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Abstract. Since the investigation of van Ingen et al., attempts were undertaken to search for
laminar parts within the boundary layer of wind turbines operating in the lower atmosphere
with much higher turbulence levels than seen in wind tunnels or at higher altitudes where
airplanes usually fly. Based on the results of the DAN-Aero experiment and the Aerodynamic
Glove project, a special work package Boundary Layer Transition was embedded in IAEwind
Task 29 MexzNext 3rd phase (MN3). Here, we report on the results of the application of various
CFD tools to predict transition on the MEXICO blade. In addition, recent results from a
comparison of thermographic pictures (aimed at detecting transition) with 3D transitional CFD
are included as well. The MEXICO (2006) and NEW MEXICO (2014) wind tunnel experiments
on a turbine equipped with three 2.5 m blades have been described extensively in the literature.
In addition, during MN3, high-frequency Kulite data from experiments were used to detect
traces of transitional effects. Complementary, the following set of codes were applied to cases
1.1 and 1.2 (axial inflow with 10 m/s and 15 m/s respectively) — elsA, CFX, OpenFOAM (with
2 different turbulence/transitional models), Ellipsys, (with 2 different turbulence models and
e transition prediction tool), FLOWer and TAU — to search for detection of laminar parts by
means of simulation. Obviously, the flow around a rotating blade is much more complicated
than around a simple 2D section. Therefore, results for even integrated quantities like thrust
and torque are varying strongly. Nevertheless, visible differences between fully turbulent and
transitional set-ups are present. We discuss our findings, especially with respect to turbulence
and transition models used.

1. Introduction
This paper focuses on the results of work conducted in subtask 4.9 Boundary layer transition
of IEA Wind Task 29 MexNext. Participants were: DTU Wind Energy (Denmark), ONERA

(France), Fraunhofer IWES /ForWind, Oldenburg, IAG/U Stuttgart and UAS Kiel (Germany).
Previous work on this subject is summarized in table 1.
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Table 1. Previous work on boundary layer investigations on 3D rotating wind turbine blades.

Name of Project Date Remark Source
HAT25 1983 Transition detection via microphone [1]
MEXICO 2006 and 2013 PIV and Kulite data 2]
DAN-Aero 2007 - 2009 Full Scale LM 38.8 (3]
Aerodynamic Glove 2011 Enercon 33 with 15 m blade [4]
AVATAR 2011 - 2017 DUO00-W-212 profile [5]
Free Field Thermography 2014 - 2016 LM37 (meter) blade [6]

The paper is organized as follows: We shortly compare our 3D case to a recent but simpler
2D case and summarize recent findings from re-anlysis of experimental high-frequency pressure
measurements. Then, we present the main work of 3D computations starting with global force-
and torque-data but include some more detailed results concerning radial resolved pressure
and wall-shear stress. Finally, we discuss another comparison concerning transition with
thermographic pictures of a larger wind turbine.

2. Boundary Layer Transition on Rotating Wind Turbines

Due to renewed interest in boundary layer experiments of wind-turbine blades operating in the
free atmosphere [1, 3, 4, 7, 8] a work-plan to investigate these issues on the MEXICO blade was
released in the beginning of 2013 within MN2 (2012 - 2014) but most of the work was performed
in MN3 (2015 - 2017) only.

A set of measurements without and with only partially tripped blades were performed during
the NewMexico experiment and were reported in 2014 [9, 10, 11].

Recently, for a two-dimensional setup during the EU-funded AVATAR project (see [13]),
remarkable consistent findings were reported for predicting ¢y and c¢p data using transition
predicting tools like eV [14] or Menter’s correlation based model [15]. The Reynolds number
(RN) was varied from 3 to 12 mio and the turbulence intensity (TI) ranged from about 0.086
% to 0.5 %. Fig. 1 shows the importance of incorporating the turbulence intensity for choosing
an appropriate N and Fig. 2 shows the differences of various methods and codes used for one
specific case (RN = 15 mio and TT = 0.33 %). In all transitional cases Mack’s correlation

N =2.13—6.18 -log(TI) (1)

was used to correlate TI and N. In contrast to applications for pure 2D flows for aiRFOILs
measured in wind tunnels, complete 3D transitional simulations, especially for rotating wings,
are much more rare and more complicated to simulate as well.

