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Wind turbine aerodynamics can be broadly classified in the high Reynolds number and
low Mach number regime. Flows in this regime are generally incompressible and have large
regions where they can be considered as inviscid. Thus, a great number of tools have been
developed with incompressible and inviscid flow assumptions. However, as wind turbines
designs become more complicated and more efficient, higher fidelity and more accurate tools
like CFD are necessary. In this paper, a new open source pressure based incompressible RANS
solver for wind turbine applications is introduced. The new solver is implemented within
the open source multiphysics CFD suite SU2. A second order finite volume method is used
for the space discretization and Euler implicit and explicit schemes for the time integration.
Two turbulence models - the k − ω mean shear stress model (SST) and the Spalart-Allamaras
model, are available. A verification and validation study is carried out on the solver based on a
number of standard problems and finally an investigation into the effect of a vortex generator
on turbulent boundary layer is presented.

I. Nomenclature

Ûm f Mass flux across a face f

Ω Domain of the problem

®n Normal vector

Cd Drag coefficient

Cf Skin friction coefficient

P Pressure

U Solution vector

Symbols

µdyn Dynamic viscosity

µtot Total viscosity

µtur Turbulent viscosity

ρ Density

Superscripts

∗ Estimate

′ Correction

c Convective fluxes

n Current time level

p Pressure contribution

v Viscous fluxes
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II. Introduction
Flows around wind turbines generally fall under the high Reynolds number and low Mach number regime that

is somewhat unique and greatly advantageous in terms of numerical analysis. The high Reynolds number means
large regions of the flow can be considered inviscid except for a small region around the body known as the boundary
layer. The low Mach numbers imply that the flow remains incompressible. This combination of conditions have
been exploited to develop a wide variety of numerical tools based on simplifications of the Navier-Stokes equations.
Blade element momentum theory, based on global momentum balance across the wind turbine[1], has been extremely
useful in determining wind turbine behavior and has been extended using empirical corrections[2] to account for more
complicated effects. Other numerical methods based on inviscid theory like panel methods and lifting line theory[3] have
been successfully used to compute flow around a wind turbine blade including the wake. Viscous inviscid interaction
tools like RFOIL[4, 5] can be used in combination with the lifting line methods to account for the presence of a boundary
layer on turbine blades. However as the size of the turbine blades has increased, issues like thick airfoils, transition
modeling are becoming more important. Additionally, new concepts to improve the efficiency of the turbines (e.g.
vortex generators) are becoming more common. While it is possible to extend the existing tools like RFOIL to account
for some of the new problems[6–8] arising out of modern wind turbine blades, they are still limited in their scope of
applicability. Thus, a higher fidelity general purpose tool like CFD becomes necessary. This, among other factors,
motivated the development of a new open-source CFD method for the wind energy community. While other tools exist
(e.g. OpenFOAM [9] (also open source), EllipSys2D/3D[10, 11]), we hope to leverage the excellent multi-physics
capabilities of SU2[12, 13] and make it available for the wider wind energy community. Apart from wind turbine blade
analysis, CFD methods has been extensively used for wind farm analysis[14] as well.

In this paper we present a pressure based incompressible RANS solver implemented within the open source
multiphysics suite SU2[12, 13]. The equations are discretized on collocated unstructured grids using a second order
finite volume method. The integration in time is carried out using Euler implicit and explicit methods. Two turbulence
models, Spalart-Allamaras (SA)[15] and the Menter Shear Stress Transport (SST)[16], are available for turbulence
modeling. Currently, the SA turbulence model has been extended to treat natural transition by the Bas-Cakmakcioglu
(BC) tranisition model[17] and the Langtry-Menter[18] transition model will be incorporated as the next step.

