
RESEARCH ARTICLE
www.mnf-journal.com

Integrated Analys of High-Fat Challenge-Induced Changes
in Blood Cell Whole-Genome Gene Expression
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Scope: Several studies have examined the whole-genome gene expression
response in blood cells to high-fat challenges with differing results. The study
aims to identify consistently up- or downregulated genes and pathways in
response to a high-fat challenge using several integration methods.
Methods and results: Three studies measuring the gene expression response
to a high-fat challenge in white blood cells are evaluated for common trends
using several integration methods. Overlap in differentially expressed genes
between separate studies is examined, p-values of each separate study are
combined, and data are analyzed as one merged dataset. Differentially
expressed genes and pathways are compared between these methods.
Selecting genes differentially expressed in the three separate studies result in
67 differentially expressed genes, primarily involved in circadian pathways.
Using the Fishers p-value method and a merged dataset analysis, changes in
1097 and 1182 genes, respectively, are observed. The upregulated genes upon
a high-fat challenge are related to inflammation, whereas downregulated
genes are related to unfolded protein response, protein processing,
cholesterol biosynthesis, and translation.
Conclusion: A general gene expression response to a high-fat challenge is
identified. Compared to separate analyses, integrated analysis provides added
value for the discovery of a consistent gene expression response.
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1. Introduction

Metabolic challenge tests are per-
formed in nutritional research to mag-
nify the small effects of nutrition on
health.[1] In addition, an individual’s re-
sponse to such a challenge is consid-
ered a marker of phenotypic flexibility
and reflect the individual’s health status.
A type of metabolic challenge test that
is frequently used in nutrition studies
is the high-fat challenge, in which sub-
jects consume a high-fat load containing
50–100 g of fat and may contain differ-
ent type of fat. These high-fat challenges
have been shown to not only affect post-
prandial lipid metabolism, but also other
processes, such as inflammation, stress
response, vascular health, and glucose
metabolism.[2]

A good source of cells to study
the abovementioned processes are
peripheral blood mononuclear cells
(PBMCs), which have proven useful for
the determination of the effects of nutri-
tional interventions on gene expression
profiles.[3–6] These cells are a subset of

circulating white blood cells, which are straightforward to col-
lect during human intervention studies as they can be eas-
ily isolated from blood. Several studies have examined the ef-
fects of acute high-fat challenges on PBMC whole genome
gene expression by comparing postprandial gene expression
profile responses between challenges with different nutritional
compositions. Bouwens et al.[7] found that a high-SFA chal-
lenge induced expression of liver X receptor signaling genes,
whereas a high-PUFA challenge caused a downregulation of
these genes. Matone et al.[8] studied the effects of a high-
MUFA challenge and observed increased expression of inflam-
matory genes in several pathways, including Toll-like recep-
tors, interleukins, tumor necrosis factor, and nuclear factor 𝜅B-
related genes. Esser et al.[9] found that a high-SFA challenge
decreased expression of cholesterol biosynthesis and uptake
genes and increased cholesterol efflux genes compared to a
high-MUFA challenge that increased expression of inflammatory
genes and peroxisome proliferator-activated receptor (PPAR)-𝛼
target genes involved in 𝛽-oxidation. From the previous, it is clear
that the changes in gene expression profiles described in these
studies are quite diverse. Therefore, the question is raised if a
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Table 1. Summary of the four studies included in the analysis.

Study Subjects Fat composition Time of
postprandial
measurement

Microarray platform Entrez genes on
microarray

Filter criteria Entrez genes
expressed

Bouwens et al.
(2010)[7]

21 lean, young men 39 g SFA
14 g MUFA
1 g PUFA

6 h Affymetrix NuGO
Hs1a520180

17 359 Universal exPression
Code > 0.5 in > 10
samples

8779

Matone et al.
(2015)[8]

33 men and women,
ranging in age
and BMI

7 g SFA
31 g MUFA
16 g PUFA

4 h Affymetrix Human
Gene 1.0 ST

19 624 Universal exPression
Code > 0.5 in > 16
samples

10 352

Esser et al.
(2016)[9]

