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Abstract. This paper presents final results from the EU project AVATAR in which
aerodynamic models are improved and validated for wind turbines on a scale of 10 MW and
more. Special attention is paid to the improvement of low fidelity engineering (BEM based)
models with higher fidelity (CFD) models but also with intermediate fidelity free vortex wake
(FVW) models. The latter methods were found to be a good basis for improvement of
induction modelling in engineering methods amongst others for the prediction of yawed cases,
which in AVATAR was found to be one of the most challenging subjects to model. FVW
methods also helped to improve the prediction of tip losses. Aero-elastic calculations with
BEM based and FVW based models showed that fatigue loads for normal production cases
were over predicted with approximately 15% or even more. It should then be realised that the
outcome of BEM based models does not only depend on the choice of engineering add-ons (as
is often assumed) but it is also heavily dependent on the way the induced velocities are solved.
To this end an annulus and element approach are discussed which are assessed with the aid of
FVW methods. For the prediction of fatigue loads the so-called element approach is
recommended but the derived yaw models rely on an annulus approach which pleads for a
generalised solution method for the induced velocities.
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The paper also discusses uncertainties in the prediction of aero-elastic stability at standstill
storm conditions where dependant on the deep stall airfoil data and the dynamic stall model, a
stable or instable situation is predicted. For the prediction of deep stall airfoil data DES models
were shown to give promising results.

Finally it is concluded that, although AVATAR’s strategy to improve lower fidelity models
with higher fidelity models was very successful, the experimental validation basis was far too
limited. High quality measurements are urgently needed from both field and wind tunnel tests.

1. Introduction, objective and approach

This paper presents final recent results from the EU FP7 project AVATAR (AdVanced Aerodynamic
Tools of IArge Rotors). AVATAR was initiated by EERA (European Energy Research Alliance) and
started in November 2013 and ended in December 2017. The project was carried out in a consortium
with 11 research institutes and two industry partners.

e Energy Research Centre of the Netherlands, ECN (Netherlands, coordinator)
e Delft University of Technology, TU Delft (Netherlands)

e Technical University of Denmark, DTU (Denmark)

e Fraunhofer IWES (Germany)

e ForWind - Institute of Physics, University of Oldenburg (Germany)
e University of Stuttgart (Germany)

e National Renewable Energy Centre, CENER (Spain)

e University of Glasgow (UK)

e Centre for Renewable Energy Sources and Saving, CRES (Greece)
e National Technical University of Athens, NTUA (Greece)

e Politecnico di Milano, Polimi (Italy)

e General Electric, GE (Germany)

e LM Wind Power (Denmark)

The focus of the AVATAR project was the aerodynamic modelling of large wind turbines with a rated
power of 10 MW or more (denoted as 10MW+ turbines). The rotor designs of such large scale fell
outside the validated range of current state-of-the-art aerodynamic and aero-elastic tools in various
aspects (e.g in terms of Reynolds numbers, airfoil thickness, aero-elastic deflections, flow devices
etc). Therefore the aim of AVATAR was to improve and validate aerodynamic models, and to ensure
their applicability for I0MW+ turbines with and without flow devices, and with and without aero-
elastic implications.

To this end, a wide variety of aerodynamic models is considered, ranging from low
complexity/computational efficient models (i.e. Blade Element Momentum - BEM ) to high fidelity
computationally demanding models (e.g. Computational Fluid Dynamics - CFD), with intermediate
models (e.g. free vortex wake models FVW) also included. This enables an improvement of the low
complexity, fast tools via calibration of their results using high fidelity models. The model assessment
is carried out on two 10 MW reference wind turbines (RWT’s), one originating from the
INNWIND.EU project, and another one designed in AVATAR.

The latter is based on the INNWIND.EU reference turbine [1] but is more challenging in terms of
aerodynamic modelling. Aspects like airfoil thicknesses, Reynolds and Mach numbers etc. are pushed
towards the limit, i.e. towards more extreme values though still realistic to expect for future
commercial applications, see [2].
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Furthermore, the improvement and validation of models is based on suitable experimental data, mainly
taken in the wind tunnel at e.g at high Reynolds numbers [3], at turbulent conditions [4], at 360
degrees angle of attack range and on airfoils with flow devices [5] and [6]. A limited number of field
measurements on a 2MW turbine were made available from the Danaero experiment [7].