The main challenge in solving the incompressible flow equations lies in resolving the pressure-velocity coupling[19–
23]. Physically this challenge arises due to the pressure disturbances travelling at the speed of sound which, under the
incompressible flow assumption, is infinitely fast and leads to numerical problems. For compressible flow problems
(with a finite speed of sound), the continuity equation acts as an evolution equation for density which can be used in
conjunction with the energy equation and a gas law to obtain the pressure field. However as the continuity equation
reduces to a divergence condition on the mass flux for incompressible flows and the energy equation is decoupled, there
is no direct way to compute the pressure field. To alleviate this, the pressure can be eliminated from the equations
using derived quantities like stream function and vorticity[24] which can then be solved to obtain the flow field. Such
methods, however, do not generalize well into 3-D and the use of primitive variables (pressure and velocity) is preferred.
The pressure-velocity coupling can be overcome using primitive variables in a variety of ways which are broadly
classified as either "pressure-based" or "density-based" methods. An example of the density based method is the pseudo
compressibility approach[19, 25, 26] where an artificial speed of sound is introduced in the continuity equation to mimic
the compressible flow formulation. This method belongs to the more general approach of pre-conditioned compressible
flow solution methods[27]. The existing incompressible solver in SU2 follows this approach and has been extended
to variable-density flows and heat transfer applications[27]. Alternatively in a pressure based method the continuity
equation is satisfied directly[20]. The combination of the continuity equations and the momentum equations can be
used to obtain a condition for pressure which can then be used to solve the continuity and momentum equations. The
earliest such approach is the marker-and-cell (MAC) method[28] where pressure is used as a mapping parameter to
satisfy the continuity equation and a Poisson equation is solved for pressure. However, this method was expensive due to
its iterative nature and requirement of a Poisson solution in every iteration. This was improved upon by solving for
pressure and velocity corrections instead of pressure leading to faster convergence. The semi-implicit pressure linked
equations (SIMPLE) and SIMPLE-like algorithms[29, 30] are very popular for this type and is also implemented in the
current paper.

Originally, these methods were developed for staggered grids, where pressure is stored at cell centers and velocities
on the cell faces. This conserves the mass and also avoids the odd-even decoupling of pressure. Extension to collocated
grids needs special attention. Momentum interpolation methods to compute the mass flux based on the formulation
introduced by Rhie and Chow in [31] is adapted in the current paper to avoid the odd-even decoupling of pressure.
Numerous authors[32–36] have pointed out the dependence of the original interpolation scheme on factors such as
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under-relaxation and time step size. Consequently, the original momentum interpolation scheme is adapted to account
for such factors.

In the following sections, first the governing equations and the discretization schemes are described, followed by
a section on verification and validation based on standard problems. Finally, the effect of the presence of a vortex
generator on a turbulent boundary layer is examined.

III. Model equations and numerical discretization
The general structure of the PDE solved in SU2 is of the form[13]

∂tU + ∇ · ®Fc − ∇ · ®Fv = Q in Ω, t > 0, (1)

where U is the vector of state variables, ®Fc are the convective flux, ®Fv are the viscous flux and Q is a source term. In a
pressure based approach, the momentum equations and the pressure correction equation are solved sequentially. The
pressure correction equation is derived based on a combination of momentum and continuity equations. The following
sections briefly outline the derivation.

A. Momentum equation
For the momentum equations, the terms in Eq. 1 are

U =


u1

u2

u3

 , ®Fc
i =


ρuiu1

ρuiu2

ρuiu3

 , ®Fv
i =


τi1

τi2

τi3

 , Q = − ®Fp
i =


∂1P
∂2P
∂3P

 (2)

where ®v = (u1, u2, u3) is the velocity vector, ρ is the density, P is the static pressure and the viscous stresses are
τi j = µtot

(
∂jvi + ∂ivj −

2
3δi j∇ · ®v

)
. The total viscosity coefficient, µtot is the sum of the dynamic viscosity µdyn and

turbulent viscosity µtur , which is computed via a turbulence model. The Spalart-Allmara(S-A) and the Mean Shear
Stress Transport(SST) turbulence models can be used to compute µtur .

