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Abstract

The dermal Advanced REACH Tool (dART) is a Tier 2 exposure modelling tool currently in develop-
ment for estimating dermal exposure to the hands (mg min−1) for non-volatile liquid and solids-
in-liquid products. The dART builds upon the existing ART framework and describes three mass 
transport processes [deposition (Dhands), direct emission and direct contact (Ehands), and contact 
transfer (Thands)] that may each contribute to dermal exposure. The mechanistic model that under-
pins the dART and its applicability domain has already been described in previous work. This paper 
describes the process of calibrating the mechanistic model such that the dimensionless score that 
results from encoding contextual information about a task into the determinants of the dART can be 
converted into a prediction of exposure (mg min−1). Furthermore, as a consequence of calibration, 
the uncertainty in a dART prediction may be quantified via a confidence interval. Thirty-six experi-
mental studies were identified that satisfied the conditions of: (i) high-quality contextual informa-
tion that was sufficient to confidently code the dART mechanistic model determinants; (ii) reliable 
exposure measurement data sets were available. From these studies, 40 exposure scenarios were 
subsequently developed. A non-linear log-normal mixed-effect model was fitted to the data set of 
Dhands, Ehands, and Thands scores and corresponding measurement data. The dART model was shown 
to be consistent with activities covering a broad range of tasks [spray applications, activities involving 
open liquid surfaces (e.g. dipping, mixing), handling of contaminated objects, spreading of liquid 
products, and transfer of products (e.g. pouring of liquid)]. Exposures resulting from a particular task 
were each dominated by one or two of the identified mass transport processes. As a consequence of 
calibration, an estimate of the uncertainty associated with a mechanistic model estimate is available. 
A 90% multiplicative interval is approximately a factor of six. This represents poorer overall preci-
sion than the (inhalation) ART model for dusts and vapours, although better than the ART model for 
mists. Considering the complexity of the conceptual model compared with the ART, the wide variety 
of exposure scenarios considered with differing dominant routes, and the particular challenges that 
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result from the consideration of measurement data both above and beneath a protective glove, the 
precision of the calibrated dART mechanistic model is reasonable for well-documented exposure 
scenarios coded by experts. However, as the inputs to the model are based upon user judgement, in 
practical use, the reliability of predictions will be dependent upon both the competence of users and 
the quality of contextual information available on an exposure scenario.

Keywords:  calibration;  dermal exposure; exposure modelling; skin

Introduction

Legis la t ion on the  Regis t rat ion, Evaluat ion, 
Authorisation, and Restriction of Chemicals (REACH) 
entered into force within the member states of the 
European Union (EU) on 1 June 2007. The legislation 
makes manufacturers and importers of chemicals respon-
sible for assessing and managing the risk posed by chem-
icals. In addition to the registration process, a chemical 
safety assessment must be performed when supply of a 
substance reaches 10 tonnes per year. This assessment 
include an exposure assessment and risk characteriza-
tion if the substance fulfils the criteria for classifica-
tion according to various hazard classes or categories 
set out in Annex I to the CLP Regulation [Regulation 
(EC) No 1272/2008 on the classification, labelling, and 
packaging of substances and mixtures] or is assessed to 
be persistent, bioaccumulative, and toxic (PBT) or very 
persistent and very toxic (vPvB). Due to the very large 
number of chemicals covered by the legislation, phased 
deadlines for registration were introduced, with 1 June 
2018 being the final deadline.

Many thousands of exposure scenarios need to be as-
sessed under REACH, and exposure modelling provides 
an essential support to this process (Tielemans et al., 2011; 
McNally et al., 2014). A pragmatic tiered approach to 
risk assessment has been proposed for both occupational 
and environmental settings (OECD, 1997). In this concep-
tual framework, screening tools are classed as Tier 1 ap-
proaches and cover broad classes of exposure scenarios. 
Through conservative assessments, they are designed to 
efficiently screen those broad classes of exposure scenarios 
of no concern from those in need of more detailed (and 
typically, expensive) assessment. Progressively more com-
plex and specific exposure assessments are performed for 
substances where the (assumed) conservative estimates 
from Tier 1 approaches exceed measures of the potential 
hazard of a substance, quantified by a metric such as a de-
rived no-effect level (DNEL). Higher tiered methodologies 
progressively incur greater cost and resource requirements 
compared with lower tiered approaches.

A variety of tools are available for assessing inhal-
ation exposures, with Tier 1 tools recently reviewed by 
Riedmann et al. (2015). The Advanced REACH Tool 

(ART) (Tielemans et al., 2011; McNally et al., 2014) is a 
web-based generic Tier 2 tool (www.advancedreachtool.
com) that is suitable for assessing exposure scenarios 
that are not filtered by Tier 1 screening tools. The ART 
follows a Bayesian approach, making use of mechan-
istically modelled estimates of exposure for a range of 
substance classifications, information on exposure vari-
ability from meta-analyses in the literature, and any 
available exposure measurements.

Goede et al. (2019) noted that important develop-
ments in dermal exposure assessment have taken place 
over the past two decades. Of particular note are the 
quantitative models that have been developed for bio-
cides (BEAT) (TNsG, 2007) and industrial chemicals 
(RISKOFDERM) (Warren et al., 2006). Whilst these 
tools can be considered as higher tier and in principle 
can be utilized under REACH, as data-driven models, 
these tools are not always transparent on their applic-
ability domains (Goede et al., 2019). A small number of 
Tier 1 screening tools such as ECETOC TRA (ECETOC, 
2012) and the Stoffenmanager (Marquart et al., 2008) 
are also available for assessing dermal exposures. To 
date, however, no Tier 2 tools are currently available for 
dermal exposure assessment.

