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Abstract. The increase in wind turbine size during recent years has led to a situation where the 
wind speed measured at hub height is no longer a sufficient representation of the power available 
to be extracted by a turbine. Light Detection and Ranging (“Lidar”) wind sensing devices can 
measure wind speeds in a volume in front of the sensor, offering affordable and improved 
estimation of wind turbine power performance and loading. However, a Lidar can only measure 
the component of the wind velocity in the direction of the beam. This makes reconstruction of 
the wind velocity field from raw Lidar measurements a challenge, and current methods contain 
assumptions which cause inaccuracies in complex terrain and in wind turbine wakes. In addition, 
data availability is reduced in specific weather conditions, such as very cold climates and dense 
fog. A novel Machine Learning method is developed here, based on Gaussian Process regression, 
to remove these assumptions when producing full 3D wind fields from Lidar measurements. This 
approach is naturally robust to overfitting and predicts uncertainty derived from data density and 
machine error, without needing physical information about the local terrain. Initial validation by 
comparison of a Windcube Lidar with a meteorological mast, on a site with simple conditions, 
shows excellent performance which meets the threshold for commercial use.  The method also 
infers data during measurement gaps, offering the potential for 100% data availability. 
Instantaneous 2D wake measurements in a plane can be made, which when validated and further 
developed will offer a breakthrough in understanding of wind farm interactions and turbine 
loading. 

1.  Introduction 
The increase in size of wind turbines over the recent years has led to a situation where the wind speed 
measured at hub height is no longer a sufficient representation of the power available to be extracted by 
a turbine. The new version of IEC standard 61400-12-1 therefore allows for a new definition: Rotor 
Equivalent Wind Speed, which considers the variation of wind speed and angle across the rotor area.  

Such a definition, however, requires data to calculate it. Light Detection and Ranging (“Lidar”) wind 
sensing devices have emerged in recent years, which use lasers to measure wind velocity over a volume 
(a 3D “wind field”) in front of the device. Ground-based Lidar measurements are approved in the new 
standard for power performance testing, although still when accompanied by a meteorological mast. 

This advantage over traditional point-measurement anemometers, along with their portability, have 
enabled not only more accurate power performance measurements, but also several innovations which 
could reduce Cost of Energy (“CoE”) significantly:  

http://creativecommons.org/licenses/by/3.0
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 Yaw misalignment correction. This has already demonstrated up to 5% improvement in power 

output.  
 Site suitability pre-construction studies, to select appropriate turbines for the site, considering 

the wind speeds over the full area of the turbine. This reduces fatigue and lower maintenance 
costs, thereby increasing availability, as well as the use of Lidar reducing costs relative to 
meteorological masts.  

 
There is a problem, however, with current methods used to reconstruct the wind field from the raw 

Lidar measurements. Simplifications are made to ensure reasonably accurate estimation of the 10-
minute average wind speed and direction [1], resulting in the following limitations which are not 
inherent in the Lidar sensors themselves:  

 
 lack of reliable information about the variability of the wind conditions at higher frequencies 

than 10 minutes;  
 poor performance when the simplifying assumptions are not valid, particularly: in complex 

terrain; or when the sensors are used inside wind farms, since wind conditions then vary 
significantly across the Lidar measurement volume due to wakes.  

 
Machine learning offers the potential to improve significantly the accuracy and volume of wind field 

information reconstructed from raw Lidar data, particularly in complex conditions.  
Section 2 explains the methodology.  First, the physical basis for the Lidar operation and 

measurements, so that the inputs and desired outputs of the wind field reconstruction algorithm are made 
clear.  Second, the machine learning method applied: Gaussian Process (“GP”) Regression. Third, the 
application of GPs to the wind field reconstruction algorithm. 

Section 3 demonstrates the application of the developed algorithm to real wind measurements, to 
validate the method.  Additional benefits over current methods are listed and examples given from real 
wind data. 

Finally, section 4 draws conclusions and suggests future development priorities to realise the benefits 
fully and enable it to be widely used. 

2.  Approach 

2.1.  Lidar Physics 
Lidar units point a laser beam (either pulsed or continuous wave) into the sky and analyse the backscatter 
signal to determine the radial wind speed through the Doppler effect.   