1. Spatial discretization
The spatial discretization is performed on an edge based dual grid using a finite volume approach[21, 22, 37]. The

control volumes are constructed using a median-dual (vertex-based) scheme[13, 38]. Integrating the Eq. 1 on the
domain Ω, ∫

Ω

∂U
∂t

dΩ +
∫
Ω

∇( ®Fc − ®Fv)dΩ = −
∫
Ω

∇PdΩ, (3)∫
Ω

∂U
∂t

dΩ +
∫
∂Ω
(F̃c − F̃v) · ®dS = −

∫
∂Ω

PI · ®dS,∫
Ω

∂U
∂t

dΩ + R(U) = −Fp, (4)

where Fp = |Ω|∇P is the pressure contribution treated as a source term and R(U) is the residual vector consisting of the
discretized convective and viscous fluxes, F̃c and F̃v .

The convective fluxes are discretized using a standard upwind scheme and second order accuracy is achieved via
reconstruction of variables on the cell faces by a MUSCL scheme. The viscous discretization requires the evaluation of
the gradients at the faces of control volumes. For a general variable φ this gradient is evaluated as

∇φ · ®n =
φ j − φi

|xj − xi |
αf +

1
2
(∇φ|i + ∇φ|j) · (®n − αf ®s), (5)

where ®n is the face normal, ®s is the normalised vector connecting the cell centers i and j across the face, |xj − xi | is the
distance between the nodes i and j and αf = ®s · ®n. The gradients at cell centers i and j can be computed using either the
Green-Gauss or the least squares theorem.
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2. Time integration
Following the approach outlined in [13] the solution update ∆Un

i = Un+1
i −Un

i of an element i for implicit time
stepping is (

|Ω|

∆tni
δi j +

∂Ri(Un)

∂Uj

)
∆Uj = −R(Un) − Fp

i , (6)

where n indicates the current time level. A local time stepping scheme is used to accelerate the convergence as each cell
advances at a suitable local time step.

B. Continuity equation
The continuity equation in the discrete form is∑

f

Ûm f =
∑
f

ρ ®Uf · ®n f = 0, (7)

where ®Uf is the velocity at a face f , ρ is the fluid density and ®n f is the face normal. Using a linear interpolation to find
this face velocity leads to the checkerboard problem in pressure and thus momentum interpolation techniques are used.
This can also be interpreted as adding a third order derivative of pressure to stabilize the oscillations in the pressure
field.

1. Momentum interpolation of velocities

Consider a face f between two nodes P and E . Denoting the matrix

(
|Ω |

∆t δi j +
∂Ri

∂Uj

)
in Eq. 6 by the matrix Ai j , we

have
Ai j∆Uj = −R(Un

i ) − Fp
i ,

which can also be written as
diag(Ai j)∆Uj + N i j∆Uj = −R(Un

i ) − Fp
i ,

where N i j consists of the off-diagonal terms of the jacobian matrix Ai j . Thus, the velocity at any two points P and E at
time level n + 1 can be written as

UP = Un
P + ∆UP = Un

P −
1

diag(A) P

(
R(Un) + NP∆UN(P) + Fp

P

)
, (8)

UE = Un
E + ∆UE = Un

E −
1

diag(A)E

(
R(Un) + NE∆UN(E) + Fp

E

)
. (9)

Here N(P) represents the neighbors of any node P. We can hypothetically write the new velocity at a face f between P
and E , Uf as,

Uf = Un
f + ∆Uf = Un

f −
1

diag(A) f

(
R(Un) + N f∆UN( f ) + Fp

f

)
. (10)

Denoting BP = diag(A)−1
P

(
R(Un

P) + N∆UN(P)
)
, we can write

Bf = (λPBP + λEBE ), (11)

where λP and λE are the weighting factors for the interpolation. Using Eqs. 8, 9, 10 and 11 and expanding the pressure
source term FP from Eq. 4, the velocity at a face f after the momentum equation is

U∗f =
(
λPU∗P + λPU∗E

)
−

|Ω| f

diag(A) f
∇Pf +

(
λP

|Ω|P

diag(A)P
∇PP + λE

|Ω|E

diag(A)E
∇PE

)
. (12)

First, we assume (
λP

|Ω|P

diag(A)P
∇PP + λE

|Ω|E

diag(A)E
∇PE

)
=

|Ω|

diag(A)
∇Pf (13)
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and let
|Ω| f

diag(A) f
=

|Ω|

diag(A)
,

U f = (λPUP + λEUE ).

