
Speaker linking in large data sets

David A. van Leeuwen

TNO Human Factors, Soesterberg, The Netherlands
Radboud University, Nijmegen, The Netherlands

david.vanleeuwen@tno.nl

Abstract

This paper investigates the task of linking speakers across
multiple recordings, which can be accomplished by speaker
clustering. Various aspects are considered, such as com-
putational complexity, on/offline approaches, and evalu-
ation measures but also speaker recognition approaches.
It has not been the aim of this study to optimize clus-
tering performance, but as an experimental exercise, we
perform speaker linking on all ‘1conv-4w’ conversation
sides of the NIST-2006 evaluation data set. This set con-
tains 704 speakers in 3835 conversation sides. Using both
on-line and off-line algorithms, equal-purity figures of
about 86 % are obtained.

1. Introduction

In his book “Blink” Malcolm Gladwell describes how
during World War II, British interceptors of Morse-code
traffic could gain information from the enemy by rec-
ognizing the so-called ‘fist’ of the operator making the
transmission. Although the messages were encrypted,
the performance of producing the Morse-code on air is
person-dependent, and the characterization of this per-
formance was coined the ‘fist’ of the operator. By rec-
ognizing the operator, and linking broadcasts from differ-
ent times and places together, movements of the enemy
could be inferred. This linking is what we consider now
as a task for speaker recognition: track unknown speakers
along a sequence of recordings.

Linking, also known as clustering, is a task occur-
ring in many other domains, too. For instance, in image
processing, detecting faces in images and linking them
together is technology available in commercial and on-
line photo organizing tools. Here, the user helps out the
face clustering algorithm by explicitly including or ex-
cluding newly found faces in the photo library. The fact
that faces typically receive an identity from the user is ir-
relevant to the clustering algorithm: the images are only
compared within the data collection. These face recog-
nition implementations appear to work quite well from a
user perspective. The technology might be called semi-
supervised, as the user’s input is required iteratively in
the entire clustering process. For speaker linking a semi-

supervised clustering implementation is still quite a chal-
lenge, because the linear time aspect of speech is more
difficult to deal with in presenting candidate samples to
the user than the 2-dimensional capabilities of the visual
interface.

Speaker linking is related to speaker diarization, which
has an additional task of first segmenting an audio stream
in segments of a single speaker (ignoring overlap for the
moment) and then clustering the segments in order to
find which segments belong to the same speaker, answer-
ing the question who spoke when. Speaker diarization
is typically performed within a single recording, whereas
speaker linking explicitly is about a (possibly large) set of
separate recordings. In speaker linking the segmentation
is assumed to be found by out-of-band information, e.g.,
the signal strength of a radio or the granularity of phone
communication.

In some way speaker linking occurs in NIST Speaker
Recognition Evaluation (SRE) tasks of “2-wire” training,
where the common speaker in three conversations must
be found for building a proper speaker model. In this task
an additional diarization tasks exists because the record-
ings are made with both speakers of the conversation on
the same channel. However, in that specific task, there are
typically three conversations that must be linked, whereas
in speaker linking we aim at hundreds or thousands of
speakers.

Another task that is closely related to speaker link-
ing is that of speaker tracking. Here the task is to find
spoken segments of a particular speaker for which some
training material is given. This has both aspects of di-
arization, as the audio stream needs to be segmented first,
and of operation on a collection of recordings. It has as
such been performed in both the 1999/2000 editions of
the NIST SRE for 2-wire telephone conversations and the
French ESTER 2005 evaluation campaign for broadcast
news. The task and evaluation measures were cast in a
detection and retrieval framework, respectively, and can
be compared to a “known item retrieval” task in text re-
trieval. In speaker linking, the fact that there are no refer-
ence speakers implies that all segments need to be related
to all others, which makes the task more complex and
sensitive to errors.

Odyssey 2010
The Speaker and Language Recognition Workshop
28 June – 1 July 2010, Brno, Czech Republic

202



As a final relation to speaker linking there obviously
is the problem of clustering in general. In many machine
learning and pattern recognition problems there is the
challenge to cluster items in an unsupervised way, where
the number of classes is unknown. Examples are clus-
tering of text documents or images. The way in which
speaker linking differs from general clustering is the way
the classes are defined: these are the actual speaker iden-
tities, and there is in principle no doubt about the ground
truth in class labels, which is different from, e.g., the case
of topic in text document clustering.