17 lean and 15
obese middle-age
men

51 g SFA
37 g MUFA
6 g PUFA

4 h Affymetrix Human
Gene 1.1 ST

19 621 Universal exPression
Code > 0.5 in > 16
samples

9440

Fat_challenge_

tests
Eight healthy and
eight metabolic
syndrome men

66 g SFA
23 g MUFA
3 g PUFA

6 h Illumina
HumanHt12-v4
Expression
Beadchip

30 500 Expression P value
< 0.01 in > 4
arrays

10 754

general response to a high-fat challenge, independent of fatty acid
composition, can be characterized.
In this manuscript, our first aim was to perform and compare

different methods of combining the results of the three above-
mentioned studies and data of an additional study that examined
blood cell gene expression response to high-fat challenges.
Second, using this cross-study integrated analysis, our goal was
to identify consistently up or downregulated genes and pathways
in response to a high-fat challenge. Ultimately, this may help
to increase our understanding of how the body responds to a
high-fat load and may lead to a marker of health.

2. Experimental Section

2.1. Study Design

The studies by Bouwens et al., Matone et al., and Esser et al.
were previously published and data is publicly available[7–9]

(GSE13466, GSE56609, and GSE53232 at Gene Expression
Omnibus (https://www.ncbi.nlm.nih.gov/geo)). These stud-
ies used single-channel Affymetrix microarrays to perform
gene expression measurements, whereas the fourth study
(Fat_challenge_tests) used llumina HumanHt12-v4 Expression
Beadchips. Data for this study is available under GSE124534 and
the design and clinical parameters can be found in the Pheno-
type Database (https://dashin.eu/interventionstudies/9218_Fat_
challenge_tests). The studies by Bouwens et al. and Esser
et al. applied a crossover design to examine high-SFA versus
high-MUFA and high-PUFA challenges, respectively. To de-
crease heterogeneity between studies, we elected to analyze
only the high-SFA challenges from both of these studies in
this integrated analysis. Moreover, of the Fat_challenge_tests
study (GSE124534), we only used the high-fat challenge data
that were acquired before the 4-week high-fat high-calorie diet
intervention.[10] In all studies, gene expression measurements
were performed before and after the high-fat challenges. All
analyses are performed on the measured change in gene ex-
pression. The designs of the four studies are summarized in
Table 1.

2.2. Preprocessing

Preprocessing was done for each study separately. For the studies
using Affymetrix microarrays, raw CEL files were normalized
using the Robust Multi-array Average algorithm,[11] as imple-
mented in the oligo R-package.[12] A custom annotation was used
based on reorganized oligonucleotide probes, which combines
all individual probes for a gene (brainarray CDF files (ENTREZG
v20)). Low expressing probes genes were filtered out using
Universal exPression Codes with a 0.5 cut-off, corresponding to
a 50% likelihood that a gene is expressed.[13]

For the Fat_challenge_tests study, probe expression values
were calculated using the neqc algorithm from the limma
package.[14] Low expressing probes were filtered by selecting only
the probes with a detection p-value< 0.01 in at least five arrays for
further analysis. To end up with only one value per Entrez gene,
the probe with the highest variance was selected when multiple
probes were present for a gene, as variance-filtering has been
shown to increase statistical power.[15]

After filtering, only the genes present in all datasets, were
retained for further analysis. Initial analysis showed that the
Fat_challenge_tests study showed a large batch effect when exam-
ining per subject log2-ratio (Figure 1). Therefore, it was decided
to exclude this study from further analysis. The three remaining
studies by Bouwens et al., Matone et al., and Esser et al. had an
overlap of 7406 genes, which were used for further analysis. The
workflow is summarized in Figure 2.

2.3. Differentially Expressed Genes

First, log2-ratios per subject between the intensities before and
after the challenge were calculated. These log2-ratios were used
for further analysis using the Linear Models for Microarray data
(limma) R-package. To identify differentially expressed genes,
empirical Bayesmoderated t-tests as implemented in limmawere
performed in each dataset separately as well as in the combined
dataset of all studies. p-Values were adjusted using Benjamini
and Hochberg false discovery rate[16] and a Q-value < 0.05 was
considered significant.
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Figure 1. Principal component analysis of the log2-ratios (after intervention/before intervention) of the four studies. Every dot represents one subject.