The estimated face velocity can now be written as

U∗f = U∗
f
−
|Ω|

diag(A)

(
∇Pf − ∇Pf

)
. (14)

Since the solution from momentum equations do not yet satisfy the continuity constraint the velocities are denoted by
U∗. The assumption made in Eq. 13 can be shown to be second order accurate[22]. The derivations so far follow the
procedure outlined by Rhie-Chow[31] and no corrections[32–36, 39] have been applied to account for under-relaxation
and time stepping.

2. Pressure Correction equation
Let the velocity corrections be defined as U ′, pressure corrections as P′. Similar to the velocity estimate at a face,

the velocity correction relation based on pressure corrections can be written as,

U ′f = U ′
f
−
|Ω|

diag(A)

(
∇P′f − ∇P′

f

)
. (15)

Rewriting Eq. 7 in terms of estimated velocity and velocity corrections,∑
f

Ûm f =
∑
f

( Ûm∗f + Ûm
′
f ) = 0, (16)

where Ûm∗f and Ûm
′
f are the estimate and correction of the mass flux respectively.

From Eqs. 14, 15 and 7, ∑
f

ρ
(
U ′

f
−
|Ω|

diag(A)

(
∇P′f − ∇P′

f

))
· ®n f = −

∑
f

Ûm∗f , (17)

−
∑
f

ρ
|Ω|

diag(A)

(
∇P′f

)
· ®n f = −

∑
f

Ûm∗f −
∑
f

ρU ′
f
· ®n f −

∑
f

ρ
|Ω|

diag(A)
∇P′

f
· ®n f . (18)

The terms under the overbar on the RHS depend directly on the neighbors and are neglected (this is the SIMPLE
assumption). Thus, we have an equation for the pressure correction as,

−
∑
f

ρ
|Ω|

diag(A)

(
∇P′f

)
· ®n f = −

∑
f

Ûm∗f . (19)

The term
∑

f Ûm∗f is calculated using the estimated velocities U∗f in Eq. 14 and is treated as a source term. Eq 19 is a
Poisson equation for the pressure correction which has to be solved sequentially with the momentum equations. No
under-relaxation is used for the Poisson solver. A multigrid method can be applied specifically for the Poisson problem
to speed up the convergence, especially for unsteady problems.

3. Pressure and velocity corrections
Finally, based on the solution to the pressure correction and the pressure correction field, the pressure and velocities

at a node P can be corrected as

Pn+1
P = P∗P + αpP′, (20)

Un+1
P = U∗P + DP∇P′P . (21)

Here, DP =
|Ω |

diag(A) is the ratio of the volume of the element to the momentum equation coefficients at the node P and
αp is the under-relaxation factor which is explained in more detail in the following section. Typically, the velocity
correction is also under-relaxed but instead here the pseudo time-stepping scheme is used.
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C. SIMPLE family of algorithms
There are many popular schemes for the pressure-based methods and one of the more widely used algorithm is the

SIMPLE[30] and its derivatives[22, 40–42]. In this paper, the SIMPLE, SIMPLEC and PISO algorithms are used.

1. SIMPLE/SIMPLEC
In summary, to find the solution at time n + 1 the following algorithm is employed:
1) Set the solution at n as the initial guess.
2) Solve the momentum equations Eq. 6 to find the estimated velocity U∗.
3) Find the mass flux at the faces m∗f using the velocities from Eq. 14.
4) Assemble the pressure correction equation based on the mass fluxes and the momentum equation.
5) Solve the pressure correction equation (Eq. 19) to find the pressure and velocity corrections based on Eqs. 21

and 20.
6) The updated solutions are set as the solution at time n + 1 and solve other scalar equations, like turbulence.
One of the key assumptions involved in deriving the pressure correction equation was neglecting the terms involving

the pressure and velocity corrections of neighbors. While this does not affect the final solution as all corrections go to
zero at convergence, it does slow down the rate of convergence. Many improvements are employed to improve the speed
of convergence.