This paper is organized as follows. First, we make an
inventory of the task and the challenges in speaker link-
ing, and consider some approaches to the problem. Then
we will characterize the various task aspects, and in the
experimental section apply two clustering approaches to
a fairly challenging data set from the NIST 2006 SRE.

2. Task and Aspects of Speaker Linking

In this paper, we use the term linking for the task and
clustering for the method or algorithm to permorm this
task.

The task of speaker linking can be defined as follows.

Given a collection of speech segments S, link
segments originating from the same speaker
together.

The number of speakers S is unknown, and can range
from 1 to the number of segments N . The number of
possible linking configurations is a combinatorial prob-
lem. The number of possible partitions of the segments in
non-empty clusters is known as the Bell-number [1] BN ,
which grows very fast with N .1 For this reason, any
clustering approach that investigates all possible linking
configurations, and evaluates the likelihood of each, is
intractable. Tractable algorithms therefore use iterative
procedures that make heuristic assumptions that a previ-
ous clustering step provides a good prior to a subsequent
clustering step in terms of the optimal linking configura-
tion. We will now look at some aspects of clustering.

2.1. Some clustering approaches

For a general introduction to clustering approaches, see [2].
Of the iterative clustering procedures, the broadest sepa-
ration is in top down (divisive) or bottom-up (agglomera-
tive). In speaker diarization, agglomerative clustering has
been the dominant approach in recent years [3], but also
divisive schemes have been studied [4]. In agglomerative
clustering, clusters are initialized with the original seg-
ments, and iteratively the two clusters are found that are

1According to the On-Line Encyclopedia of Integer Sequences, the
sequence BN starts conservatively as 1, 1, 2, 5, 15, 52, . . . , but already
B20 ≈ 5.2× 1010

the best candidates for being merged. Alternatively, in di-
visive clustering a single cluster is initialized with all seg-
ments, and iteratively the best partitioning into more clus-
ters is found. In both approaches, merging/partitioning
ends when some stopping criterion is met.

A fairly careful approach to agglomerative clustering
starts with C = N clusters and reduces the number of
clusters to C − 1 by considering all possible 1

2C(C − 1)
cluster pairs for a merge, and iterating. This proce-
dure runs in O(N3) time. A faster approach consid-
ers a number of cluster pairs simultaneously (hierarchi-
cal clustering), reducing computation time to typically
O(N2 logN).

In divisive clustering the number of possible parti-
tionings to consider at every iteration is combinatorically
large, again. By making use of a model for a cluster, and
splitting a cluster according to the model parameters, the
likelihood of the segments given the (new) models can be
used to efficiently partition the segments.

2.2. On-line vs off-line clustering
In many application areas, the data (speech segments in
our case) are collected sequentially. Often, it is desir-
able to have a linking available at any instant in time, or
at least periodically. For the typical agglomerative clus-
tering described above the order in which the segments
arrive does not play a role. We call this off-line, or af-
ter the fact, clustering. If one needs to re-cluster the en-
tire collection with the advent of each new segment, the
computation time necessary scales with O(N4)—still, at
each individual step withO(N3)—indicating that sooner
or later there won’t be not enough time to complete a full
agglomerative clustering.

An alternative approach is on-line clustering, where
we keep the CN clusters found after N segments. We
only consider assigning a new segment to an existing
cluster or creating a new cluster for this segment. At
segment instant N , the computational requirements then
scale only as O(CN ) which much less quickly exceeds
computing power. As already noticed in the context of
speaker change detection and clustering using a Bayesian
Information Criterion, on-line clustering may in practice
perform just as well, or even better, than its full agglom-
erative counterpart [5].

2.3. Re-training of cluster models
One thing to consider during speaker clustering is whether
or not to re-train speaker models for the clusters. For divi-
sive clustering, this typically happens because some form
of modeling of the entire cluster is necessary to make
the partitioning tractable. For agglomerative clustering,
it is possible to work with one speaker model for each
segment, thereby only clustering in a logical sense. The
alternative is to re-train a new model after each cluster
merge, with obvious additional computational costs but a
possibly better speaker model.

