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Abstract

This thesis focuses on the problem of distributing services over urban areas to satisfy
the demand, which is also called the Multi-Service Capacitated Facility Location Problem
(MSCFLP). In the smart city context, the demand is spread out over the city. Costs savings
can be obtained by combining multiple services. Three different heuristics are proposed: the
Extended Pricing Heuristic (EPH), the Extended Linear Relaxation Heuristic (ELRH) and the
Extended Sequential Covering Heuristic (ESCH). The heuristics consist of two phases. A fea-
sible solution is found in the first phase, which is optimised by an exact method in the second
phase. The exact method is also executed on the whole problem to benchmark the heuristics.
In addition, the Multi-Service Modular Capacitated Facility Location Problem (MSMCFLP)
is introduced. This problem allows modular capacities which generally leads to large costs
benefits. The heuristics and the exact method are performed on nine test instances of both
problems. The heuristics can be described as efficient, since good solutions are found in short
computation times. Regarding the MSCFLP, the exact method has the best performance,
closely followed by the ESCH, EPH and ELRH. Concerning the MSMCFLP, the ESCH even
outperforms the exact method due to the stopping criteria. Finally, a lower bound analysis
showed that only small improvements can be made by new heuristics in both problems.

Keywords: Smart City Infrastructure Planning, Facility Location, Multi-Service, Modular Ca-
pacities.
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1 Introduction

Worldwide, more and more people move to cities [32]. This trend of urbanisation leads to prob-
lems ranging from food security to traffic jams and from air pollution to terrorism. The United Na-
tions emphasises these problems resulting in one of the seventeen Sustainable Development Goals
[42] as can be seen in Figure 1. This goal is described as ‘make cities and human settlements
inclusive, safe, resilient and sustainable’. The government is needed to steer this development
into the right direction. For this, data collection is important to identify which problems occur in
which areas and under what circumstances. Technological services can be implemented for accu-
rate measurements to prevent these problems from happening. The development of implementing
technologies in urban areas is also known as ‘smart cities’. The framework that can be used for
communication in an intelligent infrastructure is called Internet of Things. According to Zanella
et al. [45], a wide variety of devices such as home appliances, vehicles, surveillance cameras and
monitoring sensors can be used to provide information to the government, companies and citizens.
An efficient distribution of these devices is needed to gather as many data as possible against the
lowest costs. In this thesis, it is assumed that one party, say the government, manages these de-
vices to provide the so-called services in the smart city context. The devices are distributed over
a set of potential spots such that the demand for the services is covered. The demand for the ser-
vices can be based on the places where a certain service needs to be provided or data need to be
collected. For example, imagine that the municipality of Amsterdam wants to offer Wi-Fi in the
city centre. For this, the demand needs to be specified. On some places like squares or stations,
a decent Wi-Fi connection is needed. Other places may have less priority, like parks and canals.
The distribution of routers over the city centre has to be done in such a way that the demand is
covered, while the costs of placing the routers are minimised. Now, imagine the multi-service
context in which multiple services need to be provided. Examples of other services are air quality
meters, traffic monitoring devices, motion detectors and air alarms. The services have different
properties such as range and capacity. For example, many motion detectors should be placed to
track every movement on a square. On the other hand, only few air alarms need to be placed to
provide alarm signals to an entire city. Costs savings can be obtained by placing devices of differ-
ent services at the same spot. In addition, there are restrictions on the capacity of the devices, e.g.
Wi-Fi routers have a certain bandwidth to serve a limited amount of internet traffic. The problem
is in literature also known as the Multi-Service Capacitated Facility Location Problem (MSCFLP)
as introduced by Hoekstra [27]. The framework of the problem is to minimise the costs of plac-
ing service-providing devices while satisfying restrictions on capacity and range. Therefore, this
problem can be used in different applications. An example is the distribution of hospitals over
a country [3]. The costs have to be minimised while being able to reach every location within a
certain time slot. In addition, the number of beds needs to be in line with the population living in
the surrounding area. Other applications of this problem exist in the fields of telecommunication,
physics, engineering and economics.

The Dutch organisation for applied scientific research, also known as TNO, conducts research
on the subject of smart cities from different perspectives. An example is the development of 5G,
which makes the study on smart cities even more interesting. This thesis focuses on the mathemat-
ical problem of distributing devices over a city to provide services. Three students have written
their thesis before at TNO regarding this subject. Vos [44] studied the uncapacitated version,
which focuses on the coverage of the demand without capacity restriction. This is also called
the Multi-Service Location Set Cover Problem (MSLSCP). Verhoek [43] extended this by taking
into account the capacity restriction and stochastic demand, which means that the future demand
is probabilistic. This may be the case for Wi-Fi, since internet traffic is usually predictable but
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not constant. Hoekstra [27] also included the capacity restriction, this time with fixed demand.
The MSCFLP was solved by sequentially distributing the services over the locations by a series
of Integer Linear Programming (ILP) problems. Furthermore, she introduced the MSCFLP with
Partial Covering in which not all demand had to be covered. Both analysis gave good results, but
the computation times remained considerably high.

In this thesis, several heuristics are made for the MSCFLP. Currently, only heuristics exist that se-
quentially use exact methods, which still results in long computation times. Heuristics are meant
to obtain solutions which are not necessarily optimal, but sufficient for reaching their goal in short
computation times. The latter is an important property, since the problems are generally large in
the smart city context. More precisely, the heuristics will be applied to districts or even entire
cities in practice. The proposed heuristics are compared by their computation times and objective
values on test instances of different sizes. Usually, there is a trade-off between these two objec-
tives. The performance of the heuristics on the small instances can be compared to the optimal
solutions, which can be calculated by exact methods. The performance on the large instances can
be compared to the lower bounds provided by the exact methods, since these instances cannot be
solved optimally in a reasonable amount of time. The heuristics are based on two approaches.
The first approach sequentially executes an algorithm for every service. The second approach
executes an algorithm simultaneously for all services. Besides, the Multi-Service Modular Capac-
itated Facility Location Problem (MSMCFLP) is introduced in this thesis. This problem extends
the MSCFLP by allowing modular capacities. In other words, the capacity of services can be in-
creased in discrete steps, which is expected to result in costs benefits. Furthermore, this makes the
problem more realistic, since this option usually exists for many services.

This thesis entails the following three contributions to the current research. First of all, the heuris-
tics obtain better solutions to large instances than currently available. The methods used before
obtained moderate solutions, even by allowing long computation times. Secondly, the solutions
of the heuristics are obtained in shorter computation times. This speed up is interesting due to the
large instances in the smart city context. Finally, this thesis introduces the MSMCFLP, which is a
relevant extension of the MSCFLP. The heuristics are made in such a way that they can be used
for both problems.

This thesis is structured in the following way: Section 2 presents the problem formulations, to-
gether with some improvements. Thereafter, the literature review is given in Section 3 and the
experimental design is addressed in Section 4. In Section 5, the solution approach is given, which
consists of the exact method and the heuristics. The computational results are discussed in Sec-
tion 6. Finally, the conclusion and discussion are given in Section 7 and 8, respectively.

Figure 1: Sustainable Development Goals defined by the United Nations.
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2 Problem Formulation

This section gives an overview of the mathematical formulation of the MSCFLP as in Hoekstra
[27]. Besides, the formulation of the newly introduced MSMCFLP is given. Finally, the MSLSCP
as in Vos [44] is addressed, since it is used in a heuristic.

2.1 Multi-Service Capacitated Facility Location Problem

First of all, some definitions are needed to accurately state the problem in a mathematical way.

• A demand point requires a certain quantity of one service and is given by coordinates. For
example, a home address where Wi-Fi connection of a certain bandwidth is needed.

• A location is a potential spot where services could be provided from. A location is given by
coordinates and can for instance be a lamppost.

• An access location is a location that is opened to equip with one or more services. For
example, a lamppost that is connected by fiber and has an electricity connection.

• A service access point is a device providing a certain service and can only be placed on
access locations. This can for instance be a Wi-Fi router.

The demand points represent the geographical locations where a quantity of a certain service is
required. In contrast to Verhoek [43], the demand is taken fixed which means that it is constant
over time. Every demand point requires only one service. The demand points can be served by
service access points which need to be distributed over the locations. The service access points
have a specific capacity, range and costs. Cost benefits can be gained by equipping access locations
with multiple service access points of different services, since a location only needs to be opened
once. Some mathematical definitions are needed to formulate the problem. Let L be the set of
locations, F be the set of services and Gu be the set of demand points for service u ∈ F . Remark
that the sets of demand points for every service are disjoint which is stated mathematically in
Equation 1.

Gu1 ∩ Gu2 = ∅, ∀u1, u2 ∈ F with u1 6= u2. (1)

Furthermore, let G be the set of all demand points, i.e. the union of the sets of the demand points
for every service. This is stated mathematically in Equation 2.

G :=
⋃
u∈F
Gu. (2)

The parameters of the problem are defined in Table 1.

Table 1: Parameters of the MSCFLP.

Parameter Range Description

auij {0, 1}

{
1 if demand point i ∈ Gu can be served from location j ∈ L for service u ∈ F
0 otherwise

ηu N+ capacity of a service access point of service u ∈ F
cuj [0,∞) equipping costs of a service access point of service u ∈ F on location j ∈ L
fj [0,∞) opening costs of location j ∈ L
dui N+ demand of demand point i ∈ Gu for service u ∈ F
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The coverage elements auij indicate which demand points can be served from which locations for
every service. In this formulation, it is left open how this is employed. An option is to compare
the distance between demand points and locations with the range of the corresponding service.
Furthermore, it is chosen to take the capacity ηu of a service access point of service u equal for
all locations. On the contrary, the equipping and opening costs may vary between locations. The
opening costs can be seen as the preparation costs of a location to enable it to equip with service
access points of different services. The equipping costs are the costs that have to be paid addition-
ally to provide a specific service from that location. One can imagine that these costs may differ
between locations. The demand of a demand point can be expressed in a quantity dui , which is
restricted to be a positive integer. Naturally, a demand point can be removed if its demand is equal
to zero.

In this problem, three different types of decisions have to be made.

• The selection of access locations.

• The distribution of service access points over the set of access locations.

• The allocation of demand points to service access points.

These decisions can be translated mathematically to decision variables which are presented in
Table 2.

Table 2: Decision variables of the MSCFLP.

Variable Range Description

yj {0, 1}

{
1 if location j ∈ L is an access location
0 otherwise

xuj {0, 1}

{
1 if location j ∈ L is equipped with a service access point of service u ∈ F
0 otherwise

suij {0, 1, . . . , diu} quantity of service u ∈ F from location j ∈ L to demand point i ∈ Gu

Now, the problem can be expressed as an ILP problem using the parameters and decision variables.
This can be seen in Equation 3.

Min
∑
u∈F

∑
j∈L

cuj x
u
j +

∑
j∈L

fjyj (3a)

subject to

xuj ≤ yj , ∀j ∈ L,∀u ∈ F , (3b)∑
i∈Gu

suij ≤ ηuxuj , ∀j ∈ L,∀u ∈ F , (3c)∑
j∈L

suij ≥ dui , ∀i ∈ Gu, ∀u ∈ F , (3d)

suij ≤ auijM, ∀i ∈ Gu, ∀j ∈ L,∀u ∈ F , (3e)

suij ∈ N, ∀i ∈ Gu, ∀j ∈ L,∀u ∈ F , (3f)

xuj ∈ {0, 1}, ∀j ∈ L,∀u ∈ F , (3g)

yj ∈ {0, 1}, ∀j ∈ L, (3h)
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where M is a number larger than the highest demand max
u∈F ,i∈Gu

dui .

The goal is to minimise the total costs (Equation 3a), which consists of the costs regarding the
opening and equipping of locations. Constraint 3b ensures that only access locations can be
equipped with service access points. The capacity constraint is forced by Constraint 3c. Con-
straint 3d ensures that all demand is covered. Constraint 3e restricts that service access points can
only serve demand points in their corresponding range. The solution space is given by Constraint
3f, 3g and 3h.

The decision variables yj and xuj are binary, whereas the decision variables suij are integer. There
are |L|(|F|+ 1) binary variables and |G||L| integer variables. The number of constraints is equal
to 2|L||F|+ |G|(|L|+ 1).

2.1.1 Alternative Formulation

The formulation above describes the problem well, but consists of a large and symmetric solution
space. Symmetric means that there are many feasible solutions with the same objective value.
This makes it hard for exact methods to find the global optimum as there is no clear convergence
direction. Jeroslow [29] showed that even trivial ILP problems can be unsolvable by exact methods
if the symmetry is not removed. Generally, exact methods are more efficient on problems with
small and asymmetric solution spaces. Therefore, four improvements are listed below to make the
problem more suitable for exact methods.

1. The solution space can be reduced by removing the decision variables suij for which aij = 0.
Namely, a service access point cannot serve demand points outside its range. In this way,
Lui can be defined as the set of locations for which demand point i requiring service u is
within the range. Mathematically, this is stated in Equation 4.

Lui := {j ∈ L|auij = 1}. (4)

Demand points can only be served by their set of locations. Besides, a demand point can
be removed if its set of locations is empty, which means that the demand point is not within
range of any location.

2. An additional constraint can be added which results in tighter lower bounds as in Cour-
nuéjols et al. [12]. More precisely, the total capacity of the service access points should be
larger than the total demand for every service. In fact, this constraint is redundant, since it
follows from the capacity and assignment constraint which is proved in Lemma 1. However,
it enhances the performance of exact methods.