Here, the Windcube Lidar unit from Leosphere is considered, which is a ground-based pulsed Lidar 
unit with 5 static beam directions. Four beams are oriented towards the four cardinal directions, angled 
by 28° from the vertical; while the fifth points vertically. Wind speeds can be measured in a 40 - 200m 
range, at up to 12 programmable heights (10 are generally used). All 5 beams are measured 
consecutively over a 4-second period.  

Pulsed Lidar units have soft focus across all ranges simultaneously, since time of flight windowing 
can be used to detect the backscatter at a certain distance. However, since the pulse has a finite width, 
and because of spectral broadening, there is a measurement resolution of 25-30m in the location of the 
backscatter signal, which is almost constant with distance. 
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Figure 1. Spherical co-ordinate system for Lidar 
beam measurements. 

 
Figure 1 shows the geometry. The component 𝑣௕ of the wind velocity vector 𝑣 measured by the beam 

(at any distance 𝑟) is the dot product of that velocity with the unit vector of the beam (𝒃෡): 
 

𝑣௕ = 𝒗𝑻 ∙ 𝒃෡

∴ 𝑣௕ = −൫𝑣௫ sin 𝛼 cos 𝛽 + 𝑣௬ sin 𝛼 sin 𝛽 + 𝑣௭ cos 𝛼൯
 

Equation 1. Radial flow speed measured by Lidar beam, due to true wind velocity. 
 

Assumptions are therefore required to reconstruct the wind field, since only one resolved component 
of the wind field is measured at each point in space.  This is known as the Cyclops Effect. 

Currently, the standard wind field reconstruction algorithm supplied with many Lidar units assumes 
that all measurements within a certain time at the same height come from a stationary homogeneous 
process and therefore can be averaged together. For the WindCube that means averaging the North and 
South beams together to get 𝑣௫, and the East and West beams together to get 𝑣௬. More sophisticated 
methods include: 
 

 Flow Complexity Recognition (FCR), Leosphere's patented method [2] for reproducing the 
wind field without homogeneity assumptions. This relies on fitting simplified Navier-Stokes 
equations and considering the topography of the ground around the Lidar. 

 10-minute averaged data using Taylor’s “Frozen Turbulence” hypothesis [3];  
 Real-time reconstruction by coupling a low-order dynamic wind model with a Kálmán filter [4];  
 Reconstruction of a plane of wind velocity by using fast Navier-Stokes solver LINCOM [5];  
 Use of a Wiener filter with various physics-based wind field assumptions [6];  
 Use of ARMA-X modelling assuming Linear Time Invariance [7]; and  
 A recent article which seems to retreat to a stationary homogeneous model [8].  

 
The effort in [4] comes closest to using pure machine learning methods without imposing limiting 

assumptions on the wind field behaviour.  There is however a gap for a new approach to reconstructing 
wind fields, minimising the number of site-specific or restrictive assumptions. 
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2.2.  Gaussian Processes 
Stochastic processes are an extension of the concept of probability distributions over values of a variable, 
to probability distributions over variables. In a Gaussian Process (“GP”), it is assumed that any finite 
number of variables described by that process are jointly Normally distributed [9]. This means that one 
can express a prior probability distribution over functions, which can be updated with data collected to 
provide predictions at any other point in the input space. 

A GP is fully specified by its mean and covariance functions: 𝑦~𝐺𝑃(𝝁, 𝜮). A graphical overview is 
given in Figure 2. 

 

 

Figure 2. Basic overview of Gaussian Processes, after [9]: left, prior; right, posterior. 
  
The covariance function 𝑘 captures the relationship between the variables in the process: 
 

𝑘(𝑥, 𝑥′) = 𝐸[(𝑓(𝑥) − 𝐸[𝑓(𝑥)])(𝑓(𝑥′) − 𝐸[𝑓(𝑥′)])] 
 
where 𝑥 and 𝑥′ denote values of the input variables and 𝐸 is the expectation operator. Covariance 
“kernels” are often combined to create an appropriate model. The Mátern class of kernels provides 
functions which often realistically match natural processes. Each kernel is specified by a parameter 𝜈, 
which is often set to half-integer values. For 𝜈 = 3

2ൗ , the kernel is: 
 

𝑘𝑀á𝑡3 2⁄  (𝑥, 𝑥′) = 𝜎௙
ଶ ቆ1 +

√3(𝑥 − 𝑥ᇱ)

κ
ቇ 𝑒−

√3(𝑥−𝑥
′)

κ  

 
Once the model is specified, the hyperparameter values (e.g. κ) should be optimised to fit the data. 