The dART is a new generic Tier 2 exposure model 
currently in development for estimating dermal expos-
ures to the hands to low volatile liquid products and 
solids in liquid. The tool is based upon the existing ART 
platform and incorporates elements of the ART model 
for estimating dermal contamination by aerosol depos-
ition (one of three routes in the dermal exposure model). 
The mechanistic model framework is based upon that of 
the ART (Fransman et al., 2011) and follows a source-
receptor model (Schneider et al., 1999) with principal 
modifying factors (MFs) along the source-receptor 
pathway. A detailed description of the dART mechan-
istic model is provided in Goede et al. (2019) and the 
references therein. The focus of the current work is cali-
bration of the dART mechanistic model, which is the 
process of converting the dimensionless score estimated 
by the dART mechanistic model, into an exposure es-
timate following a similar process to that described 
for the ART in Schinkel et al. (2011). The calibrated 
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mechanistic model of dART provides an estimate of 
the geometric mean (GM) exposure and is one aspect 
of the overarching statistical model that underpins the 
dART. A manuscript describing the full Bayesian model 
of the dART, which incorporates within- and between-
worker sources of variability (thus allowing estimates of 
percentiles of the exposure distribution) and which can 
refine estimates based upon dermal exposure measure-
ments, is in preparation.

Methods

dART Conceptual model
The dART conceptual model is described in detail in 
Goede et al. (2019) and the supporting references. Briefly, 
the model is built on the categorization of workplace ac-
tivities into six main activity classes (AC): spray applica-
tions (AC1), activities involving open liquid surfaces (e.g. 
dipping, mixing) (AC2), handling of contaminated objects 
(AC3), spreading of liquid products (AC4), application of 
liquids in high-speed processes (e.g. oil drilling) (AC5), and 
transfer of products (e.g. pouring of liquid) (AC6). There is 
a further level of abstraction for a subset of activity classes; 
for example, AC1 activities can be subcategorized as sur-
face spraying (AC1.1) and space spraying (AC1.2).

Dermal exposure to the hands is modelled consid-
ering five mass transfer processes, originally described 
by Schneider et al. (1999). These five processes include 
aerosol deposition from the air (Dhands), direct emission 
from splashes (Ehands), transfer through hand-to-surface 
contacts (Thands), retention capacity of the hands (or 
gloved hands), and protection provided by chemical 
protective gloves. For each of the three exposure routes 
(Dhands, Ehands, andThands), the conceptual model defines 
independent principal MFs that underlay the exposure 
mechanism. An MF may be itself composed of several 
underlying multiplying determinants. Each determinant 
is assigned a score within a range based upon expert 
judgement with assessments made relative to a baseline 
category for the determinant. For example, the weight 
fraction of the substance has eight levels in the concep-
tual model (starting from ‘Pure substance’ (100%) down 
to ‘Minute’ (0.01–0.1%)) with respective scores ranging 
from 1 (for pure substance) down to 0.0006 (for minute 
amount). For this determinant, ‘Pure substance’ repre-
sents the baseline level (i.e. score of 1).

Once multiplied together, the MFs generate an overall 
score for each route of exposure. Due to the multiplica-
tive method used to derive the scores for each route of 
exposure, the scores inevitably cover several orders of 
magnitude (up to seven orders of magnitude). In some 
cases, the model predicts zero exposure from a particular 

route. The scores for each route are dimensionless and 
quantify the relative exposures in any set of exposure 
scenarios. A calibration model, described in the section 
Calibration model, is required to convert these dimen-
sionless scores to an estimate of exposure to the hands in 
terms of mass of product accumulated over the duration 
of activity.

Data sets, assignment of scores, and reliability
Thirty-six distinct experimental studies investigating 
hand exposure to low volatile liquids were identified. 
Field studies were selected from the Bayesian Exposure 
Assessment Toolkit [BEAT, Biocides Steering Group 
(2002)] and Bystanders, Residents, Operators and 
Workers Exposure models for plant protection prod-
ucts (BROWSE, www.browseproject.eu) databases, 
which contain measurement data, summary information, 
and images from high-quality dermal exposure experi-
mental studies. The original field studies were reviewed 
for scoring when necessary (for BROWSE scenarios, the 
detailed information recorded for each measurement 
was sufficient to code the determinants). Summary de-
tail on the work tasks, sampling methods, and refer-
ences to the experimental studies are given in the online 
Supplementary Material.

The 36 experimental studies selected were used to 
refine and calibrate the scoring systems developed by 
Goede et al. (2019). These studies contained sufficient 
contextual information of the workplaces and work pro-
cesses taking place (with photographs) to assign scores to 
each MF and underlying multipliers confidently. The de-
scriptions of the sampling methodologies and analytical 
methods were judged adequate and the hand exposure 
measurements were reported with a sufficient level of 
detail (i.e. raw measurement data including sampling 
duration, dilution of analyte in the applied product, and 
mass of analyte were available for each individual) to be 
used for the dART model calibration.

Scoring a scenario
Information required for the appropriate scoring of the 
scenario included if the activity took place indoors or 
outdoors, in open space or next to buildings or a densely 
planted area. For indoor exposure scenarios, informa-
tion on both the room volume and ventilation charac-
teristics were required. Information on the product use, 
including the amount of product applied, its concen-
tration, and viscosity the pressure at which the product 
may be applied, the surface area treated, duration, and 
orientation of application were required. Finally, infor-
mation on the level of segregation, distance from source 
(arm length, handheld tool), the level of automation, 
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frequency of contact with tools, controls, objects treated 
or secondary surfaces encountered during the task, and 
complexity of the objects being treated were required.

Scores for each MF were assigned according to 
the scheme described in Goede et al. (2019). A score, 
forDhands , Thands , andEhands was calculated on a per 
measurement basis based upon the contextual infor-
mation and pictures from the 36 experimental studies. 
In the majority of scenarios, the scores were common 
to all the individual measurements available within a 
unique exposure scenario. However, within-scenario 
scores varied by up to a factor of 10 from the median. 
This small within-scenario variation in scores resulted 
from a single determinant taking different values (e.g. 
some workers may have used a short handle brush while 
others used a longer brush). Relatively homogenous 
scores were desirable for calibration since significant 
variations in the scores assigned to measurements would 
imply that the measurements did not correspond to the 
same exposure scenario.

The scores for all scenarios were coded by a single 
member of the team (JG) with approximately 25% of 
scenarios, including at least one scenario per activity 
class, checked by the primary mechanistic model devel-
oper (HG) to ensure that the contextual information as-
sociated with tasks was being correctly transcribed into 
the determinants of the dART mechanistic model.