Lemma 1. Equation 5 is a redundant constraint in the formulation of the MSCFLP as given
in Equation 3. ∑

j∈L
ηuxuj ≥

∑
i∈Gu

dui , ∀u ∈ F . (5)

Proof. Constraint 3c can be summated over all locations:∑
j∈L

∑
i∈Gu

suij ≤
∑
j∈L

ηuxuj , ∀u ∈ F . (6)
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In addition, Constraint 3d can be summated over all demand points:∑
i∈Gu

∑
j∈L

suij ≥
∑
i∈Gu

dui , ∀u ∈ F . (7)

The redundancy follows from combining Equations 6 and 7:∑
i∈Gu

dui ≤
∑
i∈Gu

∑
j∈L

suij ≤
∑
j∈L

ηuxuj , ∀u ∈ F . (8)

3. The formulation of the MSCFLP allows that a demand point can be served by multiple
service access points, each serving an unitary fraction of the demand. Note that this can only
be the case if the demand is larger than one, since the decision variables suij are restricted to
be integer. There may exist services for which this is practically impossible. Therefore, it
is decided to use the same formulation as the Single-Source Capacitated Facility Location
Problem (SSCFLP) in Guastaroba and Speranza [23]. In this formulation, the connection
variables are binary which implies the single-source property and reduces the solution space.
This changes the definition of the decision variables suij as can be seen in Equation 9.

suij =

{
1 if demand point i ∈ Gu is served by location j ∈ L,
0 otherwise.

(9)

4. The formulation of the MSCFLP allows that a demand point can be served with more de-
mand than needed. This increases the symmetry in the problem, because there are no con-
nection costs involved. In other words, a service access point which has not reached its
capacity can serve more demand to its demand points. This results in many solutions with
the same objective value, which may have a negative impact on the computation time of
exact methods.

The problem formulation with the four improvements mentioned above can be found in Equa-
tion 10.

Min
∑
u∈F

∑
j∈L

cuj x
u
j +

∑
j∈L

fjyj (10a)

subject to

xuj ≤ yj , ∀j ∈ L,∀u ∈ F , (10b)∑
i∈Gu

dui s
u
ij ≤ ηuxuj , ∀j ∈ L,∀u ∈ F , (10c)∑

j∈L
suij = 1, ∀i ∈ Gu, ∀u ∈ F , (10d)

∑
j∈L

ηuxuj ≥
∑
i∈Gu

dui , ∀u ∈ F , (10e)

suij ∈ {0, 1}, ∀i ∈ Gu, ∀u ∈ F ,∀j ∈ Lui , (10f)

xuj ∈ {0, 1}, ∀j ∈ L,∀u ∈ F , (10g)

yj ∈ {0, 1}, ∀j ∈ L. (10h)
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The following improvements can be observed by comparing to the original formulation (Equa-
tion 3). The improvements are numbered similarly as they are explained above.

1. The decision variables suij in Equation 10f are only defined when auij = 1 and they are
restricted to be binary. Therefore, the range constraint in Equation 3e is removed.

2. Constraint 10e is added.

3. The capacity constraint in Equation 10c contains the demand parameter dui , since the deci-
sion variables suij are now binary. Besides, the right hand side of Constraint 10d is equal to
one.

4. The assignment constraint in Equation 10d contains the equality sign to encounter the sym-
metry.

The alternative formulation changes the problem from an ILP to a Binary Integer Linear Program-
ming (BILP) problem in which all decision variables are binary. Observations have shown that
this improves the performance of exact methods, since the solution space is reduced. The number
of binary variables is equal to

∑
u∈F

∑
i∈Gu Lui + |L|(|F|+1). The number of constraints is equal

to (2|L|+ 1)|F|+ |G|.

2.2 Multi-Service Modular Capacitated Facility Location Problem

In the MSCFLP, an access location can only be equipped with one service access point of every
service. A service access point may have more demand in its range than it is able to serve due to
capacity restrictions. Other access locations are needed for the service access points that serve the
remaining demand points. Allowing multiple service access points on one access location, is in
literature also known as modular capacities. Note that the practical application of this is left open
in this thesis. It can be interpreted as increasing the capacity of a service access point in discrete
steps. In other words, multiple services access points on one access location are equivalent to one
more expensive service access point having the same capacity. By all means, allowing modular ca-
pacities is expected to give significant costs benefits, since less access locations are needed. These
benefits will mainly arise in dense areas, because locations in these areas have more demand points
in their range than capacity available. Therefore, a new problem is introduced: the Multi-Service
Modular Capacitated Facility Location Problem (MSMCFLP).

First of all, the following definition is needed. Let κuj be the maximum number of service access
point of service u on location j. The problem formulation is similar to the alternative formulation
of the MSCFLP as in Equation 10 in which Constraint 10b and 10g are replaced by Constraint 11a
and 11b, respectively.

xuj ≤ κuj yj , ∀j ∈ L,∀u ∈ F , (11a)

xuj ∈ {0, 1, . . . , κuj }, ∀j ∈ L,∀u ∈ F . (11b)

Important to state is that the objective function stays the same, because it is assumed that the
equipping costs are linear in the number of service access points that are placed on one location.
In other words, for every service access point of service u on location j, the same equipping
costs cuj have to be paid. Besides, the maximum number of service access point κuj ∈ N+ can
be determined based on practical reasons. This setup is very general to allow different sizes of
locations and service access points. For example, a location can be equipped with many small
service access points, but only a few large ones. Finally, the MSMCFLP is equal to the MSCFLP
if κuj = 1, ∀j ∈ L,∀u ∈ F .
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2.3 Multi-Service Location Set Covering Problem

The MSLSCP is a simplified version of the MSCFLP. More precisely, it is the MSCFLP without
capacity restriction. This means that every demand point only has to be in the range of at least
one service access point of the corresponding service. It can also be seen as the MSCFLP with
non-binding capacity constraints, i.e. the capacity parameter ηu is equal to infinity for all services.
An example is the air alarm service: every home in the range of an air alarm can receive the alarm
signal, regardless of the number of homes in the range of the air alarm. In other words, there is
no capacity restriction involved. The MSLSCP can be rewritten without the decision variables suij ,
because there is no need to keep track of the individual connections. The assignment constraint
can be rewritten by making use of the coverage elements auij as can be seen in Equation 12.

Min
∑
u∈F

∑
j∈L

cuj x
u
j +

∑
j∈L

fjyj (12a)

subject to

xuj ≤ yj , ∀j ∈ L,∀u ∈ F , (12b)∑
j∈L

auijx
u
j ≥ 1, ∀i ∈ Gu,∀u ∈ F , (12c)

xuj ∈ {0, 1}, ∀j ∈ L,∀u ∈ F , (12d)

yj ∈ {0, 1}, ∀j ∈ L. (12e)

Note that the problem for one service is equal to the Set Covering Problem (SCP) as in Farahani
et al. [18].
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3 Literature Review

The MSCFLP is introduced by Hoekstra [27] and is not studied elsewhere. Most studies focus on
one service in the Capacitated Facility Location Problem (CFLP), optionally with single-source
constraints (SSCFLP). Besides, the Multi-Service Location Set Cover Problem (MSLSCP) is stud-
ied, because it is used in a heuristic. Finally, some background information is given about the
branch-and-cut method, which is the exact method that is used in this thesis.

Facility location problems (FLP) are extensively studied in literature. In these problems, the place-
ment of facilities is optimised to minimise the costs while serving all customers. Generally, the
costs consist of the sum of the placement costs of facilities and the transportation costs between
facilities and customers. However, many variations of the costs structure exist. An example is
the minimax version in which the maximum distance between the facilities and customers is min-
imised. The problems can be divided into two categories: the capacitated (CFLP) [36] and the
uncapacitated (UFLP) [17] problem. Both problems are known to be NP-hard, which means that
it is impossible to solve these problems in polynomial time. This can be proved by a reduction
from Vertex Cover [24]. The capacitated problem puts an additional restriction on the capacity of
the facilities. Both the UFLP and the CFLP allow that a customer is served by multiple facilities,
all serving a fraction of the demand. Many extensions of the CFLP exist. An example is the Mod-
ular Capacitated Facility Location Problem in which different facilities types can be chosen [13].
Another example that allows more flexibility is the Multi-Product Capacitated Facility Location
Problem with General production and building Costs as in Montoya et al. [35]. In this problem,
the placement of facilities for multiple products is optimised while also taking into account the
production costs of the facilities.

The SSCFLP is an extensively studied version of the CFLP. In literature, this is also known as the
Capacitated Concentrator Location Problem. It adds the restriction that customers can be served
from only one facility. Because this is an extension of the CFLP, the problem is NP-hard. There-
fore, many heuristics have been proposed in literature. They differ from each other in computation
time and objective value. Most heuristics are Lagrangian in which a constraint is relaxed and
placed in the objective function. Violations of the corresponding constraint are penalised by the
Lagrange multiplier. The relaxed problem is easier to solve and forms an approximation to the
original problem. The difficulty lies in the updating of the Lagrange multiplier, which is usually
done by subgradient optimisation. Klincewicz and Luss [31] relaxed the capacity constraint which
resulted in the UFLP. This problem is solved by a dual ascent algorithm whereafter the solution
is made feasible by an add heuristic. Pirkul [37] relaxed the assignment constraint and solved
the remaining problem by multiple knapsack problems. Both constraints are relaxed by Beasley
[8], whose algorithm was later improved by Agar and Salhi [2]. Besides, different approaches
have been researched. Hindi and Pieńkosz [25] found efficient solutions of large scale problems
by applying Lagrangian Relaxation with restricted neighbourhood search. Gadegaard et al. [20]
proposed an improved cut-and-solve algorithm that consists of three phases. A cutting planes al-
gorithm for the lower bound, a two-level branching heuristic for the upper bound and optionally
a cut-and-solve framework to close the optimality gap. A repeated matching heuristic was found
by Rönnqvist et al. [38], which often produced better results than Lagrangian heuristics. Also
metaheuristics have been proposed. Filho and Galvão [19] made a tabu search heuristic which
was shown to be competitive to other solution methods available. Ho [26] extended this approach
with an iterated tabu search heuristic to avoid convergence to local optima. Other examples are the
reactive GRASP heuristic of Delmaire et al. [16], the kernel search framework of Guastaroba and
Speranza [23] and the scatter search algorithm of Contreras and Diaz [11]. Furthermore, Ahuja
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et al. [4] applied Very Large Scale Neighbourhood search procedures for solving large problems.
This procedure was later improved by Tran et al. [41] resulting in better solutions in shorter com-
putation times.

The MSCFLP extends the SSCFLP by taking multiple products into account. Until now, the prob-
lem is only used in the smart city context in which products are called services. Different services
access points have to be distributed over the city such that the demand for all services is satisfied.
Costs savings can be obtained by placing multiple service access points of different services on
the same access location. Hoekstra [27] extended this problem by allowing Partial Covering in
which not all demand had to be covered. A penalty is given to the unserved demand points. Both
problems were solved by an exact method and two heuristics. The best results were obtained by a
heuristic that sequentially solved the problem for one service by an exact method with costs updat-
ing. This is based on the fact that opening costs only have to be paid once for every location. After
a location is opened, only the equipping costs need to be paid for the subsequent services. It is
important to notice that the MSCFLP is not a generalisation of the CFLP or vice versa, since there
are no connection costs involved. On the other hand, the MSCFLP takes multiple services into
account which extends the CFLP. The MSCFLP can be seen as a generalisation of the SSCFLP
without connection costs.

The MSLSCP is a simplification of the MSCFLP, as explained in Section 2.3. Vos [44] showed that
exact methods need long computation times to solve the large instances. Therefore, two greedy
heuristics and one Lagrangian heuristic were found. The greedy heuristics were made from the
perspectives of the demand points and locations. The Lagrangian heuristic is based on the fact
that the problem for one service boils down to an SCP. Garey and Johnson [21] proved that this
problem is NP-hard. As a result, the SCP is an extensively studied problem in literature, for which
many heuristics exist. An example is the Lagrangian heuristic of Beasley [7], which is shown to
be very efficient. The Lagrange multiplier λ is updated by subgradient optimisation. However, the
computation times are still high for large instances. Ceria et al. [10] showed that the computation
times can be reduced by defining the core problem. This boils down to only regarding the sets
with the lowest costs, while keeping all items included in a minimum number of sets. Vos [44]
showed that this combination of Lagrangian Relaxation and defining the core problem performed
very well on the MSLSCP.

Next to heuristics, a wide range of exact methods exists to solve ILP problems like the FLP.
Heuristics usually find good or near-optimal solutions in a reasonable amount of time. On the
other hand, exact methods by definition find the optimal solution, but an excessive amount of time
may be needed. In this thesis, the branch-and-cut method is considered. This is a combination of
the branch-and-bound and cutting planes algorithm. Separately, the branch-and-bound method
needs long computation times to solve an ILP problem. On the other hand, it is usually impossible
to solve an ILP problem by only using cutting planes, according to Mitchell [34]. However,
the combination of both algorithms results in an efficient method. Next to solving the problem,
the branch-and-cut algorithm provides bounds. If the algorithm is terminated before finding the
optimal solution, an indication of the maximum distance to the optimal solution can be deducted
from the bounds. In this way, the performance of the heuristics can be examined. A more thorough
explanation of the branch-and-cut algorithm is given in Section 5.1.2.
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4 Experimental Design

The same experimental design as in Hoekstra [27] is used, which is presented in this section. First
of all, the set-up of the locations, services and demand points is explained. Thereafter, an overview
of the test instances is given. Realistic data is used to give a proper estimation of the costs benefits
that can be gained. Finally, the software and hardware that are used to conduct the experiments
are described.

4.1 Locations

Lampposts are taken as locations that can be equipped with services. This choice is made on the
following grounds.

• There are many lampposts which induces a large set of options.