Figure 2. Gene selection workflow.

In addition to the p-values per study and the p-values of
the combined dataset, Fisher’s combined probability test was
also used to pool p-values from the three separate studies. The
MetaDE R-package was used to calculate a test statistic (Chi2)
which follows a chi distribution, as well as p- and false discovery
rate (FDR)-values for each gene.[17] An FDRQ < 0.05 was used as
significance cutoff, indicating that the corresponding gene was
differentially expressed in at least one study.

2.4. Pathway Analysis

For all pathway analyses, a list of gene sets was used that was
derived by combining all gene sets taken from the Biocarta,
KEGG, Reactome, and Wikipathways databases. Gene set en-
richment analysis (GSEA; http://www.broad.mit.edu/gsea) was
performed.[18] Genes were ranked based on the moderated
t-statistic and analyzed for over- or underrepresentation in the
gene sets. GSEA was performed in each separate study as well as
in the combined dataset. Gene sets with an FDR q < 0.25 were
considered significantly enriched.

3. Results

In this study, we reanalyzed data of four separate studies of
which the study designs are described in Table 1. Baseline
characteristics of the study populations can be found in Table 2.
Age was different between all studies, weight and BMI were both
lower in the Bouwens et al. study and height was significantly
higher in the Bouwens et al. and the Fat_challenge_tests study.
To examine the presence of a potential batch effect between
studies, we performed principal component analysis (PCA) on
the per subject change in gene expression depicted as log2-ratios
(Figure 1). The Fat_challenge_tests study showed a separation
from the other three studies, indicating the presence of large
differences in gene expression changes between this study
and the others. Therefore, this study was excluded for further
analyses and the analysis was continued using the Bouwens
et al., Matone et al., and Esser et al. studies only.
In Figure 2, the number of genes after filtering out non-

expressed genes per data set/study and the overlapping genes be-
tween datasets are shown. Combining the three datasets resulted
in 7406 genes that were expressed in all datasets and these were
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Table 2. Baseline characteristics of the four study populations.

Bouwens et al.[7] Matone et al.[8] Esser et al.[9] Fat_challenge_tests p-Value

Age [years] 21 ± 3a 37.3 ± 13b 62 ± 5c 46 ± 7d <0.001

Weight [kg] 74.4 ± 8.1a 83.0 ± 18.0b 89.0 ± 18.0b 86.8 ± 13.0b 0.009

Height [m] 1.84 ± 0.06a 1.75 ± 0.09b 1.78 ± 0.07bc 1.81 ± 0.07ac 0.001

BMI [kg m–2] 22.1 ± 2.0a 27.0 ± 6.1b 27.9 ± 4.9b 26.4 ± 3.2b <0.001

Data are presented as mean ± SD. Differences between groups were determined using one-way ANOVA and corresponding p-values are shown. Different letters indicate
differences between groups, as determined using LSD post hoc tests.

Figure 3. A) Principal component analysis of log2-intensity values of all individual samples from the three studies. B) Principal component analysis of
log2-ratios of the response upon the high-fat challenge (after intervention/before intervention) of all subjects from the three studies.

used for further analysis. To examine variation within and be-
tween the datasets, we performed a PCA on the normalized log2
intensity values. This showed a clear separation between datasets
(Figure 3A), reflecting between-study batch effects. When the
PCAwas performed using per subject log2-ratios of the postpran-
dial effects, datasets were found to be intermixed (Figure 3B). We
continued our analyses using these log2-ratios.