Refinement of mechanistic model
An iterative process was adopted in model develop-
ment with each iteration comprising of the steps: (i) de-
velopment or refinement of the mechanistic model; (ii) 
calibration of the non-dimensional dART score using 
representative exposure measurements; and (iii) evalu-
ation of model fit. Refinement of the model was driven 
by the evaluation stage. After each calibration, the model 
output was examined: evidence of lack-of-fit was as-
sessed for and provided evidence for refinement of the 
mechanistic model. The focus of this analysis was not 
on particular scenarios where the model under- or over-
predicted exposures, although severe lack-of-fit of indi-
vidual scenarios was examined, but rather on activity 
classes where the model appeared to be in error.

Whilst information obtained from model calibra-
tion was used to establish deficiencies in the mechanistic 
model and provided guidance on whether the mechan-
istic model had a tendency to under- or over-predict, the 
changes to the model were informed by the literature. 
Additional research was conducted in order to establish 
an evidence base for changes to the mechanistic model. 
It is important to note that the scores assigned to the 
categories of the various MFs in the mechanistic model 

were not simply tuned such that measurements associ-
ated with the scenarios were consistent with predictions 
from the calibrated mechanistic model. As an example 
of this process of refinement, one significant improve-
ment to the model resulted after preliminary calibra-
tion results suggested exposures for a subset of spraying 
scenarios, where the exposed individual was separated 
from the source by an enclosed tractor cab, were sev-
eral orders of magnitude in excess of model predictions. 
Additional data sets were identified, which corrobor-
ated this finding, and a literature search was conducted 
to inform the required revisions to the mechanistic 
model—a consideration of secondary sources of surface 
contamination (Ramwell et al., 2005). The possibility of 
encountering multiple contaminated secondary surfaces 
was subsequently considered in all scenarios. The coding 
in this work is based on the final version of the mechan-
istic model at the conclusion of model development.

Data extraction, manipulation, and version control
The calculations required to convert the scored deter-
minants into scores forDhands , Thandsand Ehands  were 
conducted using Microsoft Excel spreadsheets. New 
spreadsheets in date-stamped subdirectories were cre-
ated for each new version of the mechanistic model. 
After the completion of scoring, the spreadsheets were 
saved to .csv files and read in to the R software (The 
R Foundation for Statistical Computing, 2014). All ma-
nipulations and data cleaning were performed using R 
scripts: a direct audit trail between primary data and the 
final analysis data set was therefore documented.

A modelling data set was constructed by extracting 
the relevant information from these input files. The three 
dART dimensionless scores for Dhands, Thands, and Ehands

were extracted into the modelling data set. Information 
on each experimental measurement relating to the ex-
posure scenario was also extracted. The primary variable 
extracted was of the measurement of the active substance 
on the hands divided by the sampling time, yielding an 
exposure ‘to mass of active substance’ per minute of ac-
tivity (mg min−1). Further information on the sampling 
method (cotton sampling gloves, hand washes, etc.), and 
personal protective equipment (PPE) worn, the activity 
duration, and the concentration of the measured sub-
stance in the applied product were also extracted.

All experimental measurements (to active substance) 
were normalized by the weight fraction of the active sub-
stance present in the applied product used during the ac-
tivity. The primary variable in statistical analysis was of 
‘exposure to mass of product’ per minute of activity (mg 
min−1). A second derived variable, volume of product per 
minute of exposure (µl min−1, derived as mass per minute 
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of exposure divided by density of product) was also calcu-
lated. Loadings onto the hands or gloved hands (exposure 
per minute multiplied by sampling duration) in terms of 
both mass and volume of product were finally calculated.

Some summary information on the 40 exposure 
scenarios coded from the 36 experimental studies is 
provided in Table 1: more detailed descriptions of 
the studies are provided in the online Supplementary 
Material. For most scenarios the scores forDhands, Thands

, and Ehandswere common to all measurements within 
the scenario; in the scenarios where there were differ-
ences in scores between measurements the tabulated 
values represent median scores for determinants. Two 
sets of summary statistics are also provided for the asso-
ciated measurements; the GM and geometric standard 
deviation (GSD) (mg min−1) for measurements ‘not 
under PPE’, which includes measurements taken above 
a glove (potential exposures), using a protective glove 
as the sampling device (potential exposures) or on bare 
hands in the absence of a protective glove (actual ex-
posures), and ‘under PPE’ (actual exposures). For most 
scenarios, one column is blank which reflects that sam-
pling tended to be either exclusively ‘under PPE’ or ‘not 
under PPE’ within a scenario. In only four scenarios 
(scenario labels 1, 5, 29, and 30) were measurements 
above and beneath a protective glove available. The 
AC 1.1 scenario ‘Knapsack motorized spraying’ (scen-
ario 5) was unique in that matched-pair measurements 
(a measurement both above and beneath a protective 
glove) for 15 workers were available.

A comparison of the exposure to product (mg min−1) 
in the 40 coded exposure scenarios is made in Fig. 1. 
The boxplots in the upper panel of Fig. 1 are based 
upon experimental measurements taken ‘not under PPE’, 
whereas the boxplots in the lower panel of Fig. 1 rep-
resent measurements taken ‘under PPE’. In scenarios 1, 
5, 29, and 30, measurements under the protective glove 
were approximately two orders of magnitude lower than 
those taken above the protective glove.

The exploratory analysis of the derived modelling 
data set revealed two data sets where the measurements 
were unreliable. The first data set, AC4 scenario ‘car-
washing’ (data shown under scenario 32 in Fig. 1), in-
volved the repeated saturation of the bare hands. The 
measurement data suggested that the mass of analyte on 
the hands (measured by a hand wash) was independent 
of sampling duration and there was very little variability 
in the measurements. An unpublished data set from 
HSE Buxton estimates a maximum retention of 4 ml 
(approximately 4 g) on the skin resulting from dipping 
water-like substances: the relatively low measurements in 
the scenario were assessed to be as a consequence of the 

low retention capacity of the bare skin. The calculated 
rate of exposure to product per minute was therefore a 
potentially large underestimate. The 12 measurements 
in this scenario were therefore treated as right-censored 
data (i.e. the true exposure was greater than that experi-
mentally measured). The second data set, AC2.2 scen-
ario ‘Electroplating’ (Scenario 21 in Table 1 and Fig. 1), 
used portable X-ray fluorescence spectrometry (PXRF) 
as the analytical method (Roff et al., 2004). Only one of 
the 22 glove measurements in this study was above the 
relatively high limit of detection from this method. The 
measurements in this scenario were therefore treated as 
left-censored data (i.e. the true exposure was less than 
the limit of detection).