• Lampposts are well spread over a city which enhances the coverability.

• Lampposts already have an electricity connection, which make them practically suitable to
equip with service access points.

• The position of lampposts is well documented. This makes it easy to come up with test
instances based on real data.

These grounds do not hold for other options, e.g. traffic lights or bus stops. Both are only present
at busy roads which counteract the coverabilitiy. Another options is to build new locations, without
using the existing infrastructure. The advantage of this is that the new locations can be placed on
tactical spots, although high costs are involved. Besides, using the existing infrastructure is more
sustainable, since no new locations need to be built. The coordinates of the locations are obtained
via Dataplatform. The opening costs are the costs of connecting the lampposts to the internet or
another medium to transfer information. They can differ from each other, since some lampposts
may be more difficult to connect than others. On the other hand, the differences between the
opening costs are bounded by the triangle inequality [39], since the costs of connecting lamppost
I cannot be higher than the costs of connecting lamppost II plus connecting the two lampposts.
Therefore, it is chosen to take the opening costs randomly between 4, 000 and 5, 000, i.e. fj ∼
[4, 000, 5, 000]. Moreover, this has practical advantages for the computation times of the solution
methods, since it reduces the symmetry of the problem. The random generator is restored after
every run to ensure that the same opening costs are taken for every run.

4.2 Services

In the smart city context, a wide range of services can be required. In the experimental design of
this thesis, three different services are considered: Wi-Fi, Smart Vehicle Communication (SVC)
and Alarm. The Wi-Fi service provides wireless internet access in the city. This can be relevant
for tourism or may replace the existing fiber network in the long run. The SVC units communicate
with vehicles on the road to optimise the traffic flow, which can decrease traffic jams and the
associated air pollution. Besides, these units are needed to enable the usage of self-driving cars.
Finally, the Alarm service can give alarm signals to inform citizens about disasters et cetera. In
the Netherlands, this already exists in the form of air alarms. However, the distribution of these
services can be done simultaneously to gain costs benefits. The three services differ from each
other in range, costs and capacity. An overview of these properties can be found in Table 3.
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Table 3: Overview of the parameters of the services.

Number Name Range Costs Capacity
u cuj ηu

1 Wi-Fi 100 300 30
2 SVC 200 350 15
3 Alarm 300 150 ∞

Note that the equipping costs of a service access point are taken equal for all locations. The range
is defined in metres and it is assumed that the coverage area of every service is circular. This allows
us to determine the coverage elements auij based on the coordinates (longitude and latitude) of the
locations and demand points. The haversine method is used to calculate the distance between two
points on a sphere, in this case two sets of coordinates on the globe. This method takes the curva-
ture of the globe into account, which is more precise than the Euclidean distance. However, this
effect is expected to be negligible on the scale of a city. Note that the height of a demand point or
location is not taken into account. For example, it is assumed that there is no difference between a
Wi-Fi demand point on the first and the tenth floor of a building. Furthermore, the assumption of
a circular coverage area is not true for all services, e.g. the Wi-Fi connection is dependent on the
infrastructure. However, these simplifications are needed to make the problem seizeable. Different
ranges and capacities are chosen in such a way that different amounts of service access points are
needed to serve the demand. The Wi-Fi service has the smallest range of hundred metres and has
a capacity of thirty. This means that one service access point can serve up to thirty demand points
with demand equal to one within its range. The SVC service has a larger range, but a smaller
capacity. The Alarm service has the largest range and an infinite capacity, since every demand
point within the range can receive the alarm signal.

For simplicity, it is chosen to take κuj = κ the same for every location and service in the MSM-
CFLP. This means that every access location can be equipped with κ service access points of every
service. The parameter κ is also called the modularity parameter, since it determines the possibili-
ties of the modular capacities. The results are generated for κ = 3, 5, 10. Note that the MSMCFLP
with κ = 1 is equal to the MSCFLP for which results are generated as well.

4.3 Demand Points

The demand points indicate the geographical locations that require a specific amount of a certain
service. They are spread over the city, since services can be required anywhere. However, the
density of the demand points can vary. For example, less services are generally required in parks
than in shopping districts. Every service has its own set of demand points and every demand point
requires only one service. The coordinates of the demand points are based on real data. All demand
points are located inside the region boundary that is based on the lampposts. This minimises the
number of remote demand points that are not within the range of any location. Home addresses are
taken as Wi-Fi demand points, all with demand equal to one. The SVC demand points are based
on the roads. The coordinates of these points lie ten to hundred metres away from each other, such
that the curvature of the road is represented. The demand of these points can vary between one,
two and three, depending on the traffic density of the road. Demand points have a demand equal
to three on highways, a demand equal to two on regional roads and a demand equal to one on all
other roads. The Alarm demand points are equally spread inside the region boundary, such that
the entire area is covered. All Alarm demand points have a demand equal to one.
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4.4 Test Instances

Nine subareas of Amsterdam are taken as test instances, which differ from each other in size and
density. It is tried to include subareas with different aspects, such as highways, parks and canals.
This can be seen in the geographical maps of the instances given in Appendix B. The sizes of the
instances can be found in Table 4. Instances 1-7 are referred to as small, whereas instance 8 and 9
are referred to as large.

Table 4: Overview of the sizes of the test instances.

# Demand points

Instance # Locations Wi-Fi SVC Alarm Total

1 33 47 3 9 59
2 77 73 8 15 96
3 99 260 9 13 282
4 102 462 8 15 485
5 400 111 20 25 156
6 782 21 93 104 218
7 516 1,241 42 46 1,329
8 6,079 8,106 397 326 8,829
9 6,981 10,122 528 431 11,081

The number of locations is relatively high compared to the number of demand points, taking into
account the defined capacities in Table 3. For example, one Wi-Fi access point can serve thirty
demand points, which implies that many locations will not be opened. However, this is only the
case for dense instances in which the demand points and locations are close to each other. It is
expected that relatively more locations are opened in sparse instances, because the service access
points need to cover a larger area in that case.

Some demand points are discarded as they are not within the range of any location. Two Wi-Fi and
one SVC demand point are removed from instance 6. In addition, four Wi-Fi and five SVC demand
points are removed from instance 9. However, these amounts are relatively small compared to the
total number of demand points in these instances.

4.5 Software and Hardware

The experiments are programmed in the programming language MATLAB (version R2018a),
which is widely used in universities and business. The program is published by Mathworks, a
corporation that is specialised in mathematical computing software. MATLAB includes many dif-
ferent functions for matrix multiplication, the implementation of algorithms, visualisation and the
creation of interfaces. The optimisation is carried out by the commercial solver CPLEX ILOG
CPLEX Optimisation studio (version 12.8.0), also known as CPLEX. This is a commercial solver
that continues to be developed by IBM. CPLEX uses flexible and comprehensive methods to solve,
among other things, Linear Programming (LP) and Integer Linear Programming (ILP) problems.
A student license for both programs is obtained via the Vrije Universiteit. The experiments are ex-
ecuted on a DELL laptop with an Intel(R) Core(TM) i7-4810MQ CPU 2.80 GHz and an installed
RAM of 16.0 GB.
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5 Solution Approach

In this section, the different methods to obtain solutions are presented. First of all, the exact
method is discussed. Thereafter, three heuristics are given: the Extended Pricing Heuristic (EPH),
the Extended Linear Relaxation Heuristic (ELRH) and the Extended Sequential Covering Heuris-
tic (ESCH). The first two heuristics execute an algorithm simultaneously for all services, whereas
the latter one does this sequentially for every service. The three heuristics consist of two phases.
Firstly, a feasible solution is found which is optimised by an exact method in the second phase.
The two main reasons for this approach are stated below.

• Large instances are considered in this thesis. Generally speaking, solving the whole problem
instantly by an exact method takes excessive amounts of time. The first phase can be seen
as a warm-up to reduce the size of the problem in the second phase.

• Using heuristics usually goes along with sub-optimality. This effect is tried to be reduced
by using an exact method in the second phase.

All solution methods can be applied to both the MSCFLP and the MSMCFLP. The methods are
explained considering the MSCFLP. The extensions to MSMCFLP are given at the end of each
subsection. The computational results will follow in Section 6.

5.1 Exact Method

The exact method serves as a benchmark to the heuristics and is applied to the alternative formu-
lation (Equation 10). The exact method obtains optimal solutions to the ILP problems. However,
the computation times are dependent on the problem size. Usually, small problems can be solved
quickly, while larger problems may need an excessive amount of time to obtain the optimal so-
lution. Therefore, stopping criteria are determined which are discussed in Subsection 5.1.3. As
mentioned before, the exact method that is used in this thesis is CPLEX. In general, this method
consists of two steps: preprocessing and a branch-and-cut algorithm, which are explained in Sub-
section 5.1.1 and 5.1.2, respectively.

5.1.1 Preprocessing

The preprocessing is applied to enhance the performance of the branch-and-cut algorithm after-
wards. CPLEX automatically preprocesses the problem in the following ways.

• Eliminate redundancy: It can be the case that a constraint is more restrictive than other ones.
The less restrictive constraints are called redundant and can be removed, since they have no
effect on the problem.

• Simplify constraints: Constraints are usually implemented from a practical perspective.
Take for example Constraint 10c, which is formulated from the perspective that capacity
has to be taken into account. However, this is not necessarily the most efficient formulation.
In some cases, decision variables appear multiple times in a constraint or coefficients can be
scaled down.

• Reduce problem size: This one is less intuitive. The problem consists of an objective func-
tion, constraint matrix and boundaries for the decision variables. Rows and columns in the
constraint matrix, which present constraints and variables in the problem, may be removed
through substitution. This is a mathematical technique to simplify matrices.

Important to remark is that there are many options users can specify to perform the preprocessing
methods given above. After the preprocessing, the branch-and-cut algorithm is executed.
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5.1.2 Branch-and-cut

Branch-and-cut is a combinatorial optimisation method for solving ILP problems. It combines
the branch-and-bound and cutting planes algorithm. Firstly, the branch-and-bound method is ad-
dressed, since it forms the body of the branch-and-cut algorithm. Thereafter, the cutting planes
method is explained and finally the combination of both algorithms is given. Without loss of gen-
erality, a minimisation problem is regarded.

The branch-and-bound algorithm tries to classify the solution space, i.e. the possible values that
the decision variables can attain. Usually, it costs an excessive amount of time to simply check
all possible solutions. Therefore, the algorithm partitions the solution space, which is also called
branching. Some areas could be interesting to dive into and others can be excluded, because they
have no potential. For this process, bounds are used to decide whether solution areas are interest-
ing or not. More precisely, the property is used that the problem without integrality constraints,
also called the LP relaxation, gives better solutions than the original problem. This follows triv-
ially from the fact that relaxations contain less constraints by definition. The solution to the LP
relaxation can be computed efficiently using the Simplex algorithm. If in a certain solution area,
the LP relaxation gives a worse solution than the best known feasible solution, this solution area
surely does not contain an improving feasible solution. The algorithm will proceed until all solu-
tion areas are classified. To state this mathematically, some definitions are needed. Let S be the
set of all active problems, i.e. problems with solution areas that are not yet investigated. Besides,
let x∗ be the current best feasible solution, also known as the incumbent, and z∗ the corresponding
objective value. The incumbent can be seen as the upper bound for the optimal solution, since it
is a feasible solution but a smaller one may exist. Finally, let x be the solution of an LP relaxation
and z the corresponding objective value. A generalised overview of a branch-and-cut algorithm
on an ILP problem with minimisation objective as in Johnson et al. [30] can be found in Algo-
rithm 1. For the branch-and-bound algorithm, line 10 can be skipped.

Algorithm 1: Overview of a branch-and-cut algorithm on a minimisation ILP problem.

1 Set S = {P0};
2 Set z∗ =∞, x∗ = [];
3 while S 6= ∅ do
4 Select a problem P ∈ S and update S = S \ P ;
5 Solve the LP relaxation of P ;
6 if z ≤ z∗ then
7 if x is integer then
8 Update z∗ = z, x∗ = x;
9 else

10 Add cutting planes and return to line 5;
11 Branch problem P into multiple problems and add them to S;
12 end
13 end
14 end

Note: Omitting line 10 gives the branch-and-bound algorithm.

The algorithm starts with the whole problem P0 and initialises the incumbent and the corre-
sponding objective value. Optionally, these variables can be initialised with a specified starting
solution. Next, the algorithm selects an active problem P and solves the LP relaxation. The al-
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gorithm checks whether the objective value z of the solution of the LP relaxation is lower than
the incumbent. If this is not the case, the algorithm takes another problem from the set of active
problems S, because this solution area surely does not contain an improving incumbent. If this is
the case, the algorithm checks whether the solution x of the LP relaxation is integer to eventually
update the incumbent. Otherwise, the algorithm branches the problem into multiple problems and
adds them to the set of active problems. An example of a branch-and-bound procedure is given in
Figure 2. The overview is called a tree and one specific problem is called a leaf. Removing a leaf
from the active set is also called pruning.

Problem P1:
Location j closed

Infeasible

Problem P2:
Location j open

LP relaxation: 30

Problem P0:
Whole problem

LP relaxation: 20

Problem P4:
Location j and k open

LP relaxation: 40

Problem P3:
Location j open and

location k closed
LP relaxation: 35
Integer feasible

y_j = 0 y_j = 1

y_k = 0 y_k = 1

Figure 2: Example of a branch-and-bound procedure.