The project finished in December 2017 with a huge number of results which are described in many
publications and technical deliverables. These are all publicly available and stored on http://www.eera-
avatar.eu/publications-results-and-links/ .

The number of results is too large to be presented in a single paper. This paper limits itself to a
selected number of major findings which are related to model deficiencies and improvements to
engineering methods as implemented in design codes. Moreover the paper limits itself to clean blades
where clean stands for blades without flow devices even though AVATAR spent a large effort on the
modelling of such devices see e.g. [8]. For a more complete overview of the AVATAR results
reference is made to the final report [35].

The assessment of engineering methods partly took place by simulating so-called canonical cases with
codes of different fidelity, see section 2. These canonical cases are simplified cases, calculated without
controller at deterministic yaw, half wake, and shear. In this way insights are obtained in the
deficiencies of engineering methods and several of these deficiencies could (partly) be repaired or
suggestions for improvements could be given. Section 2 also includes results from full acro-elastic
simulations at turbulent inflow. Then section 3 describes model improvements which largely rely on
results obtained with ECN’s Aero-module. AeroModule is a code which has an easy switch between a
BEM based and FVW based model allowing a straightforward comparison of different models using
precisely the same input. The section focusses on model improvements for yawed flow and for tip
losses. Also the sensitivity of results to the precise implementation of induction modelling is
discussed. Finally Section 4 presents results for aero-clastic cases at standstill with emphasis on the
sensitivity of results to dynamic stall models and the underlying post stall airfoil data.

2. Canonical cases and turbulent inflow cases

The strategy of AVATAR largely relies on using results from high fidelity calculations for the
calibration of lower fidelity model. Initially this approach turned out to be problematic because the
results from the high fidelity codes suffered from a large spread [10]. Eventually convergent results
were obtained from the high fidelity tools by which they were used to calculate a set of (simplified)
canonical cases on the AVATAR turbine, the results of which can be found in [10]. The aim of these
cases was to condense differences to ‘pure’ aero modelling effects and to assess the weaknesses and
the potential for modelling improvements The cases had fixed control parameters (fixed pitch and
rpm) and they did not include the effect of tower shadowing. The first cases concerned very basic
steady axis-symmetric cases after which complexity was added in a systematic way in order to
distinguish the modelling effect from separate parameters. The complexity which was added were a
yaw angle of 30 degrees, a shear with exponent 0.2 and a half wake based on a cylindrical wake with
maximum velocity deficit of 0.35 of the free stream velocity as assumed to be representative for a 5D
wake situation. Both a below rated wind speed of 10.5 m/s as well as an above rated wind speed of 14
m/s were considered.

The canonical cases were also calculated in an aero-elastic sense with BEM based models and free
vortex wake methods (FVW) with and without flexibility. Apart from canonical cases also full aero-
elastic load cases with turbulent input were simulated with both BEM and FVW. The reason why
results from FVW instead of CFD codes were used as comparison material for BEM models in an
aero-elastic sense lies in the shorter calculational time from FVW methods (an essential argument for
long aero-elastic load cases) where FVW models still model induction driven phenomena like yaw,
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tip effects and dynamic inflow in a more physical way than BEM based models. Also important to
note is that FVW models provide direct information on lifting line variables like the angle of attack
and induced velocities. This is not the case for fully resolved CFD which requires specific methods to
extract lifting line variables from their output. Several studies on the extraction of lifting line variables
were carried out in AVATAR see e.g. [11] and [36] but still some uncertainty remained in all methods
which make vortex wake methods a more suitable alternative in case direct information on lifting line
variables is needed.