Calibration model
Calibration of the ART model for inhalation exposures is 
described in Schinkel et al. (2011). A conceptually similar 
process is followed here although there is the intermediate 
step of deriving a single dART score from the three ex-
posure routes. The deposition, transfer, and direct emis-
sion routes have an associated score for every exposure 
scenario. The scores for each route are dimensionless and 
quantify the relative exposures in any set of exposure 
scenarios but not absolute exposure; i.e. a score for scen-
ario A of twice that in scenario B estimates that the ex-
posure due to a particular route in scenario A is twice that 
of the exposure scenario B. However, the length scales of 
the three scores and the overall importance of the routes 
differ. A re-scaling of the transfer and emission scores, via 
constants β1 and β2, respectively, was made such that the 
importance of these routes was assessed relative to de-
position. These constants are estimated within the cali-
bration and account for differences in the scales for the 
respective scores and the relative importance of the routes 
in determining the dermal exposure.

A single dART score for every exposure scenario 
is derived from equation (1), where, as noted above, 
parameters β1 and β2are estimated during calibration. 
The importance of each route for a given exposure scen-
ario is given by the fractions of the dART score corres-
ponding toDhands, β1Thands and β2Ehands, respectively.

DART score = Dhands + β1Thands + β2Ehands (1)

The conceptual model that converts a relative ex-
posure quantified by a dART score to an estimate of 
mass of product per minute of exposure is achieved 
through calibration of the dART scores using exposure 
measurements. The model described in Schinkel et al. 
(2011) and adapted in present work is of the form of 
equation (2). The additional scaling parameterα, es-
timated through the calibration model, converts the 
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relative score to an exposure estimate in the units of the  
measurements (mg min−1).

Exposure = α×DART score (2)

As in Schinkel et al. (2011), the statistical model relating 
experimental measurements to dART scores is specified 
on the log scale, which reflects an assumption that vari-
ability in measurements is proportional to magnitude 

Table 1. A comparison of median dART scores for the 40 exposure scenarios and summary statistics on the measure-
ments (mg min−1).

Class Label Description N DBP TBP EBP GM (GSD)

Not under 
PPE

Under 
PPE

AC1.1 1 Anti-fouling spraying 25 2.27250 1.51500 1.35000 62.1 (1.9) 0.50 (6.9)

AC1.1 2 Car body spraying 29 0.04848 0.00150 0.45000 2.33 (2.6) NA

AC1.1 3 Anti-fouling paint spraying 12 12.1200 0.00450 0.45000 41.2 (3.6) NA

AC1.1 4 Spray cleaning foam 12 2.70810 0.03150 4.50000 36.1 (2.9) NA

AC1.1 5 Knapsack motorized spraying 30 7.57500 0.00315 0.45000 28.1 (2.2) 0.14 (2.7)

AC1.1 6 Knapsack spraying 9 0.20200 0.00315 0.05000 8.95 (6.2) NA

AC1.1 7 Spraying low-pressure lance 6 11.1100 0.11445 0.45000 NA 1.35 (2.8)

AC1.1 8  Spraying high-pressure lance 26 99.9900 0.19950 4.05000 33.6 (2.6) NA

AC1.1 9 Insecticide spraying 20 11.1100 0.09450 4.50000 72.6 (5.8) NA

AC1.1 10 Boom spraying closed cabin 6 0.00152 0.03535 0.00000 1.42 (1.8) NA

AC1.1 11 Boom spraying semi-closed cabin 11 0.04545 0.03850 0.00000 10.2 (4.8) NA

AC1.1 12 Boom spraying closed cabin 4 0.00152 0.03535 0.00000 1.03 (1.9) NA

AC1.1 13 Boom spraying semi-closed cabin 7 0.00354 0.03535 0.00000 1.20 (4.2) NA

AC1.1 14 Boom spraying closed cabin 7 0.10605 0.03850 0.00000 5.83 (3.5) NA

AC1.1 15 Boom spraying semi-closed cabin 6 0.00354 0.03535 0.00000 5.11 (5.7) NA

AC1.1 16 Boom spraying in orchard cabin 7 0.01515 0.03850 0.00000 1.65 (4.5) NA

AC1.1 17 Boom spraying in orchard no cabin 2 0.15150 0.03850 0.00000 13.2 (1.1) NA

AC1.1 18 Boom spraying in orchard cabin 4 0.00101 0.03535 0.00000 0.36 (3.2) NA

AC1.2 19 Fogging 8 26.9333 0.00315 0.00500 NA 0.03 (5.3)

AC2.1 20 Dipping activities (timber) 4 0.01239 10.5000 500.000 NA 5.54 (4.2)

AC2.2 21 Electroplating 22 0.26933 0.10500 4.50000 NA 1.16 (1.3)

AC2.2 22 Electroplating (KRIOH) 29 0.26933 0.10500 4.50000 NA 0.17 (1.8)

AC2.2 23 Electroplating (KRIOH) 4 0.26933 0.01050 1.50000 NA 0.34 (1.1)

AC3 24 Timber pre-treatment (solvent) 19 0.00081 1.05000 1.35000 NA 0.28 (8.8)

AC3 25 Timber pre-treatment (water) 50 0.00269 10.5000 40.5000 NA 2.86 (5.2)

AC3 26 AF net deployment (solvent) 5 2.02E-05 1.35000 3.64500 NA 0.14 (1.5)

AC3 27 AF net deployment (water) 3 6.73E-05 0.32319 12.1500 NA 0.33 (1.5)

AC3 28 Forestry: packing and planting 9 0.00060 0.31500 0.45000 NA 0.01 (6.2)

AC4 29 Non-professional brush painting 13 0.22725 0.00150 0.45000 6.0 (6.0) 0.3 (11.5)

AC4 30 Brush and roller painting 10 0.22725 0.19500 12.1500 73 (1.1) 0.8 (10.1)