The procedure starts with the whole problem P0 and solves the LP relaxation with an objective
value of 20. The solution is fractional, so the algorithm decides to branch on the variable yj which
indicates if location j is open (yj = 0) or closed (yj = 1). This results in two problems: P1 and
P2. Problem P1 has no feasible solution, since location j is closed. This can be caused by a de-
mand point that can only be served by location j. If location j is closed, this demand point cannot
be served anymore. The algorithm prunes this leaf and continues with problem P2. Trivially, the
solution of the LP relaxation of problem P2 is higher than the one of problem P0, since there is
the additional restriction that location j is open. The solution is still fractional, so the algorithm
continues branching. It decides to branch on the variable yk which indicates if location k is open.
Again, the solutions of the LP relaxations in both leaves are calculated. The solution of problem
P3 is integer feasible with an objective value equal to 35. As a result, the incumbent is updated.
Problem P4 gives a solution of 40 which allows the algorithm to prune the leaf, since the solution
of the LP relaxation is higher than the incumbent. The algorithm cannot continue, because the
set of active problems is empty. All leaves having a lower solution to the LP relaxation than the
incumbent are already branched. Therefore, the incumbent is the optimal solution. Usually, more
iterations are needed, but this procedure serves as an example to the working of the branch-and-
bound algorithm.

The bottleneck of this procedure is that there is a small probability that the LP relaxation gives a
feasible solution. For this reason, cutting planes, also known as cuts, can be added to the problem.

16



Cuts are constraints that eliminate infeasible solutions. Cuts can either be local or global [34].
Local cuts are only applied to the current leaf and the leaves following from it and global cuts
yield for the entire tree. A wide range of methods exists to create cuts. A graphical example of the
working of this algorithm can be found in Figure 3.

Figure 3: Graphical example of the cutting planes algorithm.
Source: http://www.gurobi.com/resources/getting-started/mip-basics

The grey polyhedron indicates the solution space of the LP relaxation and the constraints form
the boundaries. The black dots represent the feasible integral solutions. The solution of the LP
relaxation is a corner point of the polyhedron [14]. Unfortunately, the corner points are usually
infeasible solutions, since they do not coincide with the black dots. Therefore, a part of the polyhe-
dron with only fractional solutions is cut off by two cuts such that the new corner point is integral.
However, many cuts could be needed to make sure that every corner point is integral. Therefore,
only a predetermined number of cuts can be applied to large problems.

The cutting planes algorithm is integrated in the branch-and-bound algorithm in the following
way [34]. If the solution of the LP relaxation is fractional, it will add cuts to the problem and solve
the LP relaxation again. This is executed in line 10 of Algorithm 1. After the cuts are added, two
cases are possible.

• The solution of the LP relaxation with cuts is integral. The algorithm compares the solution
to the incumbent. If the solution is lower, the incumbent is updated. Furthermore, the
algorithm stops in this leaf, because branching from this leaf will not give better results.

• The solution of the LP relaxation with cuts is still fractional. By all means, the cuts have
not decreased the objective value of the solution, since constraints are added. The algorithm
compares the solution to the incumbent and only continues branching from this leaf if the
solution is lower than the incumbent. Otherwise, this leaf is pruned as there cannot be a
better feasible solution in this solution area.
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As said before, this is a brief explanation about the branch-and-cut algorithm. Many different
methods exist for cut generation, e.g. mixed integer rounding cuts. A mixed integer rounding cut
is generated by rounding the coefficients of the integer decision variables and the right hand size
of the constraint matrix as in Marchand et al. [33]. Other examples are lift-and-project cuts [5],
Gomory fractional cuts [22] and zero-half cuts [9]. In addition, many different branching strategies
exist of which an overview can be found in Achterberg et al. [1]. An example is maximal infeasible
branching which branches on the decision variable in the solution of the LP relaxation with the
fractional part closest to a half. The opposite strategy also exists and is called minimal infeasible
branching. Other strategies are strong branching and pseudo costs branching. The advantage of
CPLEX is that it identifies the properties of the problem and applies the most suitable methods
for branching and cut generation. Another important feature of CPLEX is that it keeps track of
the lower bound. For minimisation problems, this value is smaller than or equal to the optimal
solution. The lower bound can be determined based on the solutions of the LP relaxations. The
gap between the incumbent and the lower bound is also called the optimality gap. It is an indication
of the maximum improvement that can be achieved. This is interesting for large problems, since
there is generally not sufficient time to wait for convergence to the optimal solution. Consequently,
stopping criteria have to be determined which are explained below.

5.1.3 Stopping Criteria

It is important to specify the stopping criteria, since it is not always possible to obtain the optimal
solution. The exact method is used separately and as part of the heuristics that are explained in
the next subsections. In both cases, it is decided to terminate the solution if the optimality gap is
below 0.01%, which is calculated as in Equation 13.

Optimality gap =
Objective value - Lower bound

Objective value
· 100%. (13)

Besides, the computation time is bounded. For the separate use of the exact method, the maximum
computation time is set equal to one hour for the small instances (1-7) and twelve hours for the
large instances (8 and 9) in order to give the exact method sufficient time to optimise. For the exact
method in the heuristics, the maximum computation time is set equal to five minutes. The reason
for this is the importance of the computation time on the performance and user-friendliness of the
heuristics. A sensitivity analysis on the maximum computation time of the heuristics is given in
Section 6.5.
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5.2 Extended Pricing Heuristic

This heuristic is developed from the perspective of service access points. It greedily equips lo-
cations with service access points for all services simultaneously. The heuristic consists of the
following two phases:

1. Find a feasible solution to the MSCFLP using the Pricing Heuristic.

2. Solve the MSCFLP using the exact method on the restricted problem with only the interme-
diate access locations.

The solution of the first phase is also referred to as the intermediate solution, whereas the solution
of the second phase is the final solution. In the first phase, the EPH finds a feasible solution to the
whole problem in a greedy way by the Pricing Heuristic. In the second phase, the alternative for-
mulation (Equation 10) is applied to the restricted problem. This problem contains all the demand
points and only the intermediate access locations, i.e. the access locations in the solution of the
first phase. Reducing the whole problem to the restricted problem in the second phase decreases
the computation time of the exact method. Note that the second phase always gives a feasible
solution, since the solution of the first phase is already feasible. On the other hand, the Pricing
Heuristic is not expected to give the best results in the first phase by its greedy nature. The second
phase gives optimal solutions to the restricted problem by the exact method. However, this can
result in long computation times, especially for large instances.

The Pricing Heuristic iteratively equips access locations with ‘cheap’ service access points till all
demand points are served. An overview of the algorithm can be found in Algorithm 2.

Algorithm 2: Pricing Heuristic

1 while Not every demand point is served do
2 Calculate price of service access points;
3 Equip access location with cheapest service access point;
4 Order demand points in range of selected service access point based on reachability;
5 while Capacity of selected service access point is not exceeded do
6 Serve demand points by selected service access point;
7 end
8 Update costs, demand points, service access points;
9 end

The price of a service access point of service u on location j is calculated as in Equation 14.

P u
j =

number of unserved demand points of service u in range of location j
costs of equipping location j with service u

. (14)

The reachability of a demand point is calculated as the number of possible service access points
that can still serve the demand point. The last step in the algorithm consists of updating the vari-
ables. The costs are updated, since the opening costs only have to be paid once for every location.
This means that after this step only equipping costs have to be paid at this location. The served
demand points are left out in the next iteration.

This heuristic can be used for the MSCFLP and the MSMCFLP, since only one service access
point is added in each iteration. If location j is already equipped with κuj service access points of
service u, no more service access points of that service can be placed on location j. In the second
phase, the corresponding ILP formulation can be used to optimise the number of service access
points and access locations in the final solution.
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5.3 Extended Linear Relaxation Heuristic

This heuristic is developed from the perspective that the integrality constraints are difficult to sat-
isfy. It uses the property that LP problems can efficiently be solved using the Simplex method. The
problem without integrality constraints is also called the LP relaxation. This heuristic considers
all services simultaneously and consists of the following two phases:

1. Solve the LP relaxation of the MSCFLP.

2. Solve the MSCFLP using the exact method on the restricted problem with only the interme-
diate access locations.

The first phase solves the LP relaxation which usually results in a fractional solution. Therefore,
the intermediate access locations are defined as the locations j ∈ L with yj > 0. The number of
intermediate access locations is high if the opening costs are the same for every location. Namely,
the solution of the LP relaxation contains many decision variables yj ∈ [0, ε] for small ε. Con-
sequently, the computation time of the exact method in the second phase increases, because the
problem size is still large. On the contrary, when the opening costs have variation, the Simplex
method identifies the cheap locations which decreases the number of intermediate access locations
significantly. Therefore, the opening costs have variation as explained in Subsection 4.1. The sec-
ond phase optimises the final number of access locations and service access points as in the EPH.

Note that also this heuristic can be used for the MSCFLP and MSMCFLP. The LP relaxation and
ILP formulation are different, but the method stays the same.

5.3.1 Reducing the Solution Space in the Second Phase

The solution space of the ELRH in the second phase can be reduced by only selecting the inter-
mediate access locations with yj > θ, θ ∈ [0, 1]. This will decrease the computation time for all
instances. Intuitively, those locations are more important than the locations with low values for yj .
However, this procedure for θ > 0 can lead to infeasibility, since not all access locations of the
first phase are present in the second phase. Besides, the objective value may be higher, since only
a subset of the locations is regarded. Moreover, it takes time to check the feasibility for different
values of θ. To encounter the problem of infeasibility, Algorithm 3 can be used.

Algorithm 3: Find optimal theta

1 Solve the LP relaxation;
2 for θ = θ0 to 0 with stepsize ε do
3 Determine intermediate access locations with yj > θ;
4 if Feasible solution to restricted problem then
5 break;
6 end
7 end
8 θ∗ = θ

The algorithm starts with solving the LP relaxation of the problem. Then, it loops over the values
of θ starting from θ0 to 0 with step size ε. In each iteration, it determines the intermediate access
locations for the corresponding value of θ and checks whether a feasible solution to the restricted
problem exists. The algorithm stops if there is a feasible solution, because that would be the high-
est value of θ for which a feasible solution exists. The highest value of θ means the least number
of intermediate access locations, which results in a smaller solution space of the restricted problem
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in the second phase. In most cases, this will decrease the computation time in the second phase.
In each iteration, there are more intermediate access locations which increases the probability of
the presence of a feasible solution. Note that a feasible solution for θ = 0 always exists by taking
yj = 1 for all intermediate access locations, i.e. all locations with yj > 0 after the first phase. In
this thesis, θ0 and ε are taken equal to 0.10 and 0.01, respectively. The results of the algorithm on
the nine instances of the MSCFLP can be found in Table 5.

Table 5: Optimal values of θ with the corresponding number of intermediate access locations of
the ELRH on the MSCFLP.

# Intermediate
access locations

Instance θ∗ θ = 0 θ = θ∗

1 0.10 3 3
2 0.06 6 5
3 0.06 12 12
4 0.10 19 17
5 0.06 12 12
6 0.06 39 37
7 0.06 50 50
8 0.03 418 418
9 0.00 530 530

Overall, θ∗ is decreasing in the size of the instances. This can be explained by the fact that large
instances have a higher probability of having an intermediate access location with yj ≤ θ∗, which
cannot be omitted in the second phase. In addition, Table 5 shows that, even for instances with
high values of θ∗, only few intermediate access locations are omitted. This does not decrease the
solution space significantly. A more specific analysis of the value of θ on the number of interme-
diate access locations is done on instance 9 which can be seen in Figure 4.

As expected, the blue line is decreasing in θ. Higher values of θ imply less access locations. The
orange line represent the number of access locations in the final solution, which is equal to 401.
The two lines meet each other at θ = 0.26, which means that there are 401 intermediate access
locations with yj > 0.26. It would be perfect if those locations are able to form a feasible solution
in the second phase. Unfortunately, this is not the case. More specifically, no intermediate access
locations can be omitted for instance 9, since θ∗ = 0. To conclude, determining θ∗ takes time and
has no significant effect on the solution space. Therefore, θ is taken equal to zero in the rest of this
thesis.
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Figure 4: The blue line represents the number of intermediate access locations with yj > θ for
different values of θ on instance 9. The orange line represents the number of access locations in
the final solution.

5.4 Extended Sequential Covering Heuristic

This heuristic is developed from the perspective that the capacity restriction is difficult to satisfy.
By relaxing this restriction, the problem is equal to the MSLSCP for which efficient solutions can
be obtained. The ESCH consists of the following two phases:

1. Find a feasible solution to the MSCFLP using the Sequential Covering Heuristic (SCH).

2. Solve the MSCFLP using the exact method on the restricted problem with only the interme-
diate access locations.

In the first phase, the SCH finds a feasible solution by sequentially executing the Covering Heuris-
tic (CH) for the different services. The outline of the SCH can be found in Algorithm 4. The
second phase optimises the solution of the first phase by an exact method in the same way as the
EPH and ELRH.

Algorithm 4: Sequential Covering Heuristic

1 Costs of locations are equal to opening costs plus equipping costs;
2 Order the services increasingly based on their range;
3 for u ∈ F do
4 Execute the CH for service u;
5 Update costs;
6 end

Note that this algorithm sequentially considers the problem for only one service which means
that locations in iteration u represent service access points of service u in the whole problem. In
this way, the costs of the locations for the first service are equal to the opening costs plus the
equipping costs. For the subsequent services, the costs of the already opened locations are equal
to the equipping costs only. The algorithm can execute the services in different orders. Hoekstra
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[27] showed for another algorithm that the best solutions were obtained by ordering the services
increasingly based on their range. The intuition for this is that the service with the smallest range
needs the most service access points. The service access points of the services with a larger range
can be placed on the already opened locations of the previous iterations.