One such improvement is to modify the under-relaxation used during the pressure correction in Eq. 20. The
underrelaxation factor for pressure, αP is set as 1 − αU , where αU is the velocity under-relaxation. While there is no
explicit under-relaxation applied to the velocity equation, the pseudo time step acts like an under-relaxation. Thus, the
pressure under-relaxation is

αP =
(|Ω|/∆t)P,U

1 + (|Ω|/∆t)P,U
. (22)

Another variation that is implemented in the current work is the SIMPLEC algorithm. The velocity correction at any
node P is assumed to be the weighted average of the corrections at the neighboring points. This leads to a smaller term
being neglected from the pressure correction, thus improving the speed of convergence. There is only a modification of
the coefficients of the pressure correction equation compared to the SIMPLE algorithm and the sequence of operations
remains the same.

2. PISO
In this variation, an additional correction step is employed. The same sequence of operations outlined for SIMPLE

is followed, and the corrected velocity and pressure field is used to explicitly solve the momentum equations to find a
new estimate of the velocity field. Based on the explicit velocity solution, the mass imbalance is computed once again
and the pressure correction is solved to find a newer estimate of velocity. The explicit solution recovers a portion of the
neglected terms and aids in increasing the rate of convergence.

D. Boundary conditions
The boundary conditions available are Euler (flow tangency), no slip wall, velocity inlet, pressure outlet and

symmetry boundaries. Eq. 6 is discretized using the median-dual or vertex-centered approach which is different from
the conventional approaches[22, 37, 43, 44]. The node for the boundary control volume lies on the boundary face itself
and thus special attention is required during application of boundary conditions[37]. Additionally, there is no need
for momentum interpolation of velocities to compute mass flux across the face as the velocity on the boundary face is
available from the solution.

The application of each of these boundaries for the momentum equations, mass flux computation and pressure
correction equation is described below.

1. Momentum equations
1) Euler or flow tangency condition: This boundary condition specifies a zero normal flux across the boundary (e.g.

inviscid wall). For the momentum equations, this is applied as a Neumann boundary with zero flux across the
face. Mass flux across the face is also set to zero.
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2) Wall (no-slip): This is a strong boundary condition and is generally used to impose a no slip condition on walls.
Since the discretzation is vertex-based the boundary node lies on boundary face and thus the velocity boundary
condition can be enforced as a Dirichlet boundary condition. Mass flux across the face is also set to zero.

3) Inlet: For a prescribed velocity at the inlet, the velocity is imposed as a Dirichlet boundary condition similar to
the wall boundary. However, the mass flux is not zero but can be easily computed based on the specified velocity.

4) Outlet: For a specified pressure outlet, a Neumann boundary condition is applied at the outlet. Similarly, the
mass flux across the face is also computed using the latest estimate of the velocity.

5) Symmetry: A symmetry boundary does not only imply a zero flux across the face but also a reflection of the
solution state across the boundary face. Consequently, a reflected state of the current state is computed and a
Neumann boundary condition is applied. Massflux across the face is set to zero.

6) Farfield: Farfield boundaries are generally used in external flow simulations to denote the freestream conditions.
This is treated as an inlet-outlet type boundary where a Dirichlet condition is used for incoming flow and a
Neumann boundary for outgoing flow based on the nature of the flux at the boundary face.

2. Pressure correction equations
If the pressure at a particular boundary is unknown (Euler wall, Wall, Inlet, Symmetry) it is treated as a Neumann

boundary and the value of the pressure is updated based on the pressure correction. However, if the value of pressure is
specified (Outlet with a specified pressure), the value of the pressure is fixed and the pressure correction is set to zero as
a Dirichlet boundary condition.

IV. Results

A. Verification

1. Laminar flow: Channel flow with analytical solution
To verify the order of accuracy of the solver, a fully developed laminar channel flow (schematic in Fig. 1a) with

Re = 400 is chosen. Under the fully developed flow assumptions, the velocity profile at any location y can be computed
as

u(y) = −
dP
dx

1
2µ
(h2 − y2), (23)

where dP
dx is the pressure gradient across the channel, µ is the laminar viscosity, h is the half channel width.