3.1. Differentially Expressed Genes

To find the genes that showed a significant change in expres-
sion by the high-fat challenge in each individual dataset, we an-
alyzed the data per study. An FDR Q < 0.05 was used as signif-
icant cutoff value (Figure 4A). When comparing, the results of
these analyses across datasets, 202 genes were found to be dif-
ferentially expressed in at least two of the three datasets and 67
genes were found to be changed in all three datasets (Figure 4A).
Figure 5 shows a heatmap of the postprandial gene expression
changes in all subjects of the 67 genes that were differentially

expressed in all studies. Another method for microarray dataset
integration that was applied, involved calculating an overall com-
bined p-value based on p-values of each individual dataset an-
alyzes using Fisher’s method. We found 1097 differentially ex-
pressed genes due to the high fat challenge at FDR Q < 0.05
(Figure 4A).
The third method that we performed was the creation of one

merged dataset containing log2-ratios of all subjects from the
three datasets. Statistical analysis was performed on this merged
dataset, which resulted in 1182 differentially expressed genes by
the high-fat challenge at FDRQ< 0.05. Overlap of the genes iden-
tified using Fisher’s method and themerged dataset analysis was
881 genes, as shown in Figure 4B. Overlap in genes between all
comparisons is shown in Figure S1, Supporting Information.

3.2. Gene Set Enrichment Analysis

To assess which pathways were upregulated by a high-fat chal-
lenge, we performed GSEA on the three separate datasets as well
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Figure 4. A) Number of significantly differentially expressed genes identified in each separate dataset and in the integrated analysis of the datasets using
different methods. Overlap in genes between all results are shown in Figure S1, Supporting Information. B) Venn diagram of overlap between Fishers
method and the merged dataset analysis.

Figure 5. Heatmap depicting individual gene expression changes by high-fat challenges of the 67 genes that are differentially expressed in all studies
(FDR Q < 0.05). Log-ratios are shown for each gene in each subject of the three studies.
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Table 3. Summary of GSEA results.

Bouwens et al.[7] Matone et al.[8] Esser et al.[9] Merged dataset

Interferon signaling ↑ ↑ ↑

Circadian rhythm ↓ ↓ ↓ ↓

Unfolded protein response ↓ ↓ ↓

mRNA Splicing ↓

Protein processing ↓ ↓

Cholesterol biosynthesis ↓ ↓

Translation ↓ ↓

Cell cycle ↓

Semaphorin processing ↓

Oxidative phosphorylation ↓

Toll-like receptor cascades ↑

PPAR signaling pathway ↑

Differentially expressed gene sets were visualized using the Enrichment Map plugin in Cytoscape. Up- and downregulated gene sets in separate studies and in the merged
dataset are summarized in this table.

as on the merged dataset. Results are summarized in Table 3.
Pathways related to circadian rhythm were found to be downreg-
ulated in each separate study as well as in the merged dataset.
In the merged dataset, pathways related to interferon signaling
were upregulated, whereas pathways related to unfolded protein
response, protein processing, cholesterol biosynthesis, and trans-
lation were downregulated. The individual significant postpran-
dial gene expression changes of genes from these pathways are
shown in a heatmap in Figure 6.

4. Discussion

We performed a cross-study integrated analysis of three studies
that examined the PBMC gene expression response to a high-fat
challenge using Affymetrix microarrays. Selection of the genes
that were differentially expressed in the three separate analy-
ses resulted in 67 differentially expressed genes, which were for
a large part involved in circadian pathways. When using dif-
ferent methods, such as the Fishers p-value method and the
merged dataset analysis, we observed changes in 1097 and 1182
genes, respectively. Pathways related to interferon signaling were
upregulated, whereas pathways related to unfolded protein re-
sponse, protein processing, cholesterol biosynthesis, and trans-
lation were downregulated upon a high-fat challenge.
Initially, we also included a study (Fat_challenge_tests) that

used Illumina beadarrays to measure gene expression in whole
blood. As this study showed a large deviation from the others,
it was left out in further analysis. We have two potential expla-
nations for the large separation between the Fat_challenge_tests
study and the other three studies. First, this study used Illumina
BeadArrays, whereas the others used Affymetrix GeneChips.
This difference in microarray platform could have induced the
bias,[19] though it has been shown that measurements derived
from both platforms show high agreement, especially in genes
that are differentially expressed in a comparison.[20,21] Second,
this study also differed in the source of RNA, as whole blood
was used whereas PBMCs were investigated in the others three
studies. Whole blood contains RNA from all cell types present

in blood including granulocytes (neutrophils, eosinophils, ba-
sophils), lymphocytes, and monocytes, whereas PBMC RNA
samples contain RNA from lymphocytes and monocytes only.[22]