The data are still required to make predictions, since this is a non-parametric model. 
GP regression works particularly well when inferring information from sparse, noisy data. This class 

of algorithms has been applied successfully to a number of problems, including the inference of 
meteorological data across time and space in a country [10] and the reconstruction of topographical 
surfaces from Lidar scans for robotics [11] and mapping [12]. However, it has not been applied to wind 
field reconstruction. 

2.3.  Wind Field Reconstruction using Gaussian Processes 
In a similar manner to that used in [11], a GP is fitted to the aspect we do not understand – the speed 
measured by the Lidar beam in space and time – and geometric equations are then used, along with some 
physical assumptions, to convert these into wind velocities. The steps in the method are: 

 
1. Create a stationary GP (“GP1”) that can model beam velocities measured during only a small 

period of time (e.g. 1 minute). 
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2. Fit this model to a selection of periods in the data, then apply another GP (“GP2”) over the 
hyperparameters of those models in order to smooth them.  

3. To create predictions of beam speed for a given set of time stamps, we use a set of half-
overlapping GP1s, with hyperparameters set from GP2 according to their time.  

4. Predictions from each half-overlapping GP1 are combined through a form of Mixture of Experts 
to create the final beam velocity predictions: a “Virtual Lidar”. 

5. Geometrical, physical and statistical considerations are now used to infer the wind velocity 
vectors from the Virtual Lidar’s beam speeds. 

2.3.1.  “GP1” for Short-Term Beam Speed Prediction. This GP takes measurements in space and time, 
in the co-ordinate system of the Lidar, and re-predicts a continuous beam speed field: 
 

𝐺𝑃1: [𝛼ଵ, 𝛼ଶ, 𝑟, 𝑡] → 𝑣௕ 

Equation 2. Definition for GP1, mapping a static Lidar beam measurement location to beam speed. 
 

Here, 𝛼ଵ, 𝛼ଶ ∈ [− 𝜋 2⁄ , 𝜋 2⁄ ] describe the beam orientation in the well-behaved co-ordinate system 
𝛼1 = 𝛼 cos 𝛽, 𝛼2 = 𝛼 sin𝛽; 𝑟 ∈ [0, ∞] is the measurement distance from the Lidar unit; and 𝑡 ∈ ℝ is the 
time since a fixed reference.  GP1 is defined by a zero mean function, Gaussian likelihood, Mátern 3/2 
covariance kernel with Automatic Relevance Determination (ARD) [13] and box hyperpriors over the 
lengthscale hyperparameters for the variables 𝛼ଵ, 𝛼ଶ and 𝑟 with range [4,7]. 

Figure 3 shows an example output of instantaneous predictive mean and standard deviation of beam 
speed. As expected, a smooth variation of beam speed in space is seen, along with lower uncertainty 
where the measurements are taken along the beams. 

  

Figure 3. Plane slices across a 3D instantaneous wind field, showing mean beam speed (left) and 
standard deviation (right) as reconstructed by GP1.  

2.3.2.  “GP1” for Short-Term Beam Speed Prediction. The difficulty with GP regression in time (and 
in particular when fitting in real-time rather than to historical data) is that the predictions of the model 
are affected near the edges of the “window” by the lack of information about behaviour outside it. Wind 
conditions are expected to have turbulent length-scales that change in time, therefore fitting one GP for 
a whole day, or even 10-minute period, is not desirable. 

