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Gaussian Processes [2] are a Bayesian non-parametric machine learning method. They
express a probability distribution over functions, which is then combined with data to
make predictions at any other point in the input space.

Gaussian Process regression on the measured radial beam speed data creates a “Virtual
Lidar”, providing mean (, upper image) and uncertainty (, lower image) estimates.

The standard deviation estimates combine uncertainty inherent to the Lidar
measurements with uncertainty caused by the distance in space and time between
measurement and prediction.

➢ Wind speed measured at hub height is insufficient to represent either the power
available for extraction by a modern wind turbine, or the loading on it. Light Detection
and Ranging (“Lidar”) units offer the potential to measure wind velocity across the
whole rotor diameter, answering this information gap.

➢ The more powerful machine learning methods offer an alternative solution to this
issue, by removing assumptions involved in other reconstruction techniques and
making use of information from all the data points in space and time.

Data covering 44.6 continuous days from a site with simple
terrain (see diagram ), were used to validate the new
method on a Windcube Lidar unit. Only 10-minute data were
available from the met mast for validation.

The homogeneous assumption was used to resolve the
Cyclops Effect at each height. The average wind speed bias
was −0.01𝑚/𝑠 and scatter was 0.11𝑚/𝑠, see table below for
full details. This meets the threshold for commercial use.
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A novel machine learning method, using Gaussian Process regression, has demonstrated
the following advantages over current wind field reconstruction algorithms:

➢ It is naturally robust to overfitting,

➢ It predicts wind speed uncertainty derived from data density and machine error,

➢ It is, in theory, applicable to any site and any scanning geometry without tuning,
although validation is currently limited to the Windcube in simple terrain.

➢ Initial validation shows performance acceptable for Lidar certification,
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Method

➢ Lidar units work by pointing a laser beam into the sky and
analysing the backscatter signal using the Doppler effect to
determine the radial wind speed:

𝑣𝑏 = − 𝑣𝑥 sin 𝛼 cos 𝛽 + 𝑣𝑦 sin 𝛼 sin 𝛽 + 𝑣𝑧 cos 𝛼

➢ Pointing the Lidar beam in a different direction obtains a
different resolution of the wind velocity, but at a different
location and at a different time.

➢ This “Cyclops Effect” results in sensitivity to spatial
inhomogeneity, such as that caused by complex terrain and
wind turbine wakes, generating biases which are currently
addressed with specific modelling (e.g. Windcube FCR for
complex terrain) [1].

The Virtual Lidar maps:
[𝛼1, 𝛼2, 𝑟, 𝑡] → 𝑣𝑏

where we used the well-behaved co-
ordinate system 𝛼1 = 𝛼 cos 𝛽 , 𝛼2 =
𝛼 sin𝛽; 𝑟 is the distance from the Lidar
unit and 𝑡 is time.

➢ Perform this regression
independently for data
collected within 60 second
periods, to capture changes in
turbulence length scales.

➢ Fit another Gaussian Process to
the hyperparameters of these
Virtual Lidar models in time, to
ensure reliable long-range
inference.

➢ Combine output predictions
using a Mixture of Experts.

➢ Resolve the Cyclops Effect using
either of the following
approaches (or using physical
turbulence modelling):

1. Average four widely-spaced
points together at each
height to obtain the wind
velocity (, left);

2. Extract local velocity
estimates from multiple
points in close proximity,
using maximum likelihood
(, right).

40m 60m 80m 100m 116m

Wind Speed Bias (m/s) −0.03,−0.02 −0.01,−0.00 −0.02,−0.01 −0.01,−0.01 −0.02,−0.01

Wind Speed Scatter (m/s) 0.12,0.12 0.11,0.12 0.11,0.11 0.11,0.12 0.10,0.10

Wind Turbulence Bias (m/s) −0.16,−0.16 −0.13,−0.12 −0.07,−0.06 −0.03,−0.02 −0.01,−0.01

Wind Turbulence Scatter (m/s) 0.12,0.12 0.11,0.11 0.09,0.10 0.09,0.09 0.09,0.09

Wind Direction Bias (°) −5.9,−5.9 −5.7,−5.7 −4.8,−4.7 −5.5,−5.4 −5.4,−5.3

Wind Direction Scatter (°) 0.84,0.88 0.52,0.55 0.65,0.69 0.59,0.52 0.60,0.63

40m 60m 80m 100m 116m

Wind Speed Bias (m/s) 0.10,0.10 0.15,0.15 0.11,0.12 0.11,0.12 0.11,0.11

Wind Speed Scatter (m/s) 0.10,0.11 0.09,0.10 0.08,0.08 0.08,0.09 0.09,0.09

Wind Turbulence Bias (m/s) −0.09,−0.09 −0.04,−0.04 −0.00,−0.00 0.03,0.04 0.04,0.04

Wind Turbulence Scatter (m/s) 0.09,0.10 0.09,0.09 0.08,0.08 0.08,0.08 0.09,0.09

Wind Direction Bias (°) −5.9,−5.8 −5.7,−5.7 −4.7,−4.7 −5.4,−5.4 −5.3,−5.3

Wind Direction Scatter (°) 0.75,0.79 0.47,0.49 0.56,0.59 0.54,0.57 0.58,0.60

Validation results [90% confidence intervals] Original method Gaussian Process

➢ It infers data during
measurement gaps,

➢ Using the second
Cyclops Effect removal
method allows
instantaneous 3D wake
measurements from
the upwind turbine
().

Further work is already
planned:

1. Improvement of robustness and power for all aspects of the method;

2. Validation against 1-second sonic anemometer measurements in complex conditions;

3. Application to a scanning Lidar to determine the best scanning patterns for reducing
uncertainty based on different measurement campaign objectives;

4. Adapting the method to floating Lidar, correcting for rotation and displacement.
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