AC4 31 Opening and closing packaging, cleaning equipment 

and spreading

30 0.27270 0.00150 0.45000 1.0 (10.5) NA

AC4 32 Car washing 12 0.80800 95.5500 250.000 399 (1.5) NA

AC4 33 Large-scale surface wiping 24 2.72700 13.5000 250.000 1908 (1.9) NA

AC6.2 34 Loading DEGBE 28 0.00727 0.02000 13.5000 45 (16.7) NA

AC6.2 35 Filling of spray guns 28 0.00394 0.02000 1.50000 21.5 (4.6) NA

AC6.2 36 Filling DEGBE 9 0.02182 0.02000 4.50000 68.1 (3.5) NA

AC6.2 37 Filling DEGBE 10 0.02424 0.00583 0.45000 1.08 (7.8) NA

AC6.2 38 Filling DEGBE 1 0.00242 0.00515 0.00000 33.0 (NA) NA

AC6.2 39 Filling DEGBE 4 0.02424 0.00650 0.45000 4.59 (3.0) NA

AC6.2 40 Filling DEGBE 6 0.08080 0.01400 5.00000 17.7 (4.4) NA
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(McNally et al., 2014). A non-linear mixed-effect model, 
shown in equation (3), was used in current work.

log
(
Yij

)
= log(α) + log (Dhands + β1Thands + β2Ehands)

+ IG ×Glove+ si + εij
 (3)

si ∼ N(0,σs)

ε ij ∼ N(0,σr)

In the model, shown in equation (3), Yij denotes the jth 
measurement in theith scenario. The fixed effect param-
etersα, β1, and β2 are described above. The final fixed-
effect parameterGlove and the associated indicator 
variableIG account for the potential protection offered 
by a protective glove (typically a nitrile glove). IGwas 
coded as one for measurements sampling beneath a PPE 
glove and zero otherwise (which included cases where a 
sampling glove was worn above a PPE glove, the PPE 
glove was used as the sampling device, and a PPE glove 
was not worn). On the log scale, the protection offered 
due to glove is additive; therefore, on the natural scale, 
the efficacy of the glove is multiplicative [with factor 
exp (Glove)].

The final two terms in equation (3) account for sys-
tematic and residual variability, respectively. The mech-
anistic model is an imperfect approximation to reality 

and as a consequence will underestimate or overestimate 
exposures for a given set of determinantsDhands, Thands, 
andEhands. A random-effect si estimated for each scenario 
(40 additional parameters in all) quantifies the average 
(systematic) mechanistic model error for each of the 
scenarios. Term εij represents the jth residual error in the 
ith  scenario and includes between-worker and within-
worker sources of variability: consistent information 
was not available across all scenarios to allow the more 
precise modelling of components of variance considered 
in Schinkel et al. (2011). Random effects and residual 
errors were assumed independent and normally distrib-
uted with standard deviations of σsand σr, respectively.

The separation of variability in measurements into 
residual and systematic variability is the correct mathem-
atical treatment. However, the quantification of system-
atic error is significant for the development of a tool for 
predicting dermal exposures. The random-effect standard 
deviation σs summarizes the systematic error in the mech-
anistic model predictions for the calibration scenarios. As 
long as the calibration scenarios and the associated errors 
(under- or over-predictions) are a representative subset of 
exposure scenarios, and there are no unexplained trends, 
the potential error in a mechanistic model prediction in 
scenarios where measurements are unavailable can be 
quantified. This allows an estimate of dermal exposure 

Figure 1. A comparison of the rate of product deposited onto the hands (mg min−1) in the 40 coded exposure scenarios. Boxplots 
represent summaries of the measurements, the points represent individual measurements.
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and probability bounds to be provided. Refinements to 
the mechanistic model made during each iteration of the 
model development process aimed to reduce the system-
atic error. Systematic trends in random effects by activity 
class, i.e. consistent underestimation or overestimation 
by the mechanistic model for a particular class or classes, 
were used to inform refinement of the mechanistic model.

During the model development phase, the models 
were fitted using the nlme package of R (The R 
Foundation for Statistical Computing, 2014) with 
parameters estimated using restricted maximum likeli-
hood estimation (REML). During this phase, the cen-
soring in scenarios 21 and 32, as described in section 
Data extraction, manipulation, and version control, 
was not accounted for—the measurements were treated 
as observations. The final calibration model was fitted 
within a Bayesian framework using the Winbugs soft-
ware (Lunn et al., 2009) and the censored observa-
tions in scenarios 21 and 32 were correctly modelled 
as left and right-censored measurements, respectively. 
Gaussian priors were used for parametersα, β1, and β2 
and Glovewith means of zero and standard deviations 
of 10 000 (such that the priors were only weakly in-
formative); however, β1 and β2were constrained to be 
positive (in part to ensure numerical stability since 
negative values for these parameters could result in 
the expression within the log taking a negative value; 
however, this assumption also models a belief that the 
three exposure routes each contribute to dermal ex-
posure and negative coefficients do not reflect this be-
lief). Non-informative gamma prior distributions with 
shape and scale parameters set to 0.01 were assumed 
for σsandσr. Inference was made using a Markov Chain 
Monte Carlo (MCMC) algorithm. The chain was burnt 
in for 10 000 iterations and sampling was conducted 
for a further 10 000 iterations. Every 10th sample was 
retained for inference.

An approach based upon Bayesian utility theory was 
adopted in order to select a single, optimal set of model 
parameters—optimal in the sense that the parameter set 
provided a good fit to measurements and was unbiased 
for each activity class (i.e. the tendency to consistently 
underestimate or overestimate for any activity class was 
minimized). The loss function, shown in equation (4), 
was computed for each of the retained parameter sets 
in the MCMC sample. In equation (4), µi represents the 
mean of the random effects for the ith activity class, ni
the number of scenarios in the ith activity class, and σs is 
the between-scenario standard deviation [equation (3)]. 
A separate µi was computed for the boom and surface 
spraying scenarios (AC 1.1). The summation in equation 
(4) is over the activity classes.

L = exp(−0.5
∑

niσ−2
s (µi − 0)2) (4)

The posterior density, the loss function, and the posterior 
loss (loss weighted by the probability density) were cal-
culated for the 1000 retained parameter sets described 
above with the parameter set that minimized posterior 
loss chosen as the optimal parameter set.

Variant models
The analysis described above was repeated for the al-
ternate dependent variable of volume of product per 
minute of activity (µl min−1). The majority of scenarios 
involved a water-like product and assumed a density 
of 1 g cm−3 (1 mg translates to 1 µl). However, for four 
scenarios, the applied product had a density significantly 
greater than 1 g cm−3: the product in use occupied a 
smaller volume compared with a water-like substance.