The trade-off between amount of data available to gain a better fit and solution time is managed here 
by fitting one “locally-expert” GP1 to each “window” of 60 seconds of data, with a stride of 30 seconds. 
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As a result, each GP1 overlaps with its neighbours for 30 seconds. The individual predictions are then 
combined together through a weighting function, as follows: 

v𝑏∗(𝑡) =
Σ𝑖w𝑖(𝑡)𝑣𝑏∗𝑖

(𝑡)

Σ𝑖w𝑖(𝑡)
 

 
The weighting function chosen is a standard Normal distribution, centred on the middle of each GP 

Expert, with the time arbitrarily scaled such that the start and end are at ±4. This is appropriate since, 
as previously mentioned, the GP has more information and therefore produces more accurate results 
near the centre of its window.  Since the predictions of each GP are effectively fully correlated, the 
predictive uncertainties can be calculated in the following manner: 

 

δvୠ∗(𝑡) = ൭෍ 𝑤௜(𝑡)

௜

൱

ିଵ

 ෍ 𝑤௜(𝑡)𝛿𝑣௕∗೔
(𝑡)

௜

 

 
Setting the hyperparameters of each GP1 by independent optimisation to the local data results in 

unphysical behaviour.  Instead, the (five) hyperparameters from local optimisation of one GP1 model 
every 10 minutes are obtained. A multi-output GP (“GP2”) is then fit to these values in order to smooth 
them, the predictions of which can then be used to set up a GP1 for any period in time covered by the 
data available (and predict into the future): 

 
𝐺𝑃2: 𝜏 → 𝒉 

Equation 3. Definition for GP2, mapping the start time for GP1 to the hyperparameter values for GP1. 
 
GP2 is defined by a zero mean function, Gaussian likelihood, squared exponential covariance kernel 

with ARD, multiple outputs specified by indicator variables, and a narrow hyperprior forcing the time 
length-scale to take a value of around 𝑒ଵ଴ seconds (6 hours), creating a slowly varying function rather 
than one fit to the noise. 

 

 
Figure 4. Vertical plane (metres East-West versus metres above ground) showing instantaneous 
horizontal wind speed which includes a wind turbine wake. 
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2.3.3.  Conversion of Virtual Lidar to Wind Field. At this point, it is possible to predict (including 
uncertainty) the beam speed at any point in time and space, which we shall call a “Virtual Lidar”. The 
GPs take care of spatial and temporal variability, leaving only the issue of removing the dimensionality 
reduction associated with the Lidar measurement: 
 

𝑉: 𝑣௕ → 𝒗 
 
The simplest approach is to return to the assumptions which were earlier discarded, and obtain five 

points at each desired height (although now with error reduction and uncertainty estimation) and 
calculate one wind velocity, assuming horizontal homogeneity. This is used in the next section. 

A more computationally-expensive, but valuable, approach is to obtain a number of points in any 
area of interest (or in an entire 3D volume) and use maximum likelihood with Equation 1 to estimate 
the local velocity.  This provides true instantaneous 3D wind fields, meaning turbine wakes can be 
reconstructed, such as shown in Figure 4. 

3.  Results 
Data from a site known to have simple wind flow conditions and where a WindCube Lidar was co-
located with a met mast, as shown in Figure 5. 

 

 Figure 5. Site layout for validation. 
 
The mast measurements are at 40, 60, 80, 100 and 116m, using cup anemometers and wind vanes.  

The mast data were only provided as 10-minute averages.  The WindCube is configured to measure at 
exactly these heights, as well as additional heights up to 200m above ground.  The time period when 
both Lidar and met mast data were available covers 44.6 days.   

In order to resolve the Cyclops effect, beam speeds are here output from GP1 at (𝑥, 𝑦) = ൫± 𝑧
2ൗ , 0൯ 

to obtain 𝑣௫ through averaging (and similarly for 𝑣௬) - very similar to the homogeneous assumptions 
currently made.  The effect of the GP is still significant, however, since in this data set the WindCube 
v2 beams were not aligned with the North-South-East-West axes, but offset by 45°.  The GP has 
therefore performed large spatial inference. 

Example results are given in Figure 6 (wind speeds below 4m/s have been removed). The summary 
statistics for the two methods are given in Table 1 and Table 2.  Bias is the mean and Scatter is the 
standard deviation of the residual errors. 

Finally, evidence is shown in Figure 7 that GP inference during times of low data availability can 
result in reliable wind speed estimates. 
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Figure 6. Diagnostic plot of residual errors versus direction at the 100m height. Left: Homogeneous 
(Leosphere); Right: GP. The undisturbed flow used for validation statistics are plotted in red. A 
smoothed average is also plotted as a line. 