Figures 1 and 2 show a few representative examples for the low wind speed canonical case at half
wake conditions and at yawed conditions from these aero-elastic simulations with (anonymous) BEM
and Vortex wake methods. Generally speaking it is found (not only for the aero-elastic simulations but
also for the CFD simulations of the canonical cases [10]) that the lowest spread is found when the
loads are mainly driven by the inflow variation, i.e. the sheared and the half wake case. For the yawed
case, the loads are heavily influenced by the induction which leads to a much larger spread. The yaw
error in the studied case is 30 degrees, which is large compared to a typical real life situations where
the yaw error typically would be less than 10 degrees. The fact that the yaw case is quite extreme,
while the shear and half wake situations might be more representative of real life situations, might
tend to over emphasis the deviations in this case.
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Figure 1. Canonical cases: aero-elastic simulation of operation in half wake for the AVATAR RWT.
Comparison of the azimuth variation of the angle of attack (left) and the normal to the chord
aerodynamic load (right) at the 70% radial station.
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Figure 2. Canonical Cases: Operation in sheared (left) and yawed (right) conditions. Comparison of
rigid (upper) and flexible (lower) simulations.
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Figure 3: Fatigue loads calculated along the blade of the AVATAR RWT at 8 m/s with a BEM code

(indicated by ECNAero-BEM-NControl) and a free vortex wake method(indicated by ECNAero-
AWSM_NControl)

Figure 3 shows the equivalent fatigue loads (flap moment) from a full aero-elastic load case with
turbulent input largely in agreement with IEC 61400-3. Calculations are performed on the AVATAR
RWT at 8 m/s with a BEM and a FVW method as implemented in ECN’s AeroModule (see section 3).
The effect of the controller is switched off for better comparison purposes. It can be seen that BEM
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overpredicts these loads with 10-20% compared to the FVW method. It is noted that comparisons
from [31] with different BEM and vortex methods show similar over predictions from BEM.

This is explained by a more local tracking of the induced velocity variations in FVW models, by
which they vary synchronously with the variation in inflow. This synchronization then damps out the
variations in angle of attack. Moreover, FVW models allow for a more intrinsic and realistic
modelling of shed vorticity variations in time.

3. Engineering models: Recommendations and improvements

As explained in section 2, vortex based methods offer a relatively efficient way for a physically
accurate modelling of induction effects and so they can be used to improve BEM based codes in that
aspect. This will be illustrated with examples which often rely on the ECN AeroModule [16]. Aero-
Module is a code with an easy switch between the ECN-BEM model and the ECN-AWSM free vortex
wake method. Moreover a modified AWSM model is included which prescribes the wake and vortex
convection velocities after a certain distance behind the rotor. The AeroModule is coupled to the
PHATAS structural solver [17]. In this way the aero-elastic response is calculated with the same input
data but with different aero-models in line with the AVATAR philosophy that engineering models are
improved using results from more advanced methods. It is emphasized that the main difference
between the ECN-BEM and ECN-AWSM model lies in the calculation of induction which is carried
out in a more physical way with the vortex approach from AWSM. The effects of airfoil aerodynamics
are included in a similar way through airfoil coefficients as function of angle of attack (corrected for
three dimensional effects in a similar way). A more physical modelling of airfoil aerodynamics
requires more advanced methods like CFD.

3.1. Yawed conditions

As mentioned in section 2 yawed conditions turned out to be one of the most difficult phenomena to
predict by engineering methods. Some improvements to the engineering yaw modelling have been
made in AVATAR. The starting point for these improvements lied in the observations given in [18]
and [19] on the azimuthal variation of induced velocities at yawed conditions which are caused by the
skewed wake effect and which were first modelled in the EU projects Dynamic Inflow, see [20]. The
models all assumed a sinusoidal variation as induced by a tip vortex wake in line with the model from
Glauert leading to stabilizing yawing moments all over the blade.

Later in 1999 Schepers [21] used inflow measurements on a model turbine placed in the TUDelft
wind tunnel to develop a new model for the prediction of induction variation with azimuth position. In
this work, the measurements of the axial velocity at several radial positions and yaw angles have been
expanded in a second-order Fourier series as function of azimuth angle, see equation [1]

ui = ui (¢r) =uio [ 1—Aircos (¢r—y1) — A2 cos (2 ¢r —y2) ] [1]

The amplitudes A and A; and phases y; and y; have been tuned as a function of the radial position
and yaw angle. In 1999 it was not allowed to publish the precise values of the model parameters but
they were in 2012, see [22]. The main difference to the models derived in [20] lies in the inclusion of
root vortex effects which were clearly observed in the measurements of velocities in the inner part of
the blade. This led to a deviation from the pure sinusoidal behaviour and destabilizing yawing
moments at the inner part of the blade. It was interesting to note that in retrospective, the root vortex
effects were observed in precisely the same qualitative way in FVW calculations from the National
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Technical University of Athens as carried out earlier in the above mentioned Joule projects on
Dynamic Inflow.