A second alternative model that encoded a belief 
that the protective effect of PPE gloves was in propor-
tion to the dermal challenge, rather than as a multiplica-
tive factor, was also considered. Under this model, PPE 
gloves offer a proportionately greater protective effect 
for scenarios resulting in a very large dermal exposure. 
Formally this model is written as equation (5) with 
random effect and residual error terms as before.

log
(
Yij

)
= log(α) + (1− IG ×Glove)× log (Dhands

+β1Thands + β2Ehands) + si + εij
 (5)

The modelling approach detailed above was repeated for 
both of these alternative models and differences com-
pared with the primary model are reported in results.

Results

Summary statistics (posterior median and a 90% cred-
ible interval) for the parameters in the calibration model 
calculated from the MCMC output are given in Table 
2; note these are summaries of the respective marginal 
posterior distributions—the model corresponding to all 

Table 2. Posterior median and a 90% credible interval for 
parameters in the initial calibration model.

Parameter Median 90% credible interval

α −1.74 −3.21, −0.24

β1 522 113, 1779

β2 29.6 5.3, 172.5

Glove −5.3 −5.8, −4.8

σs 1.24 0.98, 1.60

σr 1.61 1.53, 1.69
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Table 3. Optimized model parameters—mass per minute 
of exposure.

(log(α) β1 β2 Glove σs σr

0.13 87.40 5.02 −5.72 1.08 1.68

parameters set at their respective posterior medians does 
not necessarily correspond to the ‘best-fitting’ param-
eter set (nor indeed necessarily to a plausible parameter 
set). The parameter values corresponding to the optimal 
model (that which minimized posterior loss) are given in 
Table 3.

The three key fixed-effect terms that determined the 
relative importance of the three routes were all highly 
uncertain. Pairwise correlations calculated from the 
simulations were −0.85, −0.77, and 0.72 for α andβ1,α 
andβ2, andβ1and β1, respectively. The credible interval 
for Glove was relatively narrow; however, on the nat-
ural scale this range corresponds to a 90% credible 
interval of a 120- to 330-fold reduction in exposures 
when sampling under chemical protective gloves. The 
credible intervals for the between-scenario and re-
sidual error standard deviations were relatively narrow. 
Residual error (variation) was greater than systematic 
(between-scenario) error.

A point estimate of the GM exposure (mg min−1) for 
the 40 calibration scenarios summarized in Table 1 was 
calculated using the calibration model, written as equa-
tion (3) with optimized coefficients from Table 3. These 
estimates of exposure and the fractions of exposure due 
to the deposition, direct emission, and transfer routes are 
given in Table 4. Note that for this comparison, which 
examines the general behaviour of the calibrated model, 
the effect of a chemical protective glove is not con-
sidered. The results (Table 4) indicated that the scores 
for particular activity classes were driven by one or two 
of the routes. Notably, the deposition route was only im-
portant for the spraying scenarios (AC1.1 and AC1.2).

A comparison of estimates of exposure for each of the 
calibration scenarios with the GM calculated from the 
corresponding data set (Table 1) is made in Fig. 2. In this 
comparison, the effect of a protective glove is taken into 
account where appropriate, based upon the coefficient 
for Glove in Table 3. A point estimate from the model 
and a 95% credible interval based on the random-effect 
standard deviation of 1.08 (Table 3) is shown alongside 
each of the predictions made in Fig. 2. Note that for 
these predictions, the central estimates are based upon 
contextual information about the scenario encoded as 
three scores (Table 1). The standard deviation is based 
upon typical scenario errors resulting from application 

of the conceptual model, written as equation (3), and 
demonstrates practical use. This treatment clearly differs 
from a mixed-effect model based upon measurements 
alone, where the magnitude of error would be scenario-
specific and typically much smaller.

For two of the scenarios where measurements were 
available above/without a protective glove, the GM of 
the measurements was outside the credible interval. The 
calibrated model underestimated the exposure for the 
scenario ‘knapsack spraying’, with the central estimate 
under-predicting the GM by a factor of 10. The model 
overestimated the GM for scenario ‘car-washing’; how-
ever, for this scenario, the hands were regarded as being 
saturated and all measurements were treated as right 
censored in the analysis. A considerable underestimation 
of the GM is therefore reasonable and in line with how 
this scenario was coded in the statistical model.

The performance of the model for measurements 
underneath a chemical protective glove was poorer, 
with the GM lying above the credible interval for four 
scenarios and beneath the credible interval for one scen-
ario. In all these cases, the GM was relatively close to 
the bounds of the credible interval. The greatest under-
prediction corresponded to the scenario ‘Electroplating’, 
where 26 of the 27 measurements were coded as left 
censored and therefore an under-prediction is rea-
sonable. Poorer performance of the model applied to 
scenarios where sampling was beneath PPE is not sur-
prising because the use of a protective glove is an add-
itional complication. The degree of protection offered 
by protective gloves will vary with a number of fac-
tors Creely and Cherrie (2001) and the large protective 
factor of a 300-fold reduction in exposure estimated 
in the calibration model could be a considerable over-
estimate for some situations. There was also evidence 
from the calculated GSDs (and an examination of the 
raw data for these scenarios) (Table 1) that contamin-
ation of the sampling gloves (probably during removal 
of contaminated chemical protective gloves) could have 
occurred for some measurements, thus inflating the 
GM—this observation is based on the measurement 
made on a single glove of a single worker per scenario 
being a significant outlier compared with other meas-
urement data.
Variant models
The analysis was repeated for the alternate dependent 
variable of volume of product per minute of activity (µl 
min−1). Only a brief summary of results is presented for 
this model.

There was a modest increase in the importance of 
deposition in the model for volume compared with 
the model for mass. However, the direct emission 
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component was notably smaller for the calibration 
based upon volume—the scores for this route were ap-
proximately a half of those based upon calibration to 
mass. For the modelling data set, this difference had 
the greatest impact on the scenarios involving transfer 
of liquids (AC6.2) where the direct emssion route was 
consistenly the most influential; however, for AC4 

scenarios involving hand immersion, this could have an 
important effect on predictions. Fig. 3 shows a com-
parison of exposure estimates per minute of activity for 
calibrations based upon mass and volume. The com-
parison indicates that the differences between models 
based on mass and those based on volume were gen-
erally small. At most, the estimates could differ by a 

Table 4. Estimated exposures (mg min−1) from the optimized calibration model for the 40 exposure scenarios and frac-
tions of exposure due to the deposition, transfer, and direct emission routes.