203



In speaker diarization, it is normal to re-train cluster
models after a merge; in fact, for every possible merge
under consideration (typically 1

2C(C − 1)) a new model
is trained. For the GMMs (often used in diarization), this
is computationally the most expensive step, thereby lim-
iting the duration of the audio that can be processed.

For some modeling techniques training a new model
from a new combination of speech segments can be com-
puted efficiently. An example is the dot-scoring approach
for UBM-GMM models. Here, the GMM representing
the speaker model is seen as a perturbation of the UBM,
using the linear term of the Taylor-series expansion. The
speaker model is built from a simple division using first
and zeroth order Baum-Welch statistics of the training
data given the UBM, so if the statistics per segment are
kept in memory, building a new model using a new clus-
ter configuration can be carried out very efficiently. Sim-
ilarly, in GMM-SVM modeling the Gram-matrix of the
background and all known segments can be kept in mem-
ory, and only the kernel function of the existing set of
segments with the new segment needs to be evaluated be-
fore a new SVM model can be computed.

2.4. Within-set normalization
In NIST SRE it is, for very good reasons, not allowed to
use information of segments in the evaluation other than
the segments used for training and testing in the trial un-
der consideration. For the task of speaker linking, how-
ever, it is not unreasonable to allow for the use of all avail-
able segments for any decision regarding two (or more)
segments. Typical usage of available segments could be
score normalization or discriminative training. E.g., one
might want to utilize known non-target segments for ei-
ther discriminative training or T- or Z-normalization—
but knowing whether or not segments are linked to the
same speaker or not is part of the task, so care must be
taken. One could consider, for instance, using only seg-
ments with very low speaker recognition scores for a par-
ticular segment.

2.5. Hard versus soft clustering
So far we have implicitly assumed algorithms that make a
hard many-to-one decision as to which segment belongs
to which cluster. From experience in many areas in ma-
chine learning we may expect that a ‘soft’ attribution of
a segment to a cluster may be advantageous during the
clustering process. E.g., in GMM training each data point
x is ‘distributed’ over existing mixtures j and its poste-
rior probability P (j|x) governs the statistics of the next
iteration mixtures.

3. Evaluation measures
3.1. Review of existing measures
There are several evaluation measures available for clus-
tering tasks. In speaker diarization, the standard perfor-

mance measure is the Diarization Error Rate [6] (DER).
This is a time-weighted error measure, accounting for
wrongly attributed speaker, missed speech and false alarm
speech. Like in speaker linking, in speaker diarization
speakers are labeled with absolute identities, therefore
an optimal mapping of hypothesized speakers to refer-
ence speakers is made that minimizes the DER—similar
to word alignment in determining the word error rate for
a speech recognition system. The DER is expressed as
a fraction of speech, and the denominator accounts for
all speech of all speakers, including overlap. For accu-
rate and meaningful determination of the DER, forced-
aligned reference speech is necessary [3]. The fraction of
false alarm speech, therefore, has an unusual interpreta-
tion as it is not normalized by the amount of non-speech
but by the amount of speech in the audio [7].

In the NIST SRE 2000 speaker tracking task, per-
formance was measured in a time-weighted version of
Miss and False Alarm rates. Here hypothesis segments
of speech were scored for target model speakers.

In the ESTER 2005 speaker tracking task retrieval
measures were computed: time-weighted versions of re-
call and precision, and the final evaluation measure was
the F -measure, the harmonic mean of recall and preci-
sion.

The measures mentioned above are all time-weighted,
and are tailored to include the diarization aspects of the
task at hand. Because in our task definition of speaker
linking the speaker segmentation is not part of the prob-
lem, we would like to concentrate on the clustering as-
pects. We defined two impurities, of cluster and speaker.
The former measures to what extent a cluster contains
segments from different speakers [2], the latter measures
to what extent reference speakers are distributed among
clusters.