The 2nd order model with root vortex effects was often found to give significantly better prediction
of the loads at yawed conditions than a conventional Glauert based model. This is illustrated in Figure
4 which compares the axial induced velocities at 30 degrees yaw for the INNWIND.EU turbine at
30% and 95% span. Zero azimuth is defined at the 12 o’ clock position and yaw is defined such that
the so called downwind side of the rotor is between 0 and 180 degrees azimuth.

It can be noted that two BEM models are included: A BEM-Glauert model based on a sinusoidal
azimuthal variation of induced velocities all along the blade such that the maximum induced velocity
appears at the downwind side of the rotor plane. Moreover results are included from the modified
model developed by Schepers indicated with BEM-rv (root vortex). The results are compared with the
more physical AWSM free vortex wake and prescribed vortex wake option

Although figure 4 shows that at 30% span both BEM models differ from the AWSM models the
qualitative agreement between the BEM-rv model and vortex wake models is good, i.e. the maximum
velocity is induced at the upwind side and the minimum velocity is induced at the downwind side. The
Glauert model fails to predict this trend, i.e. the maximum induced velocity is reached at the
downwind side of the rotor plane as induced by a tip vortex wake only.

On the other hand it can be observed that the qualitative behaviour of the induced velocity at 95% span
from the BEM-rv model compares slightly poorer in particular because the dip in induced velocity at
an azimuth angle of 90 degrees as a result of the root vortex is still present.

This was explained by the fact that the model from Schepers was tuned on experimental data from a
small sized turbine (2 bladed with the rotor diameter of 1.2m) with a strong root vortex. The current
wind turbine blades are far bigger and have a smoother transition at the root.

Therefore, in [ 18] it was suggested to improve Schepers’ yaw model by altering the radial dependency
of the parameters such that the effect of the root vortex is ‘damped out’ at 95% span. This was
established in a cooperation between ForWind and ECN. The new yaw model was not only based on
AWSM results but also on results from an Actuator Line CFD model developed by NREL and used by
ForWind [23]. It is noted that the AL-CFD code is not a free vortex wake method but a CFD method
but the rotor is modelled as Actuator line approach. The induced velocities from both the AL-CFD and
the AL-FVW approach were found to agree extremely well [24])

Based on this study a new model was tuned. It is still based on a second order Fourier model but the
coefficients have been tuned on the AL-CFD and AL-FVW results for both the AVATAR and
INNWIND.EU turbine and also the NREL SMW Reference Wind turbine.

Figure 5 then shows the results for the induced velocity as function of azimuth angle for the
INNWIND.EU turbine. It can be seen that the new model agrees very well with the physical ALM.

It is important to note however that the model from [24] is based on a so-called ‘annulus approach’
for the induced velocity as represented through the ujo in equation [1]. In section 3.3 it will be shown
that for calculations of turbulent and sheared conditions another approach, a so-called element
approach, is preferred.
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3.2. Tip loss factor

An important simplification in the momentum theory is the representation of the rotor by an actuator
disc. Such actuator disc is a hypothetical concept which to some extent can be seen as a rotor with

an infinite number of blades since the flow in the rotor plane is assumed to be uniform.

However, the fact that a real rotor has a finite number of blades makes the actual flow in the rotor
plane non-uniform.

This non-uniformity is generally covered with the Prandtl tip loss correction F, (or modifications to it,
see [25]). In its basis the Prandtl tip loss factor gives the ratio between the annulus averaged
induction in momentum theory and the local axial induction factor at the blade (as applied in the blade
element theory) Prandtl derived the factor in the pre-computer era (1919). This necessitated the use
of a very simplified vortex wake concept by which it was possible to derive the factor analytically

The simplified model from Prandtl consisted of vortex planes, as given in figure 6 representing the
helical vortex sheets behind a finite blade rotor which move with a constant transport velocity Vy(1-a)
without wake expansion and with a mutual distance d. Flow wipes in and out from the free stream into
the stream tube which brings the actual wake velocity near the outer part of the blade between the
outer free stream velocity V,, and the inner wake velocity V,(1-a)
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Figure 7: Left (taken from [26]): Wake model used to derive the Prandtl tip correction with U the free

stream wind speed and d the distance between the vortex planes. In the right figure (modified from [28]),
the angle between the helical vortex sheet and the axial direction &w is included