Class Description DBP TBP EBP Estimate (mg min−1) 

AC1.1 Anti-fouling spraying 0.016 0.936 0.048 161.92

AC1.1 Car body spraying 0.022 0.054 0.928 2.79

AC1.1 Anti-fouling paint spraying 0.820 0.027 0.153 16.9

AC1.1 Spray cleaning foam 0.097 0.098 0.805 32.11

AC1.1 Knapsack motorized spraying 0.748 0.028 0.224 11.57

AC1.1 Knapsack spraying 0.277 0.386 0.349 0.83

AC1.1 Spraying low-pressure lance 0.475 0.428 0.097 26.74

AC1.1 Spraying high-pressure lance 0.726 0.127 0.148 157.61

AC1.1 Insecticide spraying 0.265 0.197 0.539 48.02

AC1.1 Boom spraying closed cabin 0 1 0 3.54

AC1.1 Boom spraying semi-closed cabin 0.013 0.987 0 3.9

AC1.1 Boom spraying closed cabin 0 1 0 3.54

AC1.1 Boom spraying semi-closed cabin 0 1 0 3.54

AC1.1 Boom spraying closed cabin 0.030 0.97 0 3.97

AC1.1 Boom spraying semi-closed cabin 0 1 0 3.54

AC1.1 Boom spraying in orchard cabin 0.005 0.995 0 3.87

AC1.1 Boom spraying in orchard no cabin 0.042 0.958 0 4.02

AC1.1 Boom spraying in orchard cabin 0 1 0 3.54

AC1.2 Fogging 0.989 0.01 0.001 31.15

AC2.1 Dipping activities (timber) 0 0.268 0.732 3923.8

AC2.2 Electroplating 0.008 0.286 0.705 36.67

AC2.2 Electroplating (KRIOH) 0.008 0.286 0.705 36.67

AC2.2 Electroplating (KRIOH) 0.031 0.105 0.864 9.98

AC3 Timber pre-treatment (solvent) 0 0.931 0.069 112.8

AC3 Timber pre-treatment (water) 0 0.819 0.181 1283.18

AC3 AF net deployment (solvent) 0 0.866 0.134 156

AC3 AF net deployment (water) 0 0.316 0.684 102.15

AC3 Forestry: packing and planting 0 0.924 0.076 34.1

AC4 Non-professional brush painting 0.087 0.050 0.863 3

AC4 Brush and roller painting 0.003 0.218 0.779 89.59

AC4 Opening and closing packaging, cleaning equipment, and spreading 0.102 0.049 0.849 3.05

AC4 Car washing 0 0.869 0.131 10 996.53

AC4 Large-scale surface wiping 0.001 0.484 0.515 2790.35

AC6.2 Loading DEGBE 0 0.025 0.975 79.59

AC6.2 Filling of spray guns 0 0.188 0.811 10.63

AC6.2 Filling DEGBE 0.001 0.072 0.927 27.89

AC6.2 Filling DEGBE 0.009 0.181 0.809 3.2

AC6.2 Filling DEGBE 0 1 0 0.52

AC6.2 Filling DEGBE 0.009 0.199 0.794 3.26

AC6.2 Filling DEGBE 0.003 0.046 0.950 30.23
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factor of two (for scenarios dominated by direct emis-
sion), a difference which is small compared with the 
overall range of predictions.

The alternative modelling of the effect of a protective 
glove [equation (5)] resulted in a notably poorer fit to 
the data.

Discussion

In this work, a calibration model has been developed 
for estimating a rate of dermal exposure to the hands 
to low volatile liquid products and solids in liquid based 
upon three scores, Dhands, Thands, andEhands, defined in 
the mechanistic model of the dART (Goede et al., 2019). 
Calibration models for mass of product (mg min−1) and 
volume of product (µl min−1) as the dependent variable in 
statistical models were both considered. A similar quality 
of fit to the data was achieved for both models, princi-
pally since the density of the product in use was close 
to 1 g cm−3 for the vast majority of exposure scenarios 
identified. Broadly similar estimates of the calibrated 

dART scores were obtained (Fig. 3). Whilst both models 
for mass and volume of product can be used, the recom-
mendation from this work is that predictions of mass of 
product per minute of exposure to the hands are made 
using the dART on the basis that the analysis of vari-
ance components conducted by Kromhout et al. (2004), 
which feeds into the overarching statistical model of the 
dART, was also based upon mass (mg min−1). However, 
for a given scenario, a conversion from a dART predic-
tion of mg min−1 to a prediction of volume can be easily 
made, given the density of the applied product.

Based upon the model written as equation (3) and 
calibrated parameters (Table 3), a central estimate of 
the GM with probability bounds can be estimated for 
dermal exposure to the hands (per minute of exposure) 
for tasks involving low volatility liquids and solids in 
liquid. The between-scenario standard deviation esti-
mated in the calibration models is a critical part of this 
work since it allows the uncertainty in the central esti-
mate of a dART prediction to be quantified. For the sug-
gested model of mass of product per minute of exposure, 

Figure 2. A comparison of the central estimate and a 95% credible interval for mass of product per minute of activity with the 
GM calculated from measurements: beneath PPE (triangles and dashed lines); above/no PPE (circles and solid lines). One- to-one 
line indicating perfect correspondence is also shown.
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a 90% multiplicative interval is approximately a factor 
of six. This represents poorer overall precision than the 
ART model for dusts and vapours, although better than 
the ART model for mists. Considering the complexity of 
the conceptual model compared with the ART, this rep-
resents a good outcome.

Whilst the estimate of exposure from these cali-
brated models is in terms of total product per minute 
of activity, an estimate of the active ingredient is 
easily obtained by multiplying the estimated product 
loading rate by the proportion of active ingredient 
in the product in use. Predictions would be of ex-
posure to the ingredient or mixture of ingredients of 
concern.

