Wind Field Reconstruction from Lidar Measurements
at High-Frequency using Machine Learning -
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Problem Statement

» Wind speed measured at hub height is insufficient to represent either the power
available for extraction by a modern wind turbine, or the loading on it. Light Detection
and Ranging (“Lidar”) units offer the potential to measure wind velocity across the
whole rotor diameter, answering this information gap.

» Lidar units work by pointing a laser beam into the sky and
analysing the backscatter signal using the Doppler effect to g A
determine the radial wind speed:

vy = —(vx sina cos f + vy, sina sin f§ + v, cos a)

» Pointing the Lidar beam in a different direction obtains a
different resolution of the wind velocity, but at a different
location and at a different time.

» This “Cyclops Effect” results in sensitivity to spatial
inhomogeneity, such as that caused by complex terrain and
wind turbine wakes, generating biases which are currently
addressed with specific modelling (e.g. Windcube FCR for
complex terrain) [1].

» The more powerful machine learning methods offer an alternative solution to this
issue, by removing assumptions involved in other reconstruction techniques and
making use of information from all the data points in space and time.

Method

Gaussian Processes [2] are a Bayesian non-parametric machine learning method. They
express a probability distribution over functions, which is then combined with data to
make predictions at any other point in the input space.

Gaussian Process regression on the measured radial beam speed data creates a “Virtual
Lidar”, providing mean (), upper image) and uncertainty (), lower image) estimates.

The standard deviation estimates combine uncertainty inherent to the Lidar
measurements with uncertainty caused by the distance in space and time between
measurement and prediction.

The Virtual Lidar maps:
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2 where we used the well-behaved co-
ordinate system a; =acosf, a, =
a sin 3; r is the distance from the Lidar

11 unit and t is time.
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105 » » Perform this regression
independently for data
collected within 60 second
periods, to capture changes in
turbulence length scales.
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15 » Fit another Gaussian Process to
the hyperparameters of these
Virtual Lidar models in time, to

50 T 25 ensure reliable long-range

inference.
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1 » Combine output predictions
y 9 using a Mixture of Experts.

.« » Resolve the Cyclops Effect using
either of the following
approaches (or using physical
turbulence modelling):

1. Average four widely-spaced
points together at each
height to obtain the wind
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100 " velocity (@, left);
" 2. Extract local velocity
0.1 estimates from multiple
0 points in close proximity,
x 100 using maximum likelihood
(=, right).
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Results

Data covering 44.6 continuous days from a site with simple Wind @

. . . turbine A
terrain (see diagram @), were used to validate the new
method on a Windcube Lidar unit. Only 10-minute data were

available from the met mast for validation.
192m

The homogeneous assumption was used to resolve the
Cyclops Effect at each height. The average wind speed bias
was —0.01m/s and scatter was 0.11m/s, see table below for
full details. This meets the threshold for commercial use.
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40m | 60m | 80m | 100m | 116m
Wind Speed Bias (m/s) [—0.03,-0.02] [-0.01,—0.00] [-0.02,—0.01] [-0.01,—0.01] [—0.02,—0.01]
Wind Speed Scatter (m/s) [0.12,0.12] [0.11,0.12] [0.11,0.11] [0.11,0.12] [0.10,0.10]
Wind Turbulence Bias (m/s) [-0.16,—-0.16]  [-0.13,—-0.12] [-0.07,—0.06]  [—=0.03,—0.02] [—0.01,—0.01]
Wind Turbulence Scatter (m/s) [0.12,0.12] [0.11,0.11] [0.09,0.10] [0.09,0.09] [0.09,0.09]
Wind Direction Bias (°) [—5.9,—-5.9] |—-5.7,—5.7] [—4.8, —4.7] [—5.5,—5.4] |[—5.4,—5.3]
Wind Direction Scatter (°) [0.84,0.88] [0.52,0.55] [0.65,0.69] [0.59,0.52] [0.60,0.63]

Validation results [90% confidence intervals] ) Original method € Gaussian Process

40m | 60m | 80m | 100m | 116m

Wind Speed Bias (m/s) [0.10,0.10] [0.15,0.15] [0.11,0.12] [0.11,0.12] [0.11,0.11]
Wind Speed Scatter (m/s) [0.10,0.11] 10.09,0.10] 10.08,0.08] 10.08,0.09] [0.09,0.09]
Wind Turbulence Bias (m/s) |—0.09, —0.09] |—0.04, —0.04] [—0.00, —0.00] [0.03,0.04] [0.04,0.04]
Wind Turbulence Scatter (m/s) [0.09,0.10] [0.09,0.09] [0.08,0.08] [0.08,0.08] [0.09,0.09]
Wind Direction Bias (°) [—5.9,—5.8] |—5.7,—5.7] |—4.7,—4.7] |—5.4,—5.4] |—5.3,—5.3]
Wind Direction Scatter (°) [0.75,0.79] 10.47,0.49] [0.56,0.59] 10.54,0.57] [0.58,0.60]

Conclusions and Further Work

A novel machine learning method, using Gaussian Process regression, has demonstrated
the following advantages over current wind field reconstruction algorithms:

» It is naturally robust to overfitting,

» It predicts wind speed uncertainty derived from data density and machine error,

» It is, in theory, applicable to any site and any scanning geometry without tuning,
although validation is currently limited to the Windcube in simple terrain.

» Initial validation shows performance acceptable for Lidar certification,

» It infers data during 140
measurement gaps,
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» Using the  second
Cyclops Effect removal 100
method allows

instantaneous 3D wake
measurements from
the upwind turbine
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Further work is already
planned:
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1. Improvement of robustness and power for all aspects of the method;
2. Validation against 1-second sonic anemometer measurements in complex conditions;

3. Application to a scanning Lidar to determine the best scanning patterns for reducing
uncertainty based on different measurement campaign objectives;

4. Adapting the method to floating Lidar, correcting for rotation and displacement.
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