The CH starts with finding a feasible solution to the SCP to cover the demand points. The solution
consists of a set of locations. Then, those locations serve as many demand points as possible in
their corresponding range. Every demand point is in the range of a location, since the locations
form a covering. However, not all demand points can necessarily be served due to capacity restric-
tions. It could be the case that the demand in the range of a location exceeds the capacity. After
all the locations in the covering have served as many demand as their range and capacity allows,
the served demand points and locations in the covering are removed and a covering of locations is
found again on the residual problem. This procedure is repeated until all demand points are served.
An overview of this procedure can be found in Algorithm 5. To obtain solutions to the SCP’s, the
algorithm of Vos [44] is used. This algorithm is a combination of Lagrangian Relaxation and a
method to define the core problem.

Algorithm 5: Covering Heuristic

1 while Unserved demand points exist do
2 Find feasible solution to SCP;
3 Order locations of SCP solution increasingly based on demand in their range;
4 for Locations of SCP solution do
5 Order demand points in range of location based on number of times covered in SCP

solution and reachability;
6 while Capacity of location is not exceeded do
7 Serve demand points by location;
8 end
9 Update locations and demand points;

10 end
11 end

Important to notice is that some demand points can be covered multiple times in an SCP solu-
tion, which means they can be served by multiple locations. Intuitively, the location with the least
demand in its range starts serving demand points so that some demand of the locations with more
demand is already served. In this way, it is expected that the least number of coverings are needed.
Furthermore, the demand points in the range of a location are ordered by the number of times
covered in the SCP solution and the reachability, which is the number of possible connections to
all remaining locations. This minimises the probability that a demand point cannot be served by
any location.

The ESCH can be used for both the MSCFLP and the MSMCFLP. In the first phase, the capacity
of a location in the CH can be multiplied by κuj , which is defined as the maximum number of
service access points of service u on location j. Furthermore, the corresponding ILP formulation
can be used in the second phase.
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6 Computational Results

In this section, the computational results of the solution methods from Section 5 are discussed.
The solution methods consist of the exact method and three heuristics: EPH, ELRH and ESCH.
The exact method serves as a benchmark to the heuristics. The results are conducted based on the
experimental design of Section 4 which contains nine test instances. First of all, the results of the
solution methods on the MSCFLP are addressed. Thereafter, the results on the MSMCFLP with
κ = 3, 5, 10 are given. The analysis of the results is based on the solution methods and the modular
capacities, which can be found in Subsection 6.2 and 6.3, respectively. The first analysis focuses
on the effects of the solution methods on the results given the different values of the modularity
parameter κ. The second analysis focuses on the effects of the modular capacities on the results
given the solution methods. Furthermore, a lower bound analysis is given. This gives an overall
indication of the performance of the solution methods and the potential that is left. Finally, the
results of a sensitivity analysis on the maximum computation time are presented.

6.1 MSCFLP Results

In this subsection, the results of the solution methods on the MSCFLP are addressed. Table 6 gives
a summarised overview of the computational results. An extensive overview of the computational
results can be found in Table 15 in Appendix A.1. Based on these tables, many results can be
described which are organised as follows: total problem, first phase and second phase. The total
problem consists of the objective value and total computation time as can be seen in the table
below. The first and second phase give a more thorough analysis based on Table 15.

Table 6: Summarised overview of the computational results of the solution methods on the
MSCFLP. The objective values of the heuristics comprise the relative differences to the exact
method. Instances marked with a † are terminated according to the stopping criteria as explained
in Subsection 5.1.3.

Exact EPH ELRH ESCH

No. Obj. Time (s) Obj. (%) Time (s) Obj. (%) Time (s) Obj. (%) Time (s)

1 9,139 0.1 2.0 0.0 0.0 0.1 2.0 0.2
2 18,266 20.4 0.9 0.0 23.5 0.2 0.1 0.2
3 39,717 3.0 0.6 0.3 10.7 0.7 0.3 0.3
4 70,869 3.1 7.2 0.3 0.0 0.4 4.0 0.7
5 31,788 3,600.5† 0.7 0.1 12.1 0.3 12.5 0.1
6 90,574 3,600.6† 22.6 0.1 20.5 0.4 4.7 0.2
7 190,865 3,600.2† 2.2 2.0 1.7 2.8 2.2 4.7
8 1,346,700 43,202.1† 6.4 315.7† 4.4 324.9† 2.6 384.4†

9 1,699,594 43,205.4† 6.1 326.4† 4.4 327.1† 2.9 514.4†

The solution represents a distribution of service access points over the locations such that all
demand is satisfied. Take for example instance 1, Table 15 shows that the solution of the exact
method contains two access locations equipped with two Wi-Fi, one SVC and one Alarm service
access point. A graphical overview of this solution can be found in Figure 5. The locations
marked with a star represent the access locations. One can see that the access location on the left
is equipped with a Wi-Fi, SVC and Alarm service access point, since it forms the centre of their
ranges. An additional access location on the right is needed for the second Wi-Fi service access
point to satisfy the demand.
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Figure 5: Graphical overview of the solution of the exact method on the MSCFLP for instance 1.

Total Problem

The best solution entails the lowest objective value as a minimisation problem is regarded. The ex-
act method has the lowest objective value for all instances, which follows the expectation. Namely,
the exact method solves the problem optimally if sufficient time is given. The heuristics differ in
solution quality. For most instances, the objective values of the EPH and ESCH are close to the
exact method. The ELRH generally has higher objective values. However, it has optimal solutions
to instance 1 and 4, since the objective values are the same as the exact method. On average,
the objective values of the EPH, the ELRH and the ESCH are respectively 5.4%, 8.6% and 3.5%
above the exact method. This means that the ESCH is on average the best heuristic in terms of
objective value. However, the EPH and ELRH have lower objective values for several instances.

The computation times in Table 6 are calculated as the sum of the computation times of the first
and second phase in Table 15. Some computation times are marked with a dagger. This means
that the solution method is terminated for this instance by the computation time limit as given in
the Subsection 5.1.3. It is clear that the computation times of the exact method are much higher
than the heuristics. However, more attention is given to the computation times of the heuristics,
since the exact method only serves as a benchmark. The computation times of the heuristics are
low, especially for the small instances. The large instances need five to ten minutes which is still
short compared to the exact method. The ESCH generally needs more computation time which is
explained below.

First Phase

The exact method consists of only one phase which is denoted as the second phase in the table.
Therefore, this part only considers the first phase of the heuristics. The EPH and ELRH show
relatively short computation times, whereas the ESCH needs longer computation times, especially
for the large instances. The EPH has a greedy nature and the ELRH solves an LP relaxation in
the first phase. Both can be executed quickly. The ESCH iteratively solves multiple SCP’s by
Lagrangian Relaxation, which obviously takes more time.
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As said before, the solution of the first phase is indicated with the preposition intermediate. Only
the intermediate access locations are passed to the restricted problem. In most instances, the num-
ber of intermediate access locations is the lowest for the ESCH followed by the EPH and the
ELRH. Important to notice is that this is not necessarily beneficial. The number of intermediate
access locations affects the size of the restricted problem in the second phase. Having more in-
termediate access locations gives more possible solutions to the restricted problem. On the other
hand, the restricted problem is easier to optimise with less intermediate access locations. This can
be observed by the optimality gaps in the second phase, which is addressed below.

Second Phase

This part contains the results of the exact method and the second phase of the heuristics. This
includes the computation times, optimality gaps and the number of access locations and service
access points in the final solution. Note that the final solution is by definition the solution of the
second phase. The functioning of the stopping criteria can be concluded from the computation
times. The second phases of the heuristics are terminated in instance 8 and 9. Apparently, the
restricted problems in the second phase of the small instances are solvable within the maximum
computation time. The exact method is terminated in instances 5-9. On the other hand, the first
four instances are solved optimally by the exact method. The optimality gaps are calculated as
stated in Equation 13. It is important to emphasise the relation between the computation time and
optimality gap. The solution method is terminated if either the optimality gap equals zero or the
maximum computation time is reached. This means that positive gaps exist, if and only if, the
maximum computation time is reached. In general, the optimality gaps are low which means that
sufficient computation time is given. The only outlier is the gap of the exact method in instance 5,
which is caused by the symmetry of the problem.

The number of access locations and service access points are almost the same in the first five in-
stances for all solution methods. To shorten the sentences, the term equipment is used to indicate
the access locations and service access points. The small differences in the objective values are
caused by the variations in the opening costs. Evidently, the exact method selects the cheapest ac-
cess locations as it has the lowest objective values. In particular, the ELRH needs more equipment
in the final solution, which results in higher objective values as observed before. The number of
access locations is the most important indicator for the objective value, since the opening costs
are higher than the equipping costs. As a result, the order of the solution methods based on the
number of access locations is similar to the order based on the objective values. On the contrary,
this order does not always apply to the number of service access points. An example is instance 8,
in which the exact method needs more Alarm service access points than the heuristics. Apparently,
it can be more beneficial to select cheap access locations than to minimise the number of service
access points. Note that this is possible, since the difference in the opening costs can be equal
to 5, 000 − 4, 000 = 1, 000, which is higher than the equipping costs of a service access point.
Obviously, the choice of the parameters affects the structure of the solutions.

6.2 MSMCFLP Results - Solution Methods

In this subsection, the main focus is on the effects of the solution methods on the results of the
MSMCFLP. The different values of the modularity parameter κ are taken as fixed. The analysis
is organised in the same way as the analysis of the results on the MSCFLP. The summarised
overviews of the computational results on the MSMCFLP with κ = 3, 5, 10 are given in Table 7, 8
and 9, respectively. The extensive overviews can be found in Table 16, 17 and 18 in Appendix A.2.
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Table 7: Summarised overview of the computational results of the solution methods on the MSM-
CFLP with κ = 3. The objective values of the heuristics comprise the relative differences to the
exact method. Instances marked with a † are terminated according to the stopping criteria as
explained in Subsection 5.1.3.

Exact EPH ELRH ESCH

No. Obj. Time (s) Obj. (%) Time (s) Obj. (%) Time (s) Obj. (%) Time (s)

1 5,298 0.3 0.0 0.0 72.5 0.0 0.0 0.0
2 14,226 6.7 2.1 0.0 30.1 0.0 0.0 0.0
3 19,528 21.1 22.0 0.1 21.6 0.3 0.0 0.0
4 30,787 41.9 15.0 0.1 24.1 0.3 2.6 0.3
5 23,974 115.0 16.5 0.0 16.3 0.3 15.2 0.0
6 86,335 552.6 23.8 0.2 21.8 0.3 5.2 0.2
7 108,113 3,600.3† 3.5 4.0 9.1 96.5 -6.9 1.5
8 915,121 43,211.6† -9.6 316.9† -5.7 315.6† -15.1 61.5
9 1,123,715 43,209.8† -5.9 325.4† -1.8 313.2† -15.8 422.8†

Table 8: Summarised overview of the computational results of the solution methods on the MSM-
CFLP with κ = 5. The objective values of the heuristics comprise the relative differences to the
exact method. Instances marked with a † are terminated according to the stopping criteria as
explained in Subsection 5.1.3.

Exact EPH ELRH ESCH

No. Obj. Time (s) Obj. (%) Time (s) Obj. (%) Time (s) Obj. (%) Time (s)

1 5,298 0.3 0.0 0.0 72.5 0.1 0.0 0.0
2 14,226 8.7 2.1 0.0 30.1 0.1 0.0 0.0
3 19,528 37.8 0.1 0.1 21.6 0.9 0.0 0.1
4 27,017 189.7 16.1 0.1 27.0 0.2 2.0 0.3
5 23,974 122.1 16.5 0.0 16.3 0.3 15.2 0.0
6 86,335 711.3 23.8 0.1 21.8 0.5 5.2 0.2
7 123,908 3,605.1† -9.9 1.8 -4.8 19.8 -25.0 1.3
8 903,732 43,218.8† -10.8 316.3† -6.0 313.3† -20.1 345.3†

9 1,188,758 43,208.0† -13.1 326.9† -8.6 319.7† -25.7 143.9

Table 9: Summarised overview of the computational results of the solution methods on the MSM-
CFLP with κ = 10. The objective values of the heuristics comprise the relative differences to
the exact method. Instances marked with a † are terminated according to the stopping criteria as
explained in Subsection 5.1.3.

Exact EPH ELRH ESCH

No. Obj. Time (s) Obj. (%) Time (s) Obj. (%) Time (s) Obj. (%) Time (s)

1 5,298 0.3 0.0 0.0 72.5 0.1 0.0 0.0
2 14,226 8.9 2.1 0.0 0.0 0.4 0.0 0.0
3 19,528 29.9 0.1 0.1 21.6 5.1 0.0 0.1
4 27,017 137.0 1.1 0.0 15.4 4.4 2.0 0.3
5 23,974 123.3 16.5 0.1 16.3 0.9 15.2 0.0
6 86,335 1,025.2 23.8 0.1 4.3 3.3 5.2 0.2
7 120,241 3,602.4† -13.5 0.3 -17.1 19.4 -22.7 1.1
8 919,707 43,219.7† -12.6 317.2† -17.2 313.5† -22.3 51.3
9 1,408,962 43,208.2† -28.2 330.8† -29.5 314.3† -37.8 419.7†
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First of all, an example of the modular capacities is shown. For comparison to the MSCFLP, the
solution of the exact method on the MSMCFLP with κ = 3 for instance 1 is taken. Table 16 shows
that the optimal solution contains one access location which is equipped with two Wi-Fi, one SVC
and one Alarm service access point. This is in contrast to the solution of the MSCFLP in which
two access locations are needed. Apparently, the solution of the MSMCFLP utilises the possibility
to equip an access locations with multiple service access points of the same service. This involves
a cost reduction of 9, 139− 5, 298 = 3, 841. A graphical overview of the solution can be found in
Figure 6. There is only one access location which is the centre of the ranges of all service access
points. Note that the Wi-Fi range is constructed by two Wi-Fi service access points which means
there is sufficient capacity available.