It was necessary to include a statistical parameter to 
account for the use of chemical protective gloves since 
the calibration data set comprised of measurements both 
above protective gloves (or based on sampling of bare 
hands) and beneath protective gloves. For models for-
mulated for both mass and volume of product on the 
hands, the estimates for the variable Glove suggested 
that measurements beneath a protective glove were a 

factor of 300 below those taken either above of or in the 
absence of a protective glove.

Although the chemical barrier resistance of protective 
gloves to chemicals is tested under laboratory conditions 
(British Standards Institution, 2016), such a test is only 
relevant for the selection of the right chemical protective 
glove material in relation to the chemical used but does 
not take into consideration other parameters relevant to 
the control of exposure. Those parameters may include 
inspecting gloves for physical damage before using them, 
exposing the gloves to mixtures of chemicals, changing 
gloves regularly once used (i.e. typically at least every 8 h 
or at the end of every work shift), donning and doffing 
gloves in a safe manner and selecting the right gloves 
for the job (e.g. right size, no excessive loss of dexterity, 
right cuff length). For that reason, tests on protective 
gloves in such control conditions only provide a theoret-
ical optimum protection level that might not be offered 
to the wearer of such gloves in workplace settings. The 
actual level of protection is difficult to evaluate prior 
to the use of the gloves. Investigations on the protec-
tion levels offered by PPE gloves suggest that human 

Figure 3. A comparison of central estimates of exposure based upon calibrated models of mass and volume per minute of 
exposure.
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behaviour may be a dominant factor when considering 
the control of exposure to workers’ hands (Garrod et al., 
2001; Rawson et al., 2005). Some assessments of the ef-
fectiveness of protective gloves calculated from the ratio 
of outer and inner samplers have been reported in the 
literature. Creely and Cherrie (2001) calculated protec-
tion factors ranging from 96 to 470 (or equivalently a 
reduction in exposure of between 98.9 and 99.8%) rela-
tive to bare skin.

Whilst the 300-fold reduction for measurements 
taken beneath a protective glove (estimated by the statis-
tical model) is consistent with the experimental work of 
Creely and Cherrie (2001), an interpretation of this stat-
istical parameter as an indicator of the efficacy of pro-
tective gloves is overly simplistic. The calibrated dART 
model represents an estimate of product deposited onto 
the hands and does not currently take account of re-
moval from the skin [the fourth of the mass transport 
processes in the conceptual model of Schneider et al. 
(1999)]. The retention of product onto the sampling 
device may differ from that of the skin (or a chemical 
protective glove). For the experimental studies identified 
for this work, cotton sampling gloves were used in the 
vast majority of cases and thus measurements are likely 
to represent an overestimate of exposure to the hand 
(Gorman Ng, 2014). Whilst this has no implications for 
the calibration of the dART model, some account needs 
to be taken of retention in practical use. The conceptual 
model described in Goede et al. (2019) considers this 
determinant.

The mechanistic model developed for the dART is 
complex, reflecting the three identified routes of dermal 
exposure and with the model and scoring routine 
having gone through a number of iterations. Detailed 
information was required to parameterize the deter-
minants; however, it was difficult to obtain high-quality 
studies where all the necessary information was avail-
able. Even in the detailed studies selected for this work, 
a degree of expert judgement was required to choose 
the appropriate score for some determinants. A fur-
ther difficulty arose from the possible interaction of 
workers with the sampling device (typically a cotton 
sampling glove). Workers can unintentionally contam-
inate a sampling device during donning and doffing. 
In some scenarios, it was not clear whether protective 
gloves had been removed at some point during the task 
creating opportunities for undue contamination of the 
sampler. The inflated GSD for measurements taken 
under a protective in four scenarios (labels 1, 24, 29, 
30) were as of a consequence of a single large meas-
urement corresponding to a single hand from an indi-
vidual worker (note that the large GSD in over-glove 

measurements for scenarios 31 and 34 corresponded to 
tasks where the dART scores within the scenario dif-
fered: the large variability in measurements in these 
scenarios reflects this).

Despite the small number of exposure scenarios used 
in the calibration, these did span a breadth of classes 
(Table 1) and an analysis of the relative importance of 
theDhands, Thands, andEhands scores in the overall dART 
score (Table 4) suggests the results are in line with ex-
pectations. However, there is clearly a need for further 
testing of the model using data sets that have not been 
utilized in the model development process and poten-
tially a refinement of the parameter estimates should 
suitable exposure scenarios become available. Ideally, 
scenarios for the activity classes AC5 and AC6.1 that 
were not utilized in calibration would be identified. 
Blind testing of the model on scenarios that have not 
been used in the calibration would be a powerful test of 
the predictive ability of the model too.

Calibration requires high-quality contextual data 
on a task so that scoring can be made with confidence 
and reliable Dhands , Thands, andEhandsscores compared 
with measurements on the task through the calibration 
model. However, in practical use, conservative assump-
tions (resulting in a higher dART score) can be made 
by a user of the tool when contextual information re-
lated to some determinants is weak. Such an approach 
ensures that where there is uncertainty, it translates to 
an overestimate rather than an underestimate of dermal 
exposure. Whilst this suggestion is a practical approach 
to accommodating imperfect information, it would be 
impractical when the entire task is poorly documented.

The dART is a task-specific model for dermal ex-
posure to the hands. The calibration process focussed 
on exposure scenarios where task-specific measurement 
data sets were available and hence the measured dermal 
exposure could be attributed to a specific task. In prin-
ciple, more complex data sets could have been used so 
long as exposure periods associated with tasks were 
available and some account was taken of potential loss 
of product when transitioning between tasks or periods 
of non-exposure. Estimates of exposure associated with 
a job, comprising multiple tasks leading to dermal ex-
posure, can be made by taking a time-weighted sum 
of task-specific exposure estimates. A period of no ex-
posure can also be incorporated into this approach.

Considering the complexity of the conceptual model 
compared with the ART, the wide variety of exposure 
scenarios considered with differing dominant routes and 
the particular challenges that result from the sampling 
device not being independent of the worker, the precision 
of the calibrated dART mechanistic model is reasonable 
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when expert users are coding well-documented exposure 
scenarios. However, as the inputs to the model are based 
upon user judgement, in practical use, the reliability of 
predictions will be dependent upon both the competence 
of users and the quality of contextual information avail-
able on an exposure scenario. Validation of the model 
using verification data sets not used in model calibration 
is recommended once the statistical framework of the 
dART model has been finalized.
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