(a) Schematic of a channel

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

y

U

Velocity, Re = 400

Coarse
Re�ned

Fine
Analytical

(b) Comparison of numerical and analytical results.

Fig. 1 Channel flow schematic (a) and velocity profile comparison between numerical and analytical solution
at different grid resolutions.

Three different mesh resolutions are chosen and the numerical results are compared to the analytical solution (Fig.
1b). The error in the numerical solution is computed for the three meshes and the order of accuracy can be seen to
be second order (Fig. 2a), as expected. Convergence history is also shown for the coarse grid with SIMPLEC and
PISO algorithms (Fig. 2b). As expected, the PISO algorithm converges to the final solution faster than the SIMPLEC
algorithm.
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(a) L2 norm of the error
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(b) Convergence history.

Fig. 2 Channel flow error norm (a) and convergence history (b).

2. Couette flow
Couette flow can be described as the laminar flow between two concentric rotating cylinders. The schematic for

Couette flow is shown in Fig. 3a with r0 as the inner radius and r1 as the outer radius. ω1 and ω2 refer to the angular
velocities of the two cylinders. The analytical solution for the velocity as a function of radius r can be described as

uθ (r) = r0ω0
r1/r − r/r1

r1/r0 − r0/r1
+ r1ω1

r/r0 − r0/r
r1/r0 − r0/r1

, (24)

(a) Schematic of Couette flow.
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(b) Comparison of numerical and analytical results.

Fig. 3 Couette flow.

The simulation was carried out on a domain with r0 = 1 and r1 = 5 units. The outer wall is held fixed and the inner
wall is rotating at an angular velocity ω0 = 1 rad/s. Fig. 3b shows the comparison of velocity along y = 0. We observe
a very good agreement between the numerical and analytical solution

B. Validation

1. Laminar flow over a flat plate
The results from the laminar flow over a flat plate (Re = 4e5) is compared to the Blasius solution [45] at different

locations (Figs. 5a 5b, 6a, 6b). The domain and the mesh used for the simulation is shown Fig. 4a. A uniform inflow is
prescribed and a small inflow region with a symmetry boundary is used before the flat plate begins. Nodes are clustered
at near the wall and stretched away from it in the normal direction and clustered around the interface between the
symmetry and the wall region and stretched towards the outlet in the streamwise direction.

The results for the streamwise component (Figs. 5a and 5b) of the velocity shows excellent agreement between the
numerical and Blasius solution for both the density-based and pressure-based methods. The comparison for the normal
velocity component (Figs. 6a and 6b) is not as good but it can be seen that the pressure-based method does better than
the density based method. Skin friction shows excellent agreement for both cases (Fig. 4b).
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(a) Flat plate domain.
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(b) Skin friction comparison.

Fig. 4 Flat plate domain (a) and skin friction comparison between numerical and Basius solution (b).
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(b) x = 0.35.

Fig. 5 Comparison of x− component of velocity to the Blasius solution for laminar flow over a flatplate.
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Fig. 6 Comparison of y− component of velocity to the Blasius solution for laminar flow over a flatplate.

2. Laminar flow over a cylinder
A laminar flow over a cylinder is simulated for Re = 40 and the resulting drag coefficient is plotted as a function of

grid refinement. The simulations converge to a fixed value of Cd as the grid is refined (Fig. 7a). Fig. 7b shows the
pressure coefficient along the cylinder for different grid resolutions which also converge upon grid refinement. The low
Reynolds number is chosen to ensure the flow remains laminar and steady. The results in Fig. 7a obtained match closely
with those obtained from other reference solutions[46].

3. Inviscid flow over a NACA 0012 airfoil
Inviscid flow over a NACA 0012 hydrofoil at an angle of attack of 5° is simulated. This case is chosen to demonstrate

the inviscid flow solver. The airfoil is placed in a rectangular channel and inclined at an angle of 5 degrees to the
incoming flow. A flow tangency condition (i.e. free slip) is enforced on the surface of the airfoil. The boundary
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(b) Pressure coefficient along the cylinder.