3.2. Cluster impurity and entropy

Consider the found clusters Ci, i = 1, . . . , C, each a set
of one or more segments j. Then define R(j) the true
(or reference) speaker of segment j, and fk(R(Ci)) the
frequency of reference speaker k occurring in Ci, where
k = 1, . . . ,Ki and reference speakers are ordered in de-
creasing frequency within Ci. Using the short-hand

fik = fk(R(Ci)), (1)

the number of segments in cluster i is ni =
∑

k fik, and
the total number of segments is N =

∑
i ni. Then the

cluster impurity Ic is defined as

Ic = 1− 1
N

∑
i

fi1 (2)

Note that this is a segment-weighted average of individ-
ual cluster impurities 1−fi1/ni. Another measure that is
used the evaluation of cluster purity is the cluster entropy,

204



for cluster i defined using the probability pik = fik/ni

as
Hc

i = −
∑

k

pik log2 pik. (3)

Again, we can average this entropy over the entire collec-
tion of clusters, weighting by segment

Hc =
1
N

∑
i

niH
c
i . (4)

The speaker impurity ranges from 0 to (almost) 1, where
the lowest value indicates perfect separation of speakers.
The entropy is non-negative, where 0 indicates that there
is no doubt about what speakers are assigned to a cluster.

3.3. Speaker impurity and entropy
It is trivial to obtain cluster impurity and entropy 0 by as-
signing each segment to its own cluster. We must there-
fore also look at the other side of the task—the ability
to link segments of the same speaker together. Starting
this time from the reference speakers k consider the set
of segments Sk spoken by k. For each segment j ∈ Sk,
determine the cluster C(j) to which is was assigned, and
compute the frequencies gki = gi(C(Sk)) of assigning
speaker k to the same cluster, in descending order. We
have mk =

∑
i gki, the number of segments spoken by

speaker k, and N =
∑

k mk, the total number of seg-
ments. The speaker impurity Is is defined as

Is = 1− 1
N

∑
k

gk1. (5)

Similarly, we can set qki = gki/mk and define the
speaker entropy for speaker k as

Hs
k = −

∑
i

qki log2 qki, (6)

and, averaging over all speakers, weighting by the amount
of segments per speaker, we obtain

Hs =
1
N

∑
k

mkH
s
k . (7)

Note that, again, there is a trivial solution with Is = 0
and Hs = 0 by putting all segments in a single cluster.

3.4. Trade-off analysis
Similar to speaker detection, in speaker linking we have
two trivial solutions that result in either Ic = 0 or Is = 0.
It therefore makes sense to analyze results in terms of a
trade-off between speaker and cluster purity (or entropy).
The clustering algorithm is likely to have some stopping
criterion, which has a parameter (e.g., a threshold) that
governs the trade-off. In the tradition of speaker detec-
tion, we can make a parametric plot the trade-off. For
the impurities, which have the dimension of a fraction,
we can do this on probit-warped axes, similar to the infa-
mous DET-plots that we all have learned to like so much
in the past 15 years.

4. Linking experiments

4.1. Speech data

In this section we report some experiments carried out on
a medium-sized collection of speech segments. Since this
work was carried out during the preparation for NIST-
2008, we have used the NIST-2006 SRE speech material
for experiments. We used all 3835 test segments avail-
able in the ‘1conv4w’ test condition, which contains both
male and female speech segments. We used a fixed, but
otherwise random, order of these segments in order to
simulate ‘on-line’ experiments.

4.2. Speaker recognition system

We used a snapshot of the TNO speaker recognition sys-
tem under development for the NIST SRE-2008 eval-
uation. Specifically, we used a GMM-SVM system,
state-of-the-art for SRE 2006 [8] and still competitive in
2008, with NAP [9] and T-norm [10]. Twelve PLP fea-
tures plus log energy, augmented with derivatives were
extracted, energy-based speech activity detection was
applied and zero mean, unity variance normalized per
segment. The 512-mixture UBM was trained gender-
independently using 2257 speakers from LDC Switch-
board II phase 2 and Fisher English, NIST SRE 2001,
2002, 2003 and 2005, and non-English segments from
NIST LRE-2003. With the UBM as prior, point esti-
mates of Gaussian means were made using MAP adap-
tation [11] for each speech segment. Channel compen-
sation was implemented through NAP, using the NIST
SRE 2004 ‘1side4w-1side4w’ data. Shifts in means were
stacked in supervectors, and SVM models were built us-
ing a background of 1640 speakers included in the UBM.
Compacting the (linear kernel) SVM gave the opportu-
nity to a fast (inner-product) way of scoring. Scores were
T-normalized using 155 speakers from NIST SRE-2004.