Within AVATAR, see [27] the Prandtl tip loss factor has been assessed. Thereto the tip loss factor is
first written in a generalized form as:

N2l

2 R-7y
F = ;arccos[exp (—n 7
With d the distance between the vortex sheets according to figure taking into account the angle
between the helical vortex sheets ey

Then relation 2 is transformed to a relation which can be used in BEM based models. Thereto d =h/Np
cos(ew), h =2 7w r; sin(ey) and &, is assumed to be the inflow angle at the blade element. Then the
factor F can be written in the following form:

—_évb R—1 JVZ+V?

- s

F=-—
- arccos[exp(

In equation [3] Vi is the axial velocity of wake vortices Vy, (1-a) and V| represents the tangential
velocity which includes the induction in tangential direction Qr (1+a’).

In [27] it is then concluded that 72 variations are possible for the practical implementation of equation
[3] in design codes, where knowledge is lacking on the best performing implementation.

The freedom lies in the values of r; for which usually the local value is taken but in particular for r»
which is sometimes taken as local value but also as tip value. Moreover different implementations are
possible in V. For the axial induction factor in V, the local value can be used but also the tip value
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where moreover a difference lies in applying the averaged value or the value at the blade section. In
some cases the induction factor is even ignored.

In order to find the best choice for these factors the ASWM code is applied which has a much more
physical basis to calculate the induction than the simplified wake representation from figure 7. With
this code a tip loss factor is determined as the annulus average induction divided by the local induction
factor. Calculations with the AWSM code have been performed for 5 different rotors, i.e. the small
wind tunnel rotors from Mexico [29] (D=4.5 meter) and NREL Phase VI (D=10 meter) and the before
mentioned AVATAR and INNWIND.EU rotor. Moreover a rotor has been designed as a variant of the
Mexico rotor with a constant loading along the blade which is in agreement with the basic concept
applied by Prandtl.

Figure 8 shows the effect of different implementation of the Prandtl tip loss factor for the constant
loading variant of the Mexico rotor at a low tip speed ratios (4.9) and a high tip speed ratio (11.9)
showing a large effect of the implementation.

17 : . . . 1 p
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= 05 = 0.5
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Figure 8:Different implementation of Prandt tip loss factor as function of radial position compared with

tip loss factor from AWSM for a constant loading variant of the Mexico variant. Left: A = 4.9 and right A
=119

It is then found that for all cases the best results are obtained when the distance 1> and V, (i.e. the
axial induction factor) are evaluated locally i.e. at the particular radial position of the blade element.
Moreover the axial induction factor should be applied on blade level instead of on annulus averaged
level. The dependency on the precise implementation of V:turns out to be very limited.

3.3. How to solve the induced velocities in BEM?

A very important observation from the AVATAR project lies in the fact that the way the induction
factors are solved in the BEM equations has a huge impact on the results, see [34].

This is explained through the axial BEM equation (note that similar observations can be made for the
equation in tangential direction):

2a(l—a)pV 2mdr =) c¥pV.2c(a)cosd dr[4]
B

This equation solves the axial induction factor. The axial induction factor in the momentum part (the
left hand side) is straightforwardly given but it is ‘hidden’ in the blade element part (the right hand
side), since the angle of attack a, the resultant velocity Vs and the inflow angle ¢ can be written in the
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following form (again ignoring the tangential induction factor a’ and & denoting the twist (+pitch
angle)):
V. .(1-a)

= arctan —*
¢ Qr

V2 =V(1-a)’ +(Qr)

res

(1-a)

=arctan———=;a=¢9—¢
A

”

Now consider the case of shear which gives different wind speeds throughout the annulus of figure 9
and so different wind speeds at the elements of the different blades. Then a question arises how to
solve the momentum balance in this annulus. A first possibility would be to apply an annulus
approach i.e. to average the wind speed over the annulus. Then this averaged wind speed is applied
in the left hand side of equation 4 to solve the averaged induction factor. Hence in the right hand side
of equation 4 the angle of attack, the inflow angle and the V. are based on the averaged induction
factor with the local wind speed at the blade (which in the case of shear is different from blade to
blade; note that a slight complication appears by the tip loss factor which might make the local blade
induction factor different from the averaged induction factor and which may even be different from
blade to blade).