Figure 6: Graphical overview of the solution of the exact method on the MSMCFLP with κ = 3
for instance 1.

Total Problem

The tables show comparable behaviour for the different values of κ. The exact method always has
the lowest objective values for the first six instances. The ESCH has the same objective values
for the first three instances. Slightly higher objective values are obtained by the EPH. In general,
the ELRH has the highest objective values, especially for the first instance. The lowest objective
values of instance 7-9 are obtained by the ESCH. The average deviations of the objective values
of the heuristics to the exact method are given in Table 10.

Table 10: Overview of the average deviations (%) of the objective values of the heuristics to the
exact method.

MSCFLP MSMCFLP

Heuristic κ = 1 κ = 3 κ = 5 κ = 10

EPH 5.4 7.5 2.8 -1.2
ELRH 8.6 20.9 18.9 7.4
ESCH 3.5 -1.6 -5.4 -6.7
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Concerning the MSMCFLP, one can see that the ESCH has on average lower objective values
than the exact method. This is mainly caused by the good performance of the ESCH on instances
7-9. Although the exact method has the best solutions to the MSCFLP, the ESCH outperforms the
exact method on the MSMCFLP. Concerning the MSMCFLP, the solution methods can be ordered
in the following way based on the objective values: ESCH, exact method, EPH, ELRH.

The computation times show the same pattern for the different values of κ. The exact method
optimally solves the first six instances before the computation time limit. The last three instances
are terminated according to their computation time limits. The heuristics need short computation
times for the first seven instances. Instance 7 is an exception, since the heuristics need short com-
putation times, whereas the exact method shows difficulties solving this problem. The heuristics
need more time for instance 8 and 9, which are terminated by the computation time limit in most
cases.

First Phase

As said before, the exact method contains only one phase which is denoted as the second phase.
Therefore, no computational results of the exact method exist for the first phase. The computa-
tional results of the heuristics show the same behaviour as for the MSCFLP. The computation
times of the first phase are negligible for the first seven instances. The computation times of in-
stance 8 and 9 are still relatively low. The ESCH needs more time than the EPH and ELRH,
since it executes a more comprehensive algorithm in the first phase. The number of intermediate
access locations shows the same pattern as in the MSCFLP. The ESCH has the least number of
intermediate access locations, followed by the EPH and ELRH.

Second Phase

The optimality gaps are only positive when the solution methods are terminated by the compu-
tation time limit. The exact method solves the first six instances optimally for all values of κ.
However, the gaps are high in the last three instances. Evidently, the exact method needs more
time to find the optimal solution in these instances. The heuristics have small gaps in instance 8
and 9. This means that sufficient time is given to obtain a good solution to the restricted problem
in the second phase of the heuristics. The size of the gaps is in proportion to the number of in-
termediate access locations, since this determines the size of the restricted problem in the second
phase. Generally speaking, having less intermediate access locations results in smaller optimality
gaps in the second phase.

The exact method consists of the optimal number of access locations and service access points
in the final solutions of the first six instances, since these instances are solved optimally. The
objective values of the solution methods are close to each other. Trivially, this also yields for
the number of access locations and service access points. Again, the ESCH only needs slightly
more equipment than the exact method. More equipment is generally needed for the EPH and
ELRH. The opposite is true for instance 7-9 in which the ESCH generally needs the least number
of access locations and service access points. As explained before, the same pattern was observed
in the objective values.

29



6.3 MSMCFLP Results - Modular Capacities

This part focuses on the effects of the modular capacities on the computational results of the
MSMCFLP. The modular capacities are determined by the value of the modularity parameter
κ, which is taken equal to three, five and ten in this thesis. The MSCFLP is considered as the
MSMCFLP with κ = 1 in this analysis.

Total Problem

As explained before, allowing modular capacities enlarges the solution space. Therefore, it is
expected that the solutions improve as κ increases. This is true for the objective values of the
heuristics, which decrease as κ increases for all instances. Especially, the step from the MSCFLP
(κ = 1) to MSMCFLP with κ = 3 stipulates this. Take for example instance 1 in which the
objective value is almost halved, since the number of access locations is reduced from two to one.
The remaining steps to higher values of κ have less effect on the objective value. Apparently,
only few access locations exist that are equipped with more than three service access points of
the same service. In other words, the marginal effect of an additional service access point is
decreasing in κ. For instance 1, the ELRH does not take advantage of the modular capacities,
since the objective value stays constant. Evidently, not all demand points are located within the
range of one intermediate access location. Therefore, two access locations are needed in the final
solution. On the other hand, the exact method, EPH and ESCH make use of this opportunity. The
objective value in instance 5 and 6 merely decreases for higher values of κ. Apparently, the sparse
instances take less advantage of the modular capacities, because one service access point is usually
sufficient to serve the demand points in its range. It is remarkable that the objective values of the
exact method increase for κ = 5, 10 in instance 7-9. This is caused by the large optimality gaps in
the second phase as explained below.

First Phase

In general, the computation times of the first phase are not affected by the value of κ. An excep-
tion is the ESCH for which the computation times of the first phase are lower in the MSMCFLP.
This is caused by the construction of the algorithm as described in Subsection 5.4. It iteratively
computes coverings to assign demand points to service access points. Less iterations are needed
when multiple service access points are allowed on one access location.

For the EPH and ESCH, the number of intermediate access locations decreases as κ increases.
The heuristics accommodate for the modular capacities as explained in Subsection 5.2 and 5.4,
respectively. Concerning the ELRH, the number of intermediate access locations increases for
κ = 10. As described in Subsection 5.3, the ELRH solves the LP relaxation in the first phase.
Constraint 11a becomes less restricting for higher values of κ. The decision variables of the
service access locations xuj are allowed to be ten times higher as the decision variables of the
locations yj . For example, a location j with yj = 0.1 can be equipped with one service access
point of every service in the LP relaxation. This results in many access locations in the solution
of the LP relaxation. As a result, the computation times of the second phase are higher, which is
addressed below.

Second Phase

The ELRH needs longer computation times in the second phase as κ increases, which can be ex-
plained by the increased number of intermediate access locations. The opposite is happening for
the ESCH, which has shorter computation times in the second phase for higher values of κ. For
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this heuristic, the number of intermediate access locations is small, which makes the optimisation
in the second phase easier. Consequently, this results in smaller optimality gaps. The value of κ
also affects the computation times of the exact method. Instances 5 and 6 need shorter compu-
tation times for higher values of κ, which is caused by the sparseness of these instances. On the
contrary, longer computation time are needed for instance 3 and 4, which is caused by the enlarged
solution space. The optimality gaps of the exact method are larger for higher values of κ due to the
enlarged solution space. More time is needed to find better solutions. Concerning the heuristics,
the optimality gaps decrease for higher values of κ. The exception is the ELRH for κ = 10. The
reason for this behaviour is the size of the restricted problem, which is caused by the large number
of intermediate access locations as explained above.

As expected, the number of access locations in the final solution decreases when κ increases. This
results in lower objective values as mentioned before. The exact method needs more access loca-
tions, which is caused by the large optimality gaps. The number of service access points slightly
increases for higher values of κ. Equipping one access location with multiple service access points
only decreases the number of access locations. More service access points are needed, since there
are less access locations to place them on. It may be beneficial to save an access location while
using more service access points. The large instances underline this theory. To illustrate this, the
final solutions of the ESCH in instance 9 for κ = 3 and κ = 10 are compared. Sixteen access
locations less are needed in the final solution for κ = 10. On the other hand, three Wi-Fi, three
SVC and one Alarm service access point are additionally needed compared to the final solution
for κ = 3.

6.4 Lower Bound Analysis

The lower bound indicates the lowest value that the objective value can possibly attain. The exact
method iteratively updates the lower bound to tighten the gap between the lower bound and the
current best feasible solution, also known as the incumbent. If the lower bound equals the incum-
bent, it is proven that the optimal solution is found. In the large instances, the results have shown
that the optimal solution is not found. However, the lower bound gives an indication of the best
possible objective value. In this way, it can be estimated how much room for improvement is left.
The lower bound based on the exact method is also referred to as exact lower bound. The exact
lower bounds can be found in Table 11.

Table 11: Overview of the exact lower bounds on the MSCFLP and MSMCFLP with different
values of κ.

MSCFLP MSMCFLP

No. κ = 1 κ = 3 κ = 5 κ = 10

1 9,139 5,298 5,298 5,298
2 18,266 14,226 14,226 14,226
3 39,717 19,528 19,528 19,528
4 70,869 30,787 27,017 27,017
5 29,534 23,974 23,974 23,974
6 88,219 86,335 86,335 86,335
7 187,468 90,415 86,066 84,602
8 1,320,843 630,244 492,444 454,243
9 1,652,515 768,172 619,343 527,093
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One can see that the exact lower bounds decrease when κ increases. This is caused in a direct and
indirect way by the larger solution space for higher values of κ. A larger solution space directly
decreases the lower bounds, since the optimal solution may be lower. Besides, a larger solution
space affects the size of the optimality gaps. This can be seen in instance 7-9 on the MSMCFLP
with κ = 3, 5, 10 in Table 16, 17 and 18, respectively. The large optimality gaps induce the
lower bounds to be even lower. The gaps can be reduced by allowing longer computation times,
which is practically not possible. On the other hand, lower bounds can be obtained by using the
properties of the problem. More specifically, the minimum number of service access points and
access locations can be argued. This is based on the following two methods:

• Coverage method: It can be determined how many service access points and access locations
are needed to cover all demand points without taking into account the capacity restriction.
This results in the MSLSCP. Note that the modularity parameter κ can be omitted, since
the capacity restriction is removed. Efficient solutions of the MSLSCP can be obtained by
using the method of Vos [44]. The solution contains a set of access locations and service
access points which forms a minimum for the solution of the MSMCFLP.

• Capacity method: It can be determined how many service access points are needed to sat-
isfy all demand without taking into account the coverage restriction. This problem can be
referred to as the MSMCFLP in which all demand points can be served from every loca-
tion. The number of service access points can be calculated by dividing the demand by the
capacity of the corresponding service as stated in Equation 15.

Minimum number of service access points of service u =

∑
i∈Gu d

u
i

ηu
. (15)

The number of access locations is equal to the maximum of the number of service access
points divided by κ, since κ service access points of each service are allowed on every
access location.

The minimum number of service access points is equal to the maximum of both methods, since the
lower bound is preferred to be as high as possible. The minimum costs of the service access points
can be calculated by multiplying the minimum number of service access points by the equipping
costs of the corresponding service. The minimum costs of the access locations are more difficult to
calculate, since the opening costs differ from each other. It can be calculated in the same manner
as the minimum costs of the service access points by determining the minimum number of access
locations. This can be multiplied by the lowest opening costs of the corresponding instance. On
the other hand, the minimum costs can be directly obtained by calculating

∑
j∈L fjyj , based on the

MSLSCP solution. The minimum costs of the access locations are equal to the maximum of these
two approaches. The lower bound is calculated as the sum of the minimum costs of service access
points and access locations. This lower bound is referred to as argued lower bound. It is important
to state that the argued lower bounds are not irrefutable, since the solutions to the MSLSCP in the
coverage method are computed heuristically. However, they give a good indication of the potential
improvement of the solutions. The argued lower bounds can be found in Table 12.

Table 12: Overview of the argued lower bounds of instance 7-9 on the MSCFLP and MSMCFLP.

No. MSCFLP MSMCFLP

7 185,225 92,068
8 1,194,631 701,395
9 1,494,949 865,055
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Note that the MSMCFLP is not split for the different values of κ, since these results are identical.
The reason for this is that the coverage method plays a dominant role in the MSMCFLP. As said
before, the κ does not affect the coverage method which implies the identical results. On the con-
trary, the capacity method is restricting in the MSCFLP, since modular capacities are not allowed
in this problem.

The argued lower bounds can be compared to the exact lower bounds as in Table 11. Concerning
the MSCFLP, the argued lower bounds are lower than the exact lower bounds, since the optimality
gaps are low in this problem. On the contrary, the argued lower bounds of the MSMCFLP are
much higher than the exact lower bounds. This is due to the large optimality gaps of the exact
method in this problem. The maximum of the exact and argued lower bound is defined as the
implied lower bound. This can be compared to the objective values of the heuristics to acquire
an indication of the performance. The implied optimality gap can be calculated to measure the
difference between the objective values and the implied lower bounds.

Table 13: Overview of the average implied optimality gaps (%) of the solution methods on in-
stance 7-9. The implied optimality gaps are calculated as in Equation 13. The lower bounds
of the MSCFLP are obtained by the exact method and the lower bounds of the MSMCFLP by
argumentation.

MSCFLP MSMCFLP

Solution method κ = 1 κ = 3 κ = 5 κ = 10

Exact 2.2 20.4 25.1 28.6
EPH 6.7 17.0 15.6 12.9
ELRH 5.5 20.8 19.9 9.4
ESCH 4.6 9.0 2.0 1.4

Regarding the MSCFLP, the table shows that the exact method slightly differs from the lower
bound, followed by the ESCH, ELRH and EPH. However, the exact method has high gaps for the
MSMCFLP. The ESCH has the best performance for the MSMCFLP, whereas the EPH and ELRH
show comparable optimality gaps. To conclude, only small improvements can be made regarding
the MSCFLP. The exact method entails the best solutions, followed closely by the ESCH. Con-
cerning the MSMCFLP, the solutions of the exact method can be improved by circa 20% to 30%.
The solutions of the EPH and ELRH can be improved by circa 10% to 20%. The ESCH has almost
optimal results. However, the implied optimality gaps of the MSMCFLP are not irrefutable, since
they are obtained by the heuristically computed argued lower bounds. Either new heuristics or
longer computation times are needed to further improve the solutions.