2.1. Experiments on Rotating Wind Turbine Blades
The earliest approach of searching for traces of laminar-turbulent transition on a rotating wind
turbine blade dates back to 1983 [1, 16]. The then used blade had a length of 14 m and profiles
from the NACA 4-digit 44 series were used. Rated power of this turbine was 300 kW. The
Reynolds number varied from 1 to 3 mio. One main finding was the safe detection of laminar
parts even under apparently high inflow turbulence.

Years later in Denmark [3, 17], a MultiMW (Nec Micon NM80 with LM38 blades) was
investigated in much more detail. Due to much faster signal-processing capabilities much sharper
detection of transition locations was possible and even changes during one revolution (7" ~ 5 sec)
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Figure 1. Comparison of CFD and experi- Figure 2. Comparison of experimental data

mental data: Lift-to-drag ratio vs. angle of with CFD results for various CFD codes and
attack (AOA) for different turbulence inten- methods [5].

sities (Til = 2.39 %, Ti2 = 0.55 % and Ti3

= 0.33 %). Kiel-TAU refers to the TAU code

from DLR [12] as applied by University of

Applied Sciences Kiel [5].

could be detected. There, one major finding was the observation of pronounced laminar parts
(20 % to 40 % with regard to x/c) and that the energy increase within the turbulent boundary
layer starts above approximately 500 Hz. This explains that even under seemingly much higher
turbulent inflow, only a small part is aerodynamically active. If one assumes the mechanism of
receptivity as responsible, then a low-frequency cut-off may exist.

Partially, this was confirmed by the Aerodynamic Glove experiment [4] performed on
ENERCON E30 with 15 m blades, in size rather comparable to the much older HAT25
experiment [16]. It was found that the energy content (of the turbulent atmosphere) in a
frequency range above 0.5 kHz is about 6 orders of magnitude smaller than at its maximum at
about 1072 Hz. This then justified using a N-factor of N = 8, corresponding to 71 = 0.11% for
CFD. Due to the different sensor type used (hot films instead of microphones) only a very limited
range (0.24 < x/c < 0.31) in chordwise direction could be screened. Nevertheless, some of the
over 700 recorded data-sets clearly showed transition detected by the same type of reasoning
and criteria as used above in the DAN-AERO experiment [3, 17].

2.2. Results from Re-Analysis of NEW MEXICO Kulite data

NEW MEXICO data, especially the high-frequency Kulite data has been re-processed by Lobo
[18, 19] for possible detection of transition by comparing the energy content in various frequency
ranges. He found (see Fig. 3) a rather similar dependency if all measurements were collapsed
to one graph by relating them to their corresponding angle of attack calculated with the help of
RFOIL. As can be seen in Figs. 8 and 9, his method also compares well with CFD simulations.
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Figure 3. Locations of transition from analyzing Kulite data. Both rotating and standstill
conditions are included [18].

2.8. CFD comparison of NEW MEXICO experimental data

2.8.1. Owverview of CFD Codes A short overview of the used codes (elsA, CFX, EllipSys,
FLOWer, OpenFOAM and TAU) is given. For more details, see the comprehensive summary
of MN3 [20] and references therein, especially appendix F and section 4.4 Convergence of CFD
simulations.

Three of the codes come from aerospace research institutions: elsA from ONERA (France)
and FLOWer and TAU from DLR (Germany). CFX [21] is the only commercial code used
(ANSYS), EllipSys was developed by the Danish Technical University and OpenFOAM by the
openFOAM community [22]. All have been tested and validated extensively and represent state
of the art RANS-CFD codes. Mesh size ranges from 15 mio (CFX) to 140 mio (elsA) and
the computational domain from 5 rotor diameters (elsA) to 30 rotor diameters (TAU). As the

turbulence model, SST-k-w was used in almost all cases. The number of revolutions varied from
10 (TAU) to 30 (elsA).

