further developed as 
locally sourced probiotics [62] and are promising candidates for decontaminating of aflatoxins 
through fermentation of maize-containing foods prior to consumption, as recently shown for L. 
rhamnosus [29].  

Supplementary Materials: The following are available online at www.mdpi.com/2076-2607/8/3/347/s1, File S1: 
The frequency of consumption of a particular food type for southwestern Ugandans, File S2: The limit of 
detection (LOD), precision, and accuracy of the immunoassays used for aflatoxin determination in urine and 
food samples, File S3: Collection 16S rRNA gene sequences for Lactobacillus species identification, File S4: 
PERMANOVA correlation coefficients and p-values. 
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