Another solution method would be to apply an element approach i.e. the axial induction factor is
solved for all three blade elements separately using the local wind speed at the element. Alternatively
this method may use the wind speed averaged over the sector around the blade element (figure 9).
Hence the left hand side of equation 4 uses either the local wind speed or the sector averaged wind
speed and the local axial induction factor at the blade. In the right hand side of equation 4 the angle of
attack a, the inflow angle ¢ and the resultant wind speed Vi use the local axial induction factor as
solved for each blade separately with the local wind speed at the blade element.

The aero-elastic calculations at turbulent inflow carried out with AeroModule-BEM presented in
section 2 used a local approach. An overprediction in fatigue loads of approximately 15% was found.
In [31] indications are found that the results from an annulus approach lead to an even larger over
prediction in fatigue loads in the order of 20%. This then calls for a local approach of the induced
velocity implementation. However the application of a yaw model like the one from section 3.1
requires an annulus averaged approach. This implies a dilemma when modelling yawed flow at
turbulent inflow. Overall it can be stated that a generalised implementation model for the calculation
of the induced velocity is needed. The definition of such approach requires further investigation.

Figure 9: Annulus ring with blade elements

As stated above the element approach may be applied in two different ways and the question remained
whether the wind speed Vy in the left hand side should be the actual wind speed at the blade element
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or the sector averaged wind speed. In figure 10 a comparison is made between the induced velocities
along the AVATAR blade at 4 azimuthal positions at a heavy shear with exponent 0.75 calculated
with AWSM and the element approach with the local wind speed and the sector wind speed. Generally
speaking the results using the sector wind speed compare better to the ASWM results.

Heavy sheared inflow - AVATAR rotor

0deg 90 deg

— BEM - Local wind - — BEM - Local wind
05k —— BEM - sector wind i 051 —— BEM - sector wind
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Figure 10 Calculation with ECN’s Aeromodule for the AVATAR rotor under heavy shear: induced

velocity calculated with element approach and local or sector wind compared with AWSM results for 4
azimuth angles.

Hence a very important observation from the AVATAR project lies in the fact that the BEM model
does not exist and it is not sufficient to describe a BEM model through its engineering add-ons alone,
as is often done. Equally important is to describe the solution procedure for the induced velocities
where an element approach is preferred for the prediction of fatigue loads under turbulent sheared
inflow and an annulus approach for the prediction of yawed flow.

4. Aero-elastic calculations at standstill storm cases

One of the striking observations from the AVATAR project is formed by the calculation of the aero-
elastic response at standstill which showed a clear sensitivity to the precise airfoil data at post stall
conditions and the modelling of dynamic stall. Simulations have been conducted for an isolated rotor
and a full wind turbine in uniform as well as in turbulent inflow. In figure 11 simulations are shown on
the AVATAR rotor at standstill (with blade at the 12 o’ clock position) and idling at a wind speed of
48 m/s and yaw angles between -30 to + 30 degrees. Minimum and maximum values of the blade root
bending moment are given for turbulent inflow and for uniform inflow. For this yaw angle range the
min-max difference remains limited.

Figure 12 shows the edgewise, and flapwise peak-to-peak amplitude for the AVATAR rotor calculated
with different dynamic stall models and for uniform and turbulent flow. Yaw angles outside the +30
degree range yield extremely high loading where the ONERA dynamic stall model is found to give
more damping compared to that from the Beddoes dynamic stall model. In idling conditions vibrations
are reduced. Also for turbulent wind vibrations were less severe and CFD based FSI modelling also
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showed significantly less vibrations even at higher yaw angles. The fact, that CFD based FSI in
standstill conditions indicate a significantly more stable response than the BEM based models, is
another indication that high fidelity modelling is needed, also to assist the calibration of simpler
models.

More details on the studies related to aero-elastic stability and standstill conditions can be found in
[32].