One study compared differences in gene expression profiles in
whole blood versus PBMCs in patients with advanced heart fail-
ure versus age-matched controls.[23]They observed a considerable
overlap and concordance in gene expression profiles between the
two RNA sources, though they also observed differences. Dif-
ferences in gene expression caused by different blood cell pop-
ulations were also observed in another study.[22] In this study,
they observed lower S/N ratios and larger variability in whole
blood compared to PBMCs. In summary, differences in microar-
ray platforms and cell populations may potentially explain the
large separation between the whole blood compared to the PBMC
studies.
In the three studies that were further analyzed, we observed

consistent up or downregulation of several genes involved in cir-
cadian rhythm. In all studies, subject arrived fasted early in the
morning and PBMC blood samples were taken just before and 4
or 6 h after the high-fat challenge consumption. In this regard,
the times at which fasting and postprandial samples were taken
can be expected to be similar between studies hence explaining
the consistent change in genes involved in circadian rhythm. In
line with our findings, circadian oscillations in gene expression
of PER1 and PER2 have been observed previously in PBMCs of
healthy young men.[24] In addition, PER1 and PER2 gene expres-
sion have been shown to peak shortly after awakening [25] or early
in the morning,[26] followed by a gradual decrease in expression
in the subsequent hours. These findings coincide with the de-
crease in gene expression that we observed for these genes 4 and
6 h after consumption of the high-fat challenge and may thus be
independent of the high-fat challenge.
From studies in rodents, it is clear that many genes, includ-

ing some involved in metabolic control and immune responses,
show a circadian oscillation in gene and protein expression dur-
ing the day.[27–29] Interestingly, the IRE1𝛼 pathway, which is part
of the unfolded protein response was found to be under circa-
dian control in mice, as observed from a 12 h period rhythmic
activation of target genes.[30] Therefore, the downregulation of
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Figure 6. Heatmap of the differentially expressed genes (FDR Q < 0.05) in the six differentially expressed gene set clusters (Table 3) in the merged
dataset analyses. Log-ratios are shown for each gene in each subject of the three studies.
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pathways related to the unfolded protein response that we ob-
servedmay potentially be caused by circadian oscillations as well,
although studies showing this relationship in humans are lack-
ing. In this study, we do not have a control group available and, we
are not able to distinguish between high-fat challenge-induced
and circadian oscillation changes in gene expression. The indi-
vidual studies did include multiple challenges and compared dif-
ferences between them. However, the control challenges differed
considerably and could therefore not be used in this analysis. Our
analysis of only one of the challenges per study clearly demon-
strate the importance of comparing nutritional challenges with
different compositions for the identification of actual nutritional
challenge-induced effects on gene expression. However, it should
be noted that the nutritional challenges themselves may also
influence circadian gene regulation, making it difficult to sep-
arate background circadian oscillation from nutrition-induced
changes in gene expression.
Another finding was the upregulation in expression of

inflammation-related genes by the high-fat challenges.
Triglyceride-rich lipoproteins and lipoprotein remnants are
thought to play an important role in mediating postpran-
dial inflammation.[31] In the postprandial circulation, these
lipoproteins may cause the activation of the nuclear factor-𝜅B
transcription factor, either by internalization of these lipopro-
teins by leukocytes,[32] or by activating intracellular signaling
by binding to CD14 and activation of toll-like receptor-4 on the
cell surface.[33] These may be a potential mechanism by which a
high-fat challenge may cause an increase in inflammatory gene
expression in PBMCs.
A postprandial downregulation was observed for genes related