This system, when evaluated on NIST SRE-2006
data, had a performance of 5.06 % EER. For subsequent
experiments, we computed a full matrix of all test seg-
ments scored against all models built from the same test
segments. The matrix was made symmetric by averaging
with its transpose.

4.3. On-line algorithm

In order to simulate an ‘on-line’ experiment we used the
information from score matrix Sij (score of segment j for
model i) in the following way. A cluster C consists of a
list of segment indexes {i} that belong to that cluster.

1. The first segment j = 0 is assigned a new cluster
C0, and set the number of clusters C = 1.

2. Continue with the next segment j, determine the
maximum score mj = maxj−1

i=0 Sij and the model
index imax of the maximum

205



Table 1: Cluster and speaker imprecision and entropy for
the on-line clustering approach using the NIST SRE 2006
test data. Also indicated are the threshold θ and the num-
ber of speakers found C (true number is 704).

θ Ic Is Hc Hs C
2.0 0.926 0.058 5.993 0.173 22
2.5 0.827 0.076 4.330 0.224 63
3.0 0.741 0.081 3.662 0.240 115
3.5 0.628 0.084 2.863 0.251 193
4.0 0.494 0.093 2.107 0.274 316
4.5 0.340 0.104 1.276 0.308 473
5.0 0.232 0.115 0.805 0.345 632
5.5 0.151 0.142 0.497 0.424 779
6.0 0.102 0.164 0.323 0.494 917
6.5 0.061 0.190 0.179 0.577 1040
7.0 0.044 0.227 0.124 0.701 1167
7.5 0.028 0.260 0.076 0.821 1309
8.0 0.022 0.289 0.059 0.935 1443
8.5 0.017 0.331 0.046 1.082 1592
9.0 0.014 0.381 0.039 1.258 1768
9.5 0.013 0.419 0.034 1.393 1911
10.0 0.011 0.456 0.029 1.542 2096

3. If mj > θ, assign segment j to the cluster to which
the segment imax belongs; otherwise create a new
cluster CC , assign segment j to this cluster, and in-
crement the cluster count C.

4. Continue with step 2 until all segments are as-
signed to clusters.

This on-line algorithm represents a cluster as a collection
of segments and considers a new segment by comparing
it to all the segments of the cluster. Clusters compete
for the new segment (this is similar to identification) be-
cause only the highest scoring model segment can claim
the new segment for its cluster, and hence there are hard
decisions made as to which segment belongs to which
cluster. The threshold parameter θ governs the trade-off
between clusters containing more than one speaker and
speakers distributed over more than one cluster.

In Table 1 the performance results for a scan of
thresholds in the range 2–10 (in “units” of T-norm scores)
is shown. At θ = 5.56 “equal impurity” of 0.145 is
reached, and coincidentally around the same value the
correct number of speakers (704) is crossed. Note that
in such an on-line implementation it is not trivial to use
information of the number of speaker in the collection,
and sweeping the threshold after-the-fact, as we are used
to in producing DET-plots, does not have a natural paral-
lel in on-line clustering.

4.4. Off-line algorithm
From the score matrix Sij we can also simulate an off-
line clustering algorithm along similar lines.

Table 2: Cluster and speaker imprecision and entropy
for the off-line clustering approach using the same NIST
SRE 2006 score matrix shown in Table 1. Note that the
equal impurity point is crossed at a different threshold.

θ Ic Is Hc Hs C
5.0 0.908 0.008 8.159 0.027 139
5.5 0.775 0.022 6.563 0.073 281
6.0 0.605 0.039 4.791 0.128 443
6.5 0.446 0.062 2.803 0.201 607
7.0 0.286 0.091 1.341 0.300 783
7.5 0.146 0.133 0.552 0.442 1000
8.0 0.088 0.180 0.271 0.592 1172
8.5 0.044 0.231 0.128 0.769 1369
9.0 0.027 0.271 0.079 0.922 1521
9.5 0.022 0.311 0.062 1.069 1684
10.0 0.015 0.370 0.042 1.269 1882
10.5 0.011 0.419 0.029 1.449 2083
11.0 0.009 0.459 0.023 1.598 2267
11.5 0.008 0.501 0.021 1.745 2449
12.0 0.007 0.541 0.018 1.884 2614

1. Initialize C = N and set each segment i to cluster
Ci.

2. find the highest score smax in the upper-triangular
matrix si<j , and the corresponding row i and col-
umn j

3. if smax < θ, stop.