6.5 Sensitivity Analysis

Solution methods usually have a trade-off between computation time and objective value. Longer
computation times result in better solutions, but this is not always necessary. In practice, good
solutions in short times may be preferable to optimal solutions in long times. For this reason, a
sensitivity analysis is performed on the maximum computation time of the second phase of the
heuristics. In the solution approach in Section 5, the maximum computation time is set equal to
five minutes. To keep it concise, the analysis is only performed on the MSCFLP. The computa-
tional results on the MSCFLP in Table 15 show that positive optimality gaps exist in instance 8
and 9. Therefore, the analysis is only performed on these two instances for the MSCFLP.
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The experiment is conducted for the three heuristics and is set up in the following way. First
of all, the first phase of the heuristic is executed. Thereafter, the second phase is performed
with the maximum computation time ranging from one minute to ten minutes. Every maximum
computation time entails an optimality gap, which can be found in Table 14.

Table 14: Overview of the optimality gaps (%) of the second phase of the heuristics for different
computation time limits. The considered problems are instance 8 and 9 of the MSCFLP.

Instance 8 Instance 9

# Minutes EPH ELRH ESCH EPH ELRH ESCH

1 0.92 1.48 0.53 1.26 1.66 1.30
2 0.51 1.15 0.40 1.02 1.66 0.11
3 0.45 0.70 0.39 0.67 1.36 0.05
4 0.43 0.64 0.37 0.67 1.36 0.05
5 0.42 0.64 0.34 0.67 1.16 0.02
6 0.42 0.64 0.34 0.67 1.06 0.02
7 0.39 0.64 0.33 0.67 1.06 0.02
8 0.37 0.64 0.31 0.67 1.01 0.02
9 0.37 0.64 0.31 0.60 1.01 0.02
10 0.37 0.62 0.31 0.60 1.01 0.02

The observant reader may point out that the optimality gaps after five minutes slightly differ from
the gaps stated in Table 15. It is assumed that this is caused by the minor differences in the tech-
nical performance of the laptop. On average, the gaps of instance 8 are lower than the gaps of
instance 9. This is caused by the size of the problem. The exact method generally needs more
time on larger problems, since they contain larger solution spaces. Figures 7 and 8 graphically
show the development of the optimality gaps as function of the maximum computation times for
instance 8 and 9, respectively.

Trivially, the optimality gaps are decreasing in the maximum computation time. As stated in Sub-
section 6.1, the smallest gaps are obtained by the ESCH, followed by the EPH and the ELRH.
This pattern stays the same for all maximum computation times, since the lines are not crossing
each other. One can see that the largest improvement is usually made in the first minutes. The
best example is the ESCH on instance 9, where the gap drops from 1.30% to 0.11% in the second
minute. Thereafter, only minor improvements are made. In other words, the marginal effect of an
additional minute is decreasing over time. The lines in Figure 7 converge more than the lines in
Figure 8. Apparently, more comparable solutions are found in the second phase of the heuristics
for smaller problems.

It is difficult to state an overall conclusion, since users have different priorities for the objective
value and computation time. However, it can be seen that only minor improvements are made
after four minutes for instance 8. This boundary is approximately five minutes for instance 9. It
can be concluded that the choice of five minutes in the solution approach in Section 5 is substan-
tiated. However, more comprehensive stopping criteria may be more suitable when the algorithm
is applied to larger instances. These criteria can be based on the size of the problem or number of
iterations without improvement.
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Figure 7: Graphical representation of the optimality gaps as function of the maximum computation
time for instance 8 on the MSCFLP.
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Figure 8: Graphical representation of the optimality gaps as function of the maximum computation
time for instance 9 on the MSCFLP.

1 2 3 4 5 6 7 8 9 10

Maximum computation time in minutes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

O
p
ti
m

a
lit

y
 g

a
p
 (

%
)

EPH ELRH ESCH

35



7 Conclusion

This thesis considers the problem of distributing services over urban areas to satisfy the demand.
In the smart city context, the demand is spread out over the city. The demand can be covered
by equipping an access location with a service access point of the corresponding service. Costs
savings can be gained by combining service access points of different services on the same access
location. Three heuristics are introduced, each consisting of two phases. In the first phase, a fea-
sible solution is found which is optimised in the second phase by an exact method. The heuristics
are benchmarked to the exact method on the whole problem. For this, nine test instances are used
that differ in size and density. First of all, the MSCFLP is regarded which allows only one ser-
vice access point of every service on an access location. Besides, the MSMCFLP is introduced
which allows modular capacities. In other words, multiple service access points of every service
are allowed on an access location. The modularity parameter κ is taken equal to three, five and ten.

The computational results on the MSCFLP show that the exact method has the lowest objective
values, followed by the ESCH, EPH and ELRH. However, this involves long computation times
for the exact method, since the performance of the exact method is mainly dependent on the size
of the instances. On the other hand, the heuristics have similar computation times of at most ten
minutes, even for large instances. The exact method has relatively small optimality gaps, but even
smaller optimality gaps exist for the heuristics. The optimality gaps of the heuristics are affected
by the number of access locations in the solution of the first phase, which form the restricted
problem in the second phase. The objective values are mainly affected by the number of access
locations in the final solution, since the opening costs are much higher than the equipping costs.
Comparable behaviour of the solution methods is observed on the MSMCFLP. In general, the
objective values decrease as κ increases due to the enlarged solution space. This improvement
in objective value is mainly present for small values of κ. The more service access points on one
access location are allowed, the smaller is the marginal effect of an additional service access point.
The low objective values are caused by the decreased number of access locations. The number of
service access points is comparable for all values of κ. The heuristics show similar computation
times and smaller optimality gaps compared to the MSCFLP. On the contrary, the exact method
has larger optimality gaps for the large instances. Consequently, the ESCH outperforms the exact
method on the MSMCFLP.

A lower bound analysis is conducted to indicate the solution quality and the potential that is left
for new heuristics. Lower bounds are obtained by the exact method and argumentation. The ex-
act lower bounds are higher for the MSCFLP, whereas the argued lower bounds are higher for
the MSMCFLP. The difference between the objective values and lower bounds are small for both
problems. However, the argued lower bounds are not irrefutable, since they are computed heuris-
tically. Summarised, almost optimal solutions exist for both problems. Only little room is left
for improvements in terms of objective value. Of course, minimisation of the computation time
can always be pursued. A sensitivity analysis is performed to measure the effect of the maximum
computation time on the objective values of the heuristics on the MSCFLP. The analysis showed
that the marginal effect of additional computation time decreases over time. The maximum com-
putation times of five minutes in the second phase of the heuristics is shown to be substantiated.

To conclude, good solutions in short times are found for the MSCFLP and MSMCFLP. In terms
of solution quality, the best heuristic is the ESCH, followed by the EPH and ELRH. For the
MSMCFLP, the ESCH even outperforms the exact method. Besides, it can be concluded that
allowing modular capacities generally leads to large costs benefits.
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8 Discussion

In this section, the limitations of this thesis and suggestions for further research are discussed.

8.1 Limitations

This thesis contains two limitations: the circular coverage area of the service access points and the
variation of the heuristics. An attempt is made to find more heuristics based on Lagrangian Relax-
ation. Besides, the dual formulation is derived and the literature is researched for metaheuristics.
Unfortunately, these approaches did not succeed.

8.1.1 Circular Coverage Area

It is assumed that the coverage areas of the service access points are circular. This is generally
not true for the Wi-Fi service which signal is dependent on the infrastructure. Besides, the height
of the demand points is not taken into account. Currently, only the haversine distance between
demand points and locations plays a role in determining the coverage elements auij . A solution
for this is to check which demand points can be reached from every location. Practically, this can
be done by a propagation grid, which indicates the real ranges of service access points on a map.
In this way, the coverage elements auij realistically represent the possible connections between
locations and demand points.

8.1.2 Lagrangian Relaxation

An attempt is made to employ Lagrangian Relaxation in a heuristic for the SSCFLP, which can
be executed sequentially to solve the MSCFLP. Different articles have been studied, of which the
relaxation of the assignment constraint seemed to be the most promising [37, 25, 6]. The relaxation
of the capacity constraint has weaker performance [37] and may be viable [15]. The relaxation of
the assignment constraint results in multiple knapsack problems for which efficient methods exist.
In literature, the Lagrangian heuristics solve the SSCFLP containing connection costs cij , which
are not present in the formulation of the MSCFLP. An extension could be to include connection
costs cuij based on the distance between locations and demand points. Take for example the Wi-
Fi service, the intuition would be that the connection is better when the distance is smaller. An
objective of the algorithm would be to minimise the distances. If locations serve demand points
outside their range, high connection costs are involved such that the algorithm tries to avoid this.
The mathematical formulation of the connection costs can be found in Equation 16.

cuij =

{
αuπij if auij = 1,
C if auij = 0.

(16)

The distance in meters between demand point i ∈ Gu and location j ∈ L is given by πij . A
factor αu can be used to scale the distance such that the connection costs are proportional to the
opening and equipping costs. The constant C should be larger than the maximum of the opening
and equipping costs such that it is always better to open an additional location than to serve a
demand point from a location with auij = 0. As said before, this approach did not succeed. This
was mainly caused by the difficulty of the subgradient optimisation, i.e. the method for updating
the Lagrange multipliers. Besides, the symmetry of the problem gave several complications.
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8.1.3 Dual Formulation

Problems can be considered from different perspectives. The dual formulation approaches the
problem from the opposite perspective as the primal formulation. In some cases, the dual formu-
lation is easier to solve than the primal one. Besides, the solution of the dual formulation forms
a lower bound for minimisation problems. This is also called weak duality [40]. However, ex-
periments have shown that these lower bounds are less restricting than the obtained lower bounds
in Subsection 6.4. For LP problems, strong duality can be proven which means that an optimal
solution of the primal is also an optimal solution of the dual. Unfortunately, this does not yield for
ILP problems.

8.1.4 Metaheuristics

Metaheuristics can be applied to different kinds of problems due to their flexibility. For this, the
parameters can be adjusted to the problem. However, incorporating problem-specific behaviour
in heuristics may be more beneficial. Several metaheuristics exist to solve the SSCFLP, which
are stated in Section 3. It is investigated whether their performance is sufficient for the smart city
context. This means that large problems can be solved within minutes.

In most articles [19, 38, 26, 16, 11], the metaheuristics are only tested on small instances. The
instances of Delmaire et al. [16] and Holmberg et al. [28] are often used as a benchmark. The
first set contains 57 instances, in which the number of locations range from 10 to 30 and the
number of demand points range from 20 to 90. The second set includes 71 instances with more
demand points. The metaheuristics still need tens of seconds or minutes to solve the problems. It
is clear that these metaheuristics cannot be used for large problems. Nevertheless, three articles
[4, 23, 41] have been found that solve larger instances containing 1,000 locations and demand
points. However, these metaheuristics need computation times of 5,000 to 10,000 seconds. For
comparison, this thesis contains instances up to 6,981 locations and 11,081 demand points for
three different services which are solved within minutes. To conclude, even the best metaheuristics
available are not suited for the large problems in the smart city context.

8.2 Suggestions for Further Research

There are many suggestions for further research which are stated below.

• Test instances can be made of entire cities. Consequently, the results are better scalable to
the smart city context. However, the computation times will increase due to the larger so-
lution space. For this, the city can be divided in subareas, which are separately solved. An
algorithm can be made to make the division and combine the separate solutions. Intermedi-
ate costs updating can be used to avoid inefficiency.

• The demand of the test instances can be made more realistic. In this thesis, home addresses
are considered as Wi-Fi demand points. However, Wi-Fi may also be needed on streets
and in parks. Besides, the SVC demand points are currently not representing all the roads.
Finally, the Alarm demand points are equally spread over the area. It can be the case that the
Alarm service access points cover all demand points, but not the entire area. More demand
points can be added to avoid this.
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• More services can be added to make the problem more realistic. In the smart city context,
many services may exist that need different connections, like fiber or ether. Groups of
services can be made to distinguish between these different connections. This extension
makes the problem more difficult, since the optimisation has to be executed over multiple
groups.

• A restriction on the combination of service access points of different services on one access
location can be included. An example of this can be found in Equation 17.∑

u∈F
γuxuj ≤ τjyj , ∀j ∈ L. (17)

The parameters can be chosen based on practical reasons. For example, either a large service
or two small services can be placed on an access location. In that case, the γu of the large
service should be twice as large as the one of the small service. Furthermore, note that for
consistency reasons the following should hold:⌊ τj

γu

⌋
≤ κuj , ∀j ∈ L, ∀u ∈ F . (18)

By this construction, Constraint 11a becomes redundant and can be removed. A sensitivity
analysis could be performed on the parameters to obtain the effect on the objective value.

• Synergies may be obtained by combining the results of this thesis and the previous ones.
Every thesis extends the problem in a certain way. All these extensions can be combined
to make the problem more realistic. The demand can be modelled stochastically as in Ver-
hoek [43] and the problem may allow the Partial Covering of Hoekstra [27]. Moreover, the
modular capacities introduced in this thesis and the Wireless Network Problem (WNP) of
Vos [44] may be used. The WNP can be seen as the final phase in which the lampposts are
connected to an existing network.