AVATAR WT: U=48m/s, rotor azimuth position=0deg AVATAR WT: U=48m/s, rotor azimuth position=idle
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Figure 11 Min-max values of blade root edgewise moment on the AVATAR rotor at U=48m/s in
standstill (left) and idling (right) conditions.
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Figure 12. AVATAR RWT at standstill at 48m/s in uniform and turbulent inflow conditions. Flapwise
(right) and edgewise(left) peak-to-peak amplitude for turbulent and uniform inflow and for different
dynamic stall models.

4.1. 360 degrees polar

The standstill and idling results depend heavily on the precise airfoil data at deep stall. In AVATAR
full 360 degrees polars have been calculated by NTUA and DTU. In this process all airfoils are studied
in 2D using both the steady state and the time-accurate methods. The 2D simulations are supplemented
by selected 3D DES simulations for the high angle of attack scenarios to better understand the
difference between the steady and the unsteady 2D simulations. Additionally, existing measurements
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performed by the University of Delft on the DU97-W-300 and DU96- W-180 airfoils at relatively low
Reynolds number were compared to both 2D RANS and 3D DES simulations. It was found that the
steady RANS simulations clearly under predict the drag in deep stall where the unsteady RANS
clearly over predicts drag. A few simulations are performed using the much more expensive 3D
unsteady IDDES simulations. The 3D DES simulations reduce to the standard k — » SST results in the
attached flow regions, and the expensive simulations are done only for the regions where the 2D
simulations experience problems. From the results it is seen that a very good agreement with
measurements is found in the stalled regions, see Figure 13 and [33]. The problematic areas left are
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Figure 13. Comparison between lift for the DU97-W-300 measured in the Delft LSLT tunnel and 3D
CFD computations using IDDES technique in the DTU’s EllipSys3D

close to the onset of stall, while the deep stall regions seems to be well captured.

5. Conclusions

The present paper presents results from the recently finished AVATAR project. This project has led to
a huge number of publicly available results. Amongst others all deliverables, including the final report,
are uploaded on http://www.eera-avatar.eu/publications-results-and-links/

In this paper special attention is paid to 1) the improvement and assessment of low fidelity engineering
(BEM based) models with intermediate fidelity free vortex wake (FVW) models and 2) to the
prediction of standstill conditions at storm wind speeds

With regard to the first subject the following conclusions were drawn:

e Generally speaking the load cases which are determined by induction effects (e.g. yawed cases)
are more challenging to model by BEM based methods than the cases driven by the external flow
field (e.g. sheared cases). Such cases driven by induction effects were modelled quite accurately
with intermediate fidelity free vortex wake (FVW) methods in a relatively efficient way.

e Fatigue loads for normal production cases at turbulent inflow were over predicted with
approximately 15% or more by BEM models compared to results from FVW methods possibly by
a more local tracking of induced velocities in FVW methods

e Results from FVW models could be used to improve lower fidelity models for e.g. the prediction
of yaw and tip losses.

e The outcome of BEM based models does not only depend on the choice of engineering add-ons
(as is often assumed) but it is also heavily dependent on the way how the induced velocities are

14



The Science of Making Torque from Wind (TORQUE 2018) IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 1037 (2018) 022013  doi:10.1088/1742-6596/1037/2/022013

solved. To this end an annulus and an element approach were assessed with the aid of FVW
methods. For the prediction of fatigue loads the so-called element approach is recommended but
for the modelling of yaw an annulus approach is preferred. The combined calculation of yaw at
turbulent inflow then pleads for a generalised solution method for the induced velocities

e The experiences gained with FVW methods coupled to an aero-elastic solver have paved the way
to model (a limited number of) load cases in a design spectrum more reliable but still relatively
efficient with such methods. This is in particular promising for load cases in which induction
effects are expected to be dominant.

With regard to the second subject (aero-elastic stability at standstill storm conditions) the following
conclusions were drawn
e Dependant on the dynamic stall model and the deep stall airfoil data a stable or instable
situation is predicted. This implies that state of the art methods cannot predict aero-elastic
stability with certainty
e For the prediction of deep stall airfoil data DES models were shown to give promising results.

Finally it is concluded that, although AVATAR’s strategy to improve lower fidelity models with
higher fidelity models was very successful, the experimental validation basis was considered too
limited by the project group. High quality measurements are urgently needed in both the field and the
wind tunnel.
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