 
Table 1. Validation statistics for GP reconstruction (90% confidence interval) 

 40m 60m 80m 100m 116m 
Wind Speed Bias (m/s) [−0.03, −0.02] [−0.01, −0.00] [−0.02, −0.01] [−0.01, −0.01] [−0.02, −0.01] 
Wind Speed Scatter (m/s) [0.12,0.12] [0.11,0.12] [0.11,0.11] [0.11,0.12] [0.10,0.10] 

Wind Turbulence Bias (m/s) [−0.16, −0.16] [−0.13, −0.12] [−0.07, −0.06] [−0.03, −0.02] [−0.01, −0.01] 
Wind Turbulence Scatter (m/s) [0.12,0.12] [0.11,0.11] [0.09,0.10] [0.09,0.09] [0.09,0.09] 

Wind Direction Bias (°) [−5.9, −5.9] [−5.7, −5.7] [−4.8, −4.7] [−5.5, −5.4] [−5.4, −5.3] 

 
Table 2. Validation statistics for Homogeneous (Leosphere) reconstruction (90% confidence interval) 

 40m 60m 80m 100m 116m 
Wind Speed Bias (m/s) [0.10,0.10] [0.15,0.15] [0.11,0.12] [0.11,0.12] [0.11,0.11] 
Wind Speed Scatter (m/s) [0.10,0.11] [0.09,0.10] [0.08,0.08] [0.08,0.09] [0.09,0.09] 

Wind Turbulence Bias (m/s) [−0.09, −0.09] [−0.04, −0.04] [−0.00, −0.00] [0.03,0.04] [0.04,0.04] 
Wind Turbulence Scatter (m/s) [0.09,0.10] [0.09,0.09] [0.08,0.08] [0.08,0.08] [0.09,0.09] 

Wind Direction Bias (°) [−5.9, −5.8] [−5.7, −5.7] [−4.7, −4.7] [−5.4, −5.4] [−5.3, −5.3] 

4.  Conclusions 
Lidar can be used to measure wind speeds in a volume, offering the potential for more accurate 
estimation of wind turbine power performance and loading.  However, a Lidar can only measure the 
component of the wind velocity in the direction of the beam, and suffers data loss caused by clouds and 
rain. This makes reconstruction of the wind velocity field from raw Lidar measurements a challenge, 
and current methods contain assumptions which cause inaccuracies in complex terrain and in wind 
turbine wakes. 

A novel Machine Learning method has been developed, based on Gaussian Process regression, to 
remove these assumptions. This approach is naturally robust to overfitting, predicts uncertainty derived 
from data density and machine error, and – subject to further validation – is applicable to any site without 
tuning. Further, the method can be applied to most of the monostatic Lidar designs, with some 
adjustments for circular scanning patterns and in the future for floating Lidar. 
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Figure 7. Comparison of 10-minute averaged wind speed from the met mast (blue) with reconstruction 
from Lidar (red) during a period of low data availability. Left: Homogeneous (Leosphere); Right: GP. 

 
Validation at an onshore site with simple wind conditions over 44.6 days, against a met mast with 

cup anemometers and wind vanes at 5 heights covering 40-116m, gives the following results:  
 
 The new method achieves an average wind speed bias of −0.01𝑚/𝑠 and a scatter of 0.11𝑚/𝑠, 

meeting the threshold for commercial use.  
 The new method infers data during Lidar measurement gaps, offering the potential for 100% 

data availability.  
 Errors at one measurement height are automatically removed.  
 Instantaneous 2D wake measurements in a plane can be made, which when validated and further 

developed will offer a breakthrough in understanding of wind farm interactions.  
 
Despite these promising results, some priorities have been identified for future development:  
 
 Conduct validation against 1-second sonic anemometer data. 
 Further improve methods used for creating the Virtual Lidar.  
 Adapt the model for floating Lidar by correcting for the rotation, and potentially adding 

additional terms for the translation, in GP1. 
 Further improve methods used for reconstructing wind velocity from the Virtual Lidar. 
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