4. merge the segments in clusters Ci and Cj , and re-
move column j from the matrix

This agglomerative clustering algorithm is compara-
ble to the on-line algorithm in the sense that it does not
re-train models after merging clusters; merging is based
entirely on individual segment-segment scores. Again,
model segments are competitive as from all scores in
a column only the maximum survives, other (possibly
high) scores for that segment are not considered further.

In Table 2 the results for the off-line algorithm are
given using exactly the same score matrix Sij as used in
the on-line algorithm. Compared to the on-line cluster-
ing, the “calibration” of the threshold is quite different,
the equal impurity point of 0.149 is reached at θ = 7.75,
where the correct number of speakers is found for θ just
below 7. Note that here, as an efficiency step, we could
have dumped the cluster status at regular intervals of the
merging score during the agglomerative clustering, thus
scanning a range of thresholds in a single clustering op-
eration. This is similar to computing DET statistics by
sorting all scores in a speaker recognition evaluation.

4.5. Effect of collection size
One of the challenges of speaker linking is that the prob-
lem gets harder if the number of speakers and segments

206



Table 3: Performance of the off-line clustering algorithm
with smaller sample size. Performance is summarized in
the Equal Impurity I and the threshold θ at which this
is reached. Also, the number of speakers retained S and
samples N is shown, as well as the average number of
segments per speaker.

fraction θ I S N N/S
1 7.56 0.139 704 3835 5.45

1/2 6.79 0.123 607 1932 3.18
1/4 6.32 0.103 470 940 2.00
1/8 6.0 0.083 323 482 1.49

1/16 5.9 0.064 195 236 1.21

increases. In order to study this experimentally, we ran
the off-line clustering system on the collection reduced
in size. Using different fractions, we took a random
sample from the 3835 segments and ran the clustering.
The results are shown in Table 3. Clearly, performance
increases as the number of speakers and segments de-
creases.

5. Discussion

The impurity columns in Table 1 and 2 are plotted to-
gether in a trade-off plot, using common DET scales, in
Figure 1. Interestingly, the performance is very similar,
with the off-line clustering somewhat better in the low
speaker impurity range. The trade-off graphs are not as
straight as we are used to in speaker recognition DETs,
but we must realize that this is the result of quite a dif-
ferent operation. There is a relation between false alarms
and impure clusters, since high-scoring impostor segment
comparisons will lead to mixed clusters. Similarly there
is a relation between impure speakers and misses.

If impurities were to be compared to errors, then we
can see that the complexity of clustering increases the er-
ror rates with respect to speaker detection: for the full
NIST test set, the equal error rate in detection is 5.06 %
for this system, but the equal impurity is 13.9 %. Cluster-
ing is inherently a more difficult task, because detection
errors lead to impure clusters, which will provoke more
errors.

If the problem is made simpler, by selecting a ran-
dom subset of the segments as we have shown in Table 3,
the clustering performance increases again. This can be
due to the fact that as a consequence of the sampling, the
number of segments per speaker decreases, and hence a
trivial solution of giving every segment its own cluster
becomes better performing.

We have discussed a number of characteristics of
clustering, but have performed experiments with only two
approaches, an on-line and an off-line algorithm. It is re-
markable that the on-line and off-line algorithms perform

Cluster impurity(%)

S
pe

ak
er

 im
pu

rit
y 

(%
)

0.1 0.5 1 2 5 10 20 40

0.
1

0.
5

1
2

5
10

20
40

●●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Off−line
On−line

Figure 1: Trade-off between cluster and speaker impurity,
for both the on-line and off-line algorithm. Scales of the
axes are warped by the probit function, as is customary
for DET plots in speaker recognition.

quite similar, where we would expect the off-line agglom-
erative clustering to have more information available and
make better decisions. However, in the context of speaker
diarization a similar effect has been seen before in litera-
ture [5].