Fig. 7 Laminar flow over a cylinder at Re = 40.

conditions used on the channel are inlet, outlet and free slip walls. This confguration of boundary conditions is necessary
to ensure a unique solution from the solver. The streamlines and the pressure contours are shown in Fig. 8a and the
distribution of the pressure coefficient over the hydrofoil is shown in Fig. 8b and compared to the results from RFOIL[6],
a wind energy industry standard airfoil design tool. We observe good agreement between the inviscid version of the new
pressure based method in SU2 and RFOIL.

(a) Inviscid flow streamlines

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  0.2  0.4  0.6  0.8  1  1.2

C
p

x

Inviscid NACA 0012

RFOIL
SU2 PB

(b) Comparison of pressure coefficient at 5° between
SU2 and RFOIL.

Fig. 8 Results from inviscid flow over NACA 0012.

4. Laminar flow over a backward facing step
Flow over a backward facing step is a very popular validation problem and is commonly used to study the behavior

of a numerical solver in separated flows. The domain consists of an inlet channel which expands into a larger channel
across a step. The flow seperates at the step and re-attaches downstream along the lower wall. Depending on the
Reynolds number, a secondary separated region can also occur along the top wall. We simulate a laminar flow over
a backward facing step at Re = 800 where flow is expected to separate along both the bottom and top walls. The
numerical results compared to results from Gartling[47]. Step height is 0.5 units and the channel height is 1 unit.

Fig. 9a compares the numerical and experimental results for the streamwise velocity component at two different
locations. The velocity profile shows good agreement at both locations. The streamlines for a part of the domain are
shown in 9b which clearly shows the two recirculating regions that are formed. The length of the recirculating zone
along the lower wall is 5.81 units and along the upper wall is 5.69 units which match the results from [47].

5. Lid driven cavity
Flow within a lid-driven cavity is another classic validation problem in the CFD community. This case is chosen

here to test the moving wall boundary condition. In this section, the results from a lid driven cavity is compared against
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Fig. 9 Laminar flow over a backward facing step. Comparison of velocity profiles obtained from the numerical
results with the literature at two different x-locations (a) and streamlines showing the two recirculating zones
along the bottom and top walls (b).

benchmark results from Ghia[48]. The flow is fully laminar and at a Re = 400. The domain consists of a unit square,
where all four sides are treated as solid walls. The top wall is moving at a constant unit velocity in the x− direction.
Results from the density based (DB) version and the newly implemented pressure based (PB) version are shown in Fig.
10a and results from two successively fine grids are shown in Fig. 10b. On the coarser (65 × 65) grid, the PB method
matches the reference solution more closely than the DB method. The difference between the reference solution and the
PB solution improves upon grid refinement as expected.
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(a) Comparison between density based and pressure
based methods on a 65 × 65 grid
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(b) Results from 65 × 65 and 129 × 129 grid with the
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Fig. 10 Comparison of the velocity profile obtained from pressure based (PB) and density based (DB)
methods in SU2 and reference solution[48] along the centerline(x = 0.5) for lid driven cavity, Re = 400.

6. Turbulent flow over a flat plate
A turbulent flow over a flat plate is simulated at Re = 5e6 and the results compared to the standard 2D zero pressure

gradient flat plate validation case from the NASA Turbulence Modeling resource[49]. The domain used is similar to the
one shown in Fig. 4a, with more refinement in the wall normal direction to ensure adequate resolution of the turbulent
boundary layer near the wall. The grids used are from the NASA turbulence modeling database and the coarsest grid has
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an average y+ ≈ 1.7. Subsequent grids are refined ensuring proper resolution of the boundary layer near the wall. Fig.
11a shows the comparison of skin friction obtained from the current pressure based method with the one obtained from
FUN3D[49]. Fig. 11b shows the drag coefficient of the flat plate obtained for different grid resolutions. We observe that
the drag coefficient converges to a single value upon grid refinement.