to cholesterol biosynthesis. Interestingly, this downregulation
appears to be mostly attributed to changes in the study by Esser
et al. and Bouwens et al., and to a lesser extent the study by
Matone et al. The first two studies used a high-SFA load whereas
the Matone et al. study used a high-MUFA load. In the original
study by Esser et al., a high-MUFA challenge was also included
and compared to the high SFA study. Where the SFA challenge
reduced expression of genes related to cholesterol biosynthesis,
the MUFA challenge did not affect expression of these genes,
which is in accordance with our observations in the Matone et al.
study. Expression of cholesterol biosynthesis genes is regulated
via the SREBP-2 transcription factor through a negative feedback
system,[34] suggesting that intracellular cholesterol concentra-
tions may be high after a high-SFA challenge and not after a
high-MUFA challenge. The cause of this potential cholesterol
concentration increase is unclear, as cholesterol biosynthesis
gene expression changes appeared to be the largest in the study
by Esser et al., even though the high-fat challenge that was
used did not contain cholesterol, unlike the challenge used by
Bouwens et al. that did contain cholesterol-containing butter.
Potentially, the higher SFA-load and the more at-risk population
of the Esser et al. study may have contributed to this effect.
A strong study-related difference in gene expression was

observed (Figure 3A) when comparing log2-intensity values
between studies, which is consistent with observations in many
previous studies and is a commonly faced problem when com-
bining different batches of microarray data.[19] Several methods
for correction of these batch-effect have been suggested.[19,35]

Problematic with these approaches is that it is difficult to separate

technical batch effects, such as batch effects caused by differ-
ences in PBMC collection or lab methodology, from biological
effects.[19] In our studies, differences in subject characteristics
(age and BMI) or high-fat challenge composition are examples
of factors that may have caused the batch effects. However, when
we examined within-subject log2-ratios, the study-related batch
effects disappeared, showing a large similarity in the responses
to the high-fat challenge across studies. This is an advantage
of the within-subject design of the studies, as microarrays were
performed on samples taken before as well as after the high-fat
challenges in each individual. Furthermore, we found that the
overlap in differentially expressed genes between the combined
dataset analysis and the Fisher p-value combination method was
large, with an overlap of 80%. From these observations, we con-
clude that the between-study batch effects are not a major source
of variation in our studies. Nevertheless, many differences exist
between the three studies, which include differences in study
population, challenge composition, time of the postprandialmea-
surement, microarray platform, and laboratory methods. These
are all potential sources of variability in our analyzes and may
have decreased our power to detect high-fat challenge-induced
changes in gene expression. Consequently, we may have only
picked up the genes and pathways with the strongest changes. In
the future, minimizing differences between studies by increased
standardization in methods, including the use of a standardized
metabolic challenge as described by Stroeve et al.,[2] the con-
sumption of a standardized low-fat meal the evening before a
challenge test, and using RNA from the same cell sources would
greatly enhance the power of these types of integrated analyses.
However, the downside of standardization is that the effects of
these factors on the response cannot be studied anymore.
To our knowledge, this is the first study that has performed

an integrated analysis on microarray datasets from several acute
high-fat challenge intervention studies. We used several integra-
tion methods for the combined analysis to identify changes in
PBMC gene expression upon a high-fat challenge. Several dif-
ferences exist between the studies, such as microarray platform,
number and characteristics of subjects, high-fat challenge com-
position, laboratory where the analysis took place, and timepoint
of the postprandial measurement. Nevertheless, the identified
changes are consistent across datasets, demonstrating that this
may be a valuable approach that can also be applied in future
studies.
Of the usedmethods, selection of genes that were differentially

expressed in all three separate studies was the strictest, resulting
in low number of differentially expressed genes that did show
the most consistent and robust regulation in all studies. When
using different methods, such as the Fisher p-value method and
the merged dataset analysis, we observed changes in additional
genes and pathways.
In conclusion, the integrated analysis provides added value

for the discovery of consistently differentially expressed genes
and pathways compared to selecting only those genes and path-
ways that are identified in all separate studies. Using integrated
analyses of PBMC whole genome gene expression responses to
high-fat challenges of studies varying in study population, chal-
lenge composition, and research laboratory, we identified a gen-
eral PBMCwhole genome gene expression response to a high fat
challenge.
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