• This thesis focuses on the theoretical objective values and computation times of the solution.
However, attention can also be given to the robustness, which is a measure for the practical
feasibility of solutions. For example, the effects of a defect lamppost can be measured.
Simulations can be conducted to measure the number of unserved demand points in case
of defect lampposts. This phenomenon can be incorporated in the objective function to
maximise the robustness.
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A Tables of Computational Results

This section contains the tables of the computational results of the solution methods. First of all,
the computational results of the MSCFLP are given in Subsection A.1. Thereafter, the results of
the MSMCFLP with the different values of κ are given in Subsection A.2.

A.1 MSCFLP

Table 15: Overview of the computational results of the solution methods on the MSCFLP. In-
stances marked with a † are terminated according to the stopping criteria as explained in Subsec-
tion 5.1.3. AL indicates the number of access locations, whereas Wi-Fi, SVC and Alarm indicate
the number of service access points of the corresponding service.

First phase Second phase

No. Objective Time (s) AL Time (s) Gap (%) AL Wi-Fi SVC Alarm

E
xa

ct

1 9,139 - - 0.1 0.00 2 2 1 1
2 18,266 - - 20.4 0.00 4 4 2 1
3 39,717 - - 3.0 0.00 9 9 1 1
4 70,869 - - 3.1 0.00 16 16 2 1
5 31,788 - - 3,600.5 7.09 7 7 3 2
6 90,574 - - 3,600.6 2.60 19 11 18 11
7† 190,865 - - 3,600.2 1.78 43 43 6 4
8† 1,346,700 - - 43,202.1 1.92 303 298 57 34
9† 1,699,594 - - 43,205.4 2.77 382 362 77 44

E
PH

1 9,326 0.0 2 0.0 0.00 2 2 1 1
2 18,433 0.0 4 0.0 0.00 4 4 2 1
3 39,949 0.0 12 0.3 0.00 9 9 1 1
4 75,949 0.0 17 0.3 0.00 16 16 2 1
5 32,020 0.0 9 0.1 0.00 7 7 3 2
6 111,042 0.0 27 0.1 0.00 24 12 19 11
7 195,113 0.1 48 1.9 0.00 43 43 7 4
8† 1,433,498 15.4 362 300.3 0.41 315 305 59 32
9† 1,803,252 25.9 457 300.5 0.64 398 370 79 42

E
L

R
H

1 9,139 0.1 3 0.0 0.00 2 2 1 1
2 22,557 0.1 6 0.1 0.00 5 5 2 1
3 43,965 0.2 12 0.5 0.00 10 10 1 1
4 70,869 0.1 19 0.3 0.00 16 16 2 1
5 35,625 0.2 12 0.1 0.00 8 7 3 2
6 109,134 0.2 38 0.2 0.00 24 12 18 12
7 194,034 0.5 50 2.3 0.00 44 44 6 5
8† 1,406,526 24.4 417 300.5 0.63 318 311 58 31
9† 1,775,179 26.8 526 300.3 1.36 401 375 79 46

E
SC

H

1 9,326 0.2 2 0.0 0.00 2 2 1 1
2 18,279 0.1 4 0.1 0.00 4 4 2 1
3 39,842 0.2 9 0.1 0.00 9 9 1 1
4 73,720 0.4 17 0.3 0.00 16 16 2 1
5 35,772 0.1 8 0.0 0.00 8 7 3 2
6 94,850 0.1 20 0.1 0.00 20 10 17 14
7 195,050 1.7 46 3.0 0.00 43 43 6 4
8† 1,381,724 84.0 329 300.4 0.37 306 297 59 30
9† 1,748,761 213.6 407 300.8 0.05 389 366 76 43
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A.2 MSMCFLP

Table 16: Overview of the computational results of the solution methods on the MSMCFLP with
κ = 3. Instances marked with a † are terminated according to the stopping criteria as explained in
Subsection 5.1.3. AL indicates the number of access locations, whereas Wi-Fi, SVC and Alarm
indicate the number of service access points of the corresponding service.

First phase Second phase

No. Objective Time (s) AL Time (s) Gap (%) AL Wi-Fi SVC Alarm

E
xa

ct

1 5,298 - - 0.3 0.00 1 2 1 1
2 14,226 - - 6.7 0.00 3 4 2 1
3 19,528 - - 21.1 0.00 4 9 1 1
4 30,787 - - 41.9 0.00 6 16 2 2
5 23,974 - - 115.0 0.00 5 7 3 2
6 86,335 - - 552.6 0.00 18 11 16 12
7† 108,113 - - 3,600.3 16.37 22 45 7 4
8† 915,121 - - 43,211.6 31.13 190 331 65 45
9† 1,123,715 - - 43,209.8 31.64 237 375 86 52

E
PH

1 5,298 0.0 1 0.0 0.00 1 2 1 1
2 14,521 0.0 3 0.0 0.00 3 4 2 1
3 23,829 0.0 7 0.1 0.00 5 10 1 1
4 35,404 0.0 8 0.1 0.00 7 17 2 1
5 27,935 0.0 6 0.0 0.00 6 7 3 2
6 106,868 0.0 26 0.2 0.00 23 12 19 11
7 111,870 0.1 27 3.9 0.00 23 45 7 5
8† 827,050 16.6 201 300.3 0.15 171 309 60 30
9† 1,056,926 25.0 255 300.4 0.20 219 372 78 41

E
L

R
H

1 9,139 0.0 3 0.0 0.00 2 2 1 1
2 18,503 0.0 5 0.0 0.00 4 5 2 1
3 23,741 0.1 10 0.2 0.00 5 10 1 1
4 38,200 0.1 12 0.2 0.00 8 16 2 1
5 27,870 0.2 12 0.1 0.00 6 8 3 2
6 105,134 0.2 38 0.1 0.00 23 12 18 12
7 117,915 0.4 39 96.1 0.00 25 46 7 5
8† 862,747 15.3 320 300.3 0.40 183 318 60 31
9† 1,103,859 12.7 395 300.5 0.13 235 378 80 44

E
SC

H

1 5,298 0.0 1 0.0 0.00 1 2 1 1
2 14,226 0.0 3 0.0 0.00 3 4 2 1
3 19,528 0.0 4 0.0 0.00 4 9 1 1
4 31,582 0.2 7 0.1 0.00 6 16 2 2
5 27,629 0.0 6 0.0 0.00 6 7 3 2
6 90,839 0.1 19 0.1 0.00 19 10 17 14
7 100,650 1.1 22 0.4 0.00 20 45 7 4
8 776,769 47.0 165 14.5 0.00 158 303 60 30
9† 946,693 122.5 200 300.3 0.07 192 368 79 43
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Table 17: Overview of the computational results of the solution methods on the MSMCFLP with
κ = 5. Instances marked with a † are terminated according to the stopping criteria as explained in
Subsection 5.1.3. AL indicates the number of access locations, whereas Wi-Fi, SVC and Alarm
indicate the number of service access points of the corresponding service.

First phase Second phase

No. Objective Time (s) AL Time (s) Gap (%) AL Wi-Fi SVC Alarm

E
xa

ct

1 5,298 - - 0.3 0.00 1 2 1 1
2 14,226 - - 8.7 0.00 3 4 2 1
3 19,528 - - 37.8 0.00 4 9 1 1
4 27,017 - - 189.7 0.00 5 16 2 2
5 23,974 - - 122.1 0.00 5 7 3 2
6 86,335 - - 711.3 0.00 18 11 16 12
7† 123,908 - - 3,605.1 30.54 25 44 8 5
8† 903,732 - - 43,218.8 45.51 188 309 67 39
9† 1,188,758 - - 43,208.0 47.90 249 382 93 55

E
PH

1 5,298 0.0 1 0.0 0.00 1 2 1 1
2 14,521 0.0 3 0.0 0.00 3 4 2 1
3 19,548 0.0 5 0.1 0.00 4 9 1 1
4 31,361 0.0 7 0.1 0.00 6 16 2 1
5 27,935 0.0 6 0.0 0.00 6 7 3 2
6 106,868 0.0 26 0.1 0.00 23 12 19 11
7 111,625 0.1 24 1.7 0.00 23 45 7 5
8† 806,518 16.1 184 300.2 0.10 165 312 62 30
9† 1,033,239 26.6 223 300.3 0.05 213 372 81 42

E
L

R
H

1 9,139 0.0 3 0.1 0.00 2 2 1 1
2 18,503 0.1 5 0.0 0.00 4 5 2 1
3 23,741 0.1 10 0.8 0.00 5 10 1 1
4 34,300 0.1 12 0.1 0.00 7 16 2 2
5 27,870 0.2 12 0.1 0.00 6 8 3 2
6 105,134 0.3 37 0.2 0.00 23 12 18 12
7 117,915 0.5 38 19.3 0.00 25 46 7 5
8† 849,274 13.0 319 300.3 0.07 180 314 60 30
9† 1,087,098 19.3 389 300.4 0.13 231 378 79 43

E
SC

H

1 5,298 0.0 1 0.0 0.00 1 2 1 1
2 14,226 0.0 3 0.0 0.00 3 4 2 1
3 19,528 0.0 4 0.1 0.00 4 9 1 1
4 27,563 0.2 5 0.1 0.00 5 16 2 2
5 27,629 0.0 6 0.0 0.00 6 7 3 2
6 90,839 0.1 19 0.1 0.00 19 10 17 14
7 92,968 1.1 18 0.2 0.00 18 45 8 4
8† 722,300 45.1 145 300.2 0.04 144 308 60 30
9 883,783 120.4 179 23.5 0.00 176 370 81 44
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Table 18: Overview of the computational results of the solution methods on the MSMCFLP with
κ = 10. Instances marked with a † are terminated according to the stopping criteria as explained
in Subsection 5.1.3. AL indicates the number of access locations, whereas Wi-Fi, SVC and Alarm
indicate the number of service access points of the corresponding service.

First phase Second phase

No. Objective Time (s) AL Time (s) Gap (%) AL Wi-Fi SVC Alarm

E
xa

ct

1 5,298 - - 0.3 0.00 1 2 1 1
2 14,226 - - 8.9 0.00 3 4 2 1
3 19,528 - - 29.9 0.00 4 9 1 1
4 27,017 - - 137.0 0.00 5 16 2 2
5 23,974 - - 123.3 0.00 5 7 3 2
6 86,335 - - 1,025.2 0.00 18 11 16 12
7† 120,241 - - 3,602.4 29.64 25 45 7 5
8† 919,707 - - 43,219.7 50.61 193 310 67 38
9† 1,408,962 - - 43,208.2 62.59 301 387 97 63

E
PH

1 5,298 0.0 1 0.0 0.00 1 2 1 1
2 14,521 0.0 3 0.0 0.00 3 4 2 1
3 19,548 0.0 5 0.1 0.00 4 9 1 1
4 27,306 0.0 5 0.0 0.00 5 16 2 1
5 27,935 0.0 6 0.1 0.00 6 7 3 2
6 106,868 0.0 26 0.1 0.00 23 12 19 11
7 104,061 0.1 21 0.2 0.00 21 44 7 5
8† 803,564 17.0 175 300.2 0.08 165 309 60 32
9† 1,011,979 30.6 211 300.2 0.09 208 374 80 43

E
L

R
H

1 9,139 0.0 3 0.1 0.00 2 2 1 1
2 14,226 0.1 19 0.3 0.00 3 4 2 1
3 23,741 0.1 21 5.0 0.00 5 10 1 1
4 31,188 0.1 27 4.3 0.00 6 16 2 2
5 27,870 0.2 35 0.7 0.00 6 8 3 2
6 90,072 0.3 134 3.0 0.00 19 10 17 13
7 99,652 0.7 79 18.7 0.00 20 46 7 5
8† 761,230 12.9 605 300.6 0.69 154 314 61 32
9† 992,688 13.8 763 300.5 2.59 203 382 80 47

E
SC

H

1 5,298 0.0 1 0.0 0.00 1 2 1 1
2 14,226 0.0 3 0.0 0.00 3 4 2 1
3 19,528 0.0 4 0.1 0.00 4 9 1 1
4 27,563 0.2 5 0.1 0.00 5 16 2 2
5 27,629 0.0 6 0.0 0.00 6 7 3 2
6 90,839 0.1 19 0.1 0.00 19 10 17 14
7 92,968 1.0 18 0.1 0.00 18 45 8 4
8 714,246 44.0 143 7.3 0.11 142 308 60 30
9† 876,355 119.5 175 300.2 0.09 174 371 82 44
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B Maps of Test Instances

In this section, the maps of the test instances are given. The locations are indicated by the red open
circles. The cyan, green and yellow filled circles indicate the demand points of Wi-Fi, SVC and
Alarm, respectively.

Locations

Region Boundary

Wi-Fi

SVC

Alarm

Wi-Fi SVC Alarm
Figure 9: Map of instance 1.
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Locations

Region Boundary

Wi-Fi

SVC

Alarm

Wi-Fi SVC Alarm
Figure 10: Map of instance 2.

Locations

Region Boundary

Wi-Fi

SVC

Alarm

Wi-Fi SVC Alarm
Figure 11: Map of instance 3.

48



Locations
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Wi-Fi

SVC

Alarm

Wi-Fi SVC Alarm
Figure 12: Map of instance 4.
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Wi-Fi
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Alarm

Wi-Fi SVC Alarm
Figure 13: Map of instance 5.
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Locations
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Wi-Fi

SVC

Alarm

Wi-Fi SVC Alarm
Figure 14: Map of instance 6.

Locations
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Wi-Fi

SVC

Alarm

Wi-Fi SVC Alarm
Figure 15: Map of instance 7.
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Locations
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Wi-Fi

SVC

Alarm

Wi-Fi SVC Alarm
Figure 16: Map of instance 8.

Locations

Region Boundary

Wi-Fi

SVC

Alarm

Wi-Fi SVC Alarm
Figure 17: Map of instance 9.
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