The algorithms were pretty straightforward—it was
not the aim of this research to develop better clustering
algorithms but rather to investigate some of the issues
that arise in speaker linking, especially when collection
sizes increase. It would be interesting to investigate soft-
clustering algorithms, and see if they are less susceptible
to the problem that clusters become impure when errors
are made.

As a final note, we became aware of another paper
submitted to this conference “The Speaker Partitioning
Problem” [1] after the original submission deadline, and
the authors treat the exact same task, but have a more
mathematical approach to the problem. They show, for
instance, that many tasks in speaker recognition can be
seen as special cases of speaker partitioning (or link-
ing, as we have termed it). Our focus is more on prob-
lems with a high number of speakers and segments, and
the scalability issues that are related to that. Where in
speaker detection performance stays constant with more
segments or speakers, this is not the case for speaker link-
ing. We believe that there are still a lot of interesting
issues to be investigated, including re-training, within-
collection discriminative training and normalization, soft
clustering and scalability.

207



6. References

[1] Niko Brümmer and Edward de Villiers, “The
speaker partitioning problem,” in Proc. Odyssey
2010: The Speaker and Language Recognition
Workshop, Brno, June 2010, Submitted.

[2] Pang-Ning Tan, Michael Steinbach, and Vipin Ku-
mar, Introduction to Data Mining, chapter Chapter
8. Cluster Analysis: Basic concepts and algorithms,
Adison-Wesley, 2006, ISBN: 9780321321367.

[3] Xavier Anguera, Chuck Wooters, and Jose M.
Pardo, “Robust speaker diarization for meetings:
Icsi rt06s meetings evaluation system,” in Machine
Learning for Multimodal Interaction, vol. 4299 of
Lecture Notes in Computer Science, pp. 346–358.
Springer Berlin/Heidelberg, 2006.

[4] Sylvain Meignier, Jean-François Bonastre, and
Stephane Igounet, “E-hmm approach for learning
and adapting sound models for speaker indexing,”
in Proc. Odyssey 2001: The Speaker Recognition
Workshop, 2001, pp. 175–180.

[5] Alain Tritschler and Ramesh Gopinath, “Improved
speaker segmentation and segments clustering using
the Baysian Information Criterion,” in Proc. Eu-
rospeech, 1999.

[6] Jonathan G. Fiscus, Jerome Ajot, and John S. Garo-
folo, “The rich transcription 2007 meeting recog-
nition evaluation,” in The Joint Proceedings of the
CLEAR 2007 and RT 2007 Evaluation Workshops,
vol. 4625 of LNCS, pp. 373–389. Springer, 2007.

[7] David A. van Leeuwen and Marijn Huijbregts, “The
AMI speaker diarization system for NIST RT06s
meeting data,” in Machine Learning for Multimodal
Interaction, vol. 4299 of Lecture Notes in Computer
Science, pp. 371–384. Springer Berlin/Heidelberg,
2006.

[8] Niko Brümmer, Lukáš Burget, Jan Černocký,
Ondřey Glembek, František Grezl, Martin Karafiát,
Pavel Matějka, David A. van Leeuwen, Petr
Schwarz, and Albert Strassheim, “Fusion of hetero-
geneous speaker recognition systems in the STBU
submission for the nist speaker recognition evalu-
ation 2006,” IEEE Transactions on Speech, Audio
and Language Processing, vol. 15, no. 7, pp. 2072–
2084, 2007.

[9] William Campbell, Douglas Sturim, Douglas
Reynolds, and Alex Solomonoff, “SVM based
speaker verification using a GMM supervector ker-
nel and NAP variability compensation,” in Proc.
ICASSP, Toulouse, 2006, IEEE, pp. 97–100.

[10] R. Auckenthaler, M. Carey, and H. Lloyd-Thomas,
“Score normalization for text-independent speaker
verification systems,” Digital Signal Processing,
vol. 10, pp. 42–54, 2000.

[11] J.-L. Gauvain and C.-H. Lee, “Maximum a posteri-
ori esitimation for multivariate gaussian mixture ob-
servations of markov chains,” IEEE Trans. Speech
Audio Processing, vol. 2, pp. 291–298, 1994.

208