2.8.2. Global results for thrust and torque During MexNext Phase 3, many (some of them new)
codes were able to perform simulations. Table 2 summarizes the results for thrust and torque for
cases 1.1 (10 m/s inflow velocity) and 1.2 (15 m/s inflow velocity). Given are the results for fully
turbulent CFD simulations, transitional CFD simulations and experimental data, respectively.
Table 3 summarizes the averages of all contributions and indicates general deviations from the
different methods.

It should be noted that the measurements from 2014 seem to be somewhat more reliable
because some systematic errors from the 2006 run could be identified and corrected as described
in [23].

2.8.8. Radially resolved data In a next step — to have more insight into the reasons of the
variations in global forces — the radially resolved data were compared. Figs. 4 and 5 give an
impression of the calculated deviations (fully turbulent vs. transitional) of tangential forces from
some arbitrary chosen groups (DTU, ONERA IWES/ForWind and U Stuttgart). Transitional
and turbulent data are rather close inside one group but differ significantly, however. Especially
at 1 < r < 1.5, large differences are visible due to a change in airfoil type and interrupted
tripping [18].
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Table 2. Global results for thrust (N) and torque (Nm)

fully turbulent CFD

Year Code Thrust Torque Thrust Torque
case 1.1 case 1.1 case 1.2 case 1.2
2010 EllipSys 1000 70 1550 370
2016 EllipSys 969 59 1704 278
2012 TAU (Kiel) 1036 30 1608 220
2015 TAU (DLR) 1050 75 1800 360
2016 elsA 1064 32 1781 295
2017 OpenFOAM SA 937 70 1667 338
2017 OpenFOAM SST 979 73 1749 343
2017 FLOWer 920 77 1725 350

transitional CFD

Code Thrust Torque Thrust Torque
case 1.1 case 1.1 case 1.2 case 1.2

elsA 1086 33 1791 302

CFX 840 50 1790 250

FLOWer 953 81 1793 357

OF kkL omega 1047 85 1875 364

OF gamma Re 990 76 1729 333

EllipSys [23] 984 58 1752 278

TAU 1025 74 1800 465

experimental data

Year Experiment Thrust Torque Thrust Torque
case 1.1 case 1.1 case 1.2 case 1.2

2006 MEXICO 854 61 1517 285

2014 NEW MEXICO 974 68 1663 301

2.8.4. Impact on pressure distribution In Fig. 6, the pressure on the first downstream half of
the suction side is shown for comparison. Even from this graph, a clear indication (as sudden
change in slope at z ~ 0.02 m and z ~ 0.035 m, respectively) where transition takes place can
be deduced: z; =~ 0.02 m for the ONERA simulation and z; ~ 0.035 m for DTU. In general
— as expected — both transitional pressure distributions give raise to more lift than in the fully
turbulent case.

2.8.5. Impact on wall shear stress distribution For more insight into the details of a transitional
simulation, the local friction coefficient ¢y is shown in Fig. 7. Usually, in CFD simulations
transition (i.e. switching-on of the used turbulence model) is blended by an intermittency
function over a well defined finite region.

This can be clearly seen in the figure, although the location itself is different. As the fully
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Table 3. Comparison of averages (AVR) and standard deviation (STD) for thrust (N) and
torque (Nm) at 10 m/s and 15 m/s inflow. N is the number of data points or different
computational runs. Values in brackets for experimental data are from NEW MEXICO.

type velocity (m/s) Thrust Thrust Torque Torque
AVR STD AVR STD
Experiment 10 914 (974) 42 65 (68) 2
N=2 15 1590 (1663) 52 301 (317) 11
fully turbulent 10 998 17 60 6
N=238 15 1697 42 305 20
transitional 10 983 26 62 7
N=7 15 1790 15 337 26
MN3 Ft 10 m/s MN3 Ft 15 m/s