(a) Skin friction comparison along the flatplate. (b) Drag coefficent with different grid resolutions.

Fig. 11 Turbulent flow over a flat plate at Re = 5e6.

7. Turbulent flow over NACA0012 airfoil
Flow over airfoils are a very typical problem in most aerodynamic applications. Lift and drag polars of airfoils used

in the different sections of a wind turbine blade are commonly used as an input to the lower fidelity tools based on Blade
Element Momemntum theory, lifting line theory, etc. which can then be used to analyze the performance of turbine
blades. In this section, a fully turbulent flow over NACA0012 airfoil employing the SA and the SST turbulent models
are compared with the experimental data[50] at a Re number of 6.0e6 on a grid with approximately 14000 elements.
The pressure-based method matches the experimental data very closely (Fig. 12) at all angles of attack and also captures
the maximum lift angle.

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

-0.5  0  0.5  1  1.5  2

C
d

Cl

NACA 0012, Grid level 2

Ladson 180 grit
Ladson 120grit

SU2 PB SA
SU2 PB SST

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  2  4  6  8  10  12  14  16  18

C
d

Cl

NACA 0012, Grid level 2

Ladson 180 grit
Ladson 120grit

SU2 PB SA
SU2 PB SST

Fig. 12 Turbulent flow over NACA0012 airfoil. A comparison of the numerical solution with the experimental
data for lift to drag ratio (left) and lift coefficient for various angle of attacks (right).

V. Applications

A. Boundary layer analysis for flow past vortex generators
In this section, some results from the flow past a vortex generator (VG) on a flat plate are presented. VGs are

commonly used on wind turbines as a means to delay stall. To better understand the effect of a VG on turbulent boundary
layers, a VG is placed on a flat plate under zero pressure gradient. The height of the VG is 10 mm and is placed such
that the boundary layer thickness at the start of the VG is 45mm. The flat plate is 5m long and the leading edge of the
VG is at 2.71m from the start of the flat plate. The VG is inclined at an angle of 19° to the incoming flow.
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(a) Streamlines around the VG. (b) Vorticity around the VG on selected planes.

(c) Extent of vorticity along x− axis. (d) Extent of vorticity along y− axis.

Fig. 13 Vorticity profiles in a turbulent boundary layer around the Vortex Generator.

Fig. 13a shows the streamlines around the VG and is colored by the Q criterion. Fig. 13b shows the strength of the
vorticity in the boundary layer due to the presence of the VG at different sections (x = 2.65, x = 2.71, x = 2.77 and
x = 2.90) and how it decays further away from the VG. Figs. 13c and 13d show the extent of the vortex induced by the
VG in x− and y− directions respectively. It is clear that the effect of VG starts upstream from the leading edge of the
VG and extends far downstream. A vortex is embedded in the turbulent boundary layer which decays gradually as the
presence of the wall starts to dominate further away from the VG.

A more quantitative investigation into the boundary layer can be carried out by extracting the velocity, vorticity and
other profiles along the boundary layer on different planes like in Fig. 14. From these profiles, it becomes clear that the
effect of the VG on velocity begins from x = 2.65 on the y = 0 plane and extends up to x = 3.10. From Figs. 14a and
14b, we can see how a new shear layer is introduced into the boundary layer.

VI. Conclusions
The new pressure-based incompressible Navier-Stokes solver has been verified and validated for a variety of test

cases. Based on the verification study, the order of convergence is shown to be second order. Comparisons to Blasius
solution for flow over a flat plate and comparison with experimental data for flow over a backward facing step show good
agreements. The numerical results obtained from the new pressure based solver are also compared with an wind energy
industry standard tool, RFOIL and very good agreement is observed. SIMPLE and PISO algorithms are implemented
for the pressure-velocity coupling. Two turbulence models, namely, SA and SST are coupled and also tested with the
standard validation test cases. A typical application problem is also presented to demonstrate the use of the new open
source solver for wind energy applications.
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Fig. 14 Boundary layer profile comparison between clean and VG cases at different planes.
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