25

Figure 4. Radially resolved tangential Figure 5. Radially resolved tangential
force (in N/m) from fully turbulent and force (in N/m) from fully turbulent and
transitional CFD calculations, case 1.1: 10 transitional CFD calculations, case 1.2: 15
m/s inflow. m/s inflow.

turbulent region starts from e, differences here only stem from the used turbulence and
prediction models. ONERA uses a Menter-Langtry criterion [25] and IWES/ForWind uses
~v — Rep. The laminar part (up to c}”i”) however, should be identical — or at least very similar —
if mesh and boundary conditions would be the same. Experimental data (Figs. 8 and 9) from

Lobo [18] support this reasoning.

It is clearly seen that the results for the suction side (z;. “CFP — 016 ... 0.45) vary more

than for the pressure side (277**“*" ~ 0.6). From Fig. 8, one finds z;"““” = 0.2 ... 0.3 and
from Fig. 9 20" = 0.7 is estimated. With some caution, a reasonable agreement between

measurements and CFD simulations can be found.

2.4. Transition on a 37 m blade

In addition to the MexNext project, the TAU code was used to simulate 3D transition on a 37
m blade at partial load. For this specific blade thermographic images exist [6]. The comparison
of thermographic images with CFD simulations [26] showed a discrepancy in the position of the
laminar-turbulent transition. Thus, in this case it is not possible to confirm the large extension
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Figure 8. Locations of transition from Figure 9. Locations of transition from
analyzing Kulite data for the same case as analyzing Kulite data for the same case as
in Fig. 7, suction side. in Fig. 7, pressure side.

of an assumed laminar state (more than 40 % relative chord along almost the whole blade) by
this specific transition prediction tool. However, some of the operating conditions of the turbine,
e.g., wind velocity and pitch angle, were not known accurately. Therefore, it might be possible
that the optical findings can be reproduced with appropriate simulation parameters.

3. Summary, Discussion and Conclusions

During the 3rd period of IEA Wind Task 29 MexNext, seven transitional CFD calculations from
four groups (DTU, IWES/ForWind, Onera, U Stutt and UAS Kiel) were able to perform 3D
transitional CFD computations. In addition, high frequency pressure data was re-processed and
transition locations could be deduced which agree reasonably with RFOIL and 3D transitional
RANS simulations. For a special case (see section 2.3.5), a detailed comparison of measurements
and simulations show reasonable agreement.
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Due to decambering and larger turbulent wall shear stress it was expected that transitional
simulations should give slightly larger integrated force values at non-tripped outboard sections.
This is easily confirmed even by a simple XFOIL estimation for the /Ry, =92% section at
Re = 1 mio and an assumed AOA of 6°: Lift increases from 0.96 to 1.06 and drag is reduced
from 0.015 to 0.009. As it is typical for XFOIL, the transition location is visible as a cusp in c,.
Comparable cusps at z = 0.02 m seem to be present in Fig. 6 for ONERA transitional case 1.2.

Finally, the following more specific conclusions may be drawn separately for the two different
cases:

e inflow 10 m/s (case 1.1, TSR = 10):
Transitional thrust and torque agree (within the statistical standard deviation (std)
obtained from all computational runs) with the experiment and fully turbulent flow. An
expected increase of force/moment data is barely visible.

e inflow 15 m/s (Case 1.2, TSR = 7):
Both thrust and torque statistically increase significantly if transition is enabled but seem
to depart from the experimental values even further.

In conclusion, it has to be noted that 3D transitional CFD simulations do not have the
consistency of 2D results obtained, e.g., from the recently finished AVATAR project as described
in Ref. [5]. In general, our data (for integrated thrust and torque) show approximately the same
scattering as in previously obtained other computational rounds.

As an outlook, efforts should be undertaken as proposed by [27]. As a first step, it may
be appropriate to use identical meshes to investigate exclusively the effects of the transition-
predicting modules only. However, turbulence and transitions modules are known to be very
sensitive to mesh parameter and, as a result may prevent using a unique mesh for all solvers.
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