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Abstract

To architect and design a system, the stakeholder needs have to be satisfied by technical solutions, for which 
decisions on trade-offs have to be made. A trend is that the number of functions, components, and interfaces in systems
increase, often by an order of magnitude or more, such that reasoning about the impact of a decision becomes 
increasingly hard and tracing its impact throughout the system is crucial. Therefore, we decompose a system in areas 
of knowledge and information, which we call knowledge domains. Architecting means taking decisions, for which 
the impact on knowledge domains and their explicit relations are required. Existing approaches that reason across
systems either do not make explicit relations between knowledge domains, or perform a quantitative computation 
instead of reasoning, where for both it is difficult to trace the impact of decisions.

In this paper, we present an architecture reasoning structure with which knowledge domains from different 
disciplines can be explicitly related, which enables system wide reasoning and decision making. With just eight 
language elements, a system can be described in an information structure. By applying a knowledge domain pattern, 
the essential information of knowledge domains is captured. Via relations, both qualitative and quantitative reasoning 
can be performed to trace the impact of decisions. An example is used to illustrate the approach, for which the tension 
for a decision is shown by tracing its impact via quantitative and qualitative relations. The approach was investigated 
and validated in the industrial context of Océ professional printing systems.
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1. Introduction

To architect and design a system, the stakeholder needs, demands, and expectations have to be satisfied by technical 
solutions [1]. This often involves solutions from various disciplines [2]. To realize the system, decisions on trade-offs 
have to be made, which is tightly coupled with architecting and designing. An observed trend for technical solutions 
is their increasing complexity [3], due to the increasing number of system functions, components, and their interfaces. 
This complexity increases the time required to make decisions and trade-offs. To handle this growing complexity, 
support for reasoning about the impact of a decision and tracing this impact throughout the system is desirable. 

To make decisions and trace them through a system, we decompose the system in areas of knowledge and 
information that are needed to create its architecture and design. There are teams with knowledge and information on 
a specific area, we call this a Knowledge Domain (KD). A KD has a representative, which we will call its owner. 
Because KDs can be oriented at different disciplines, they can use different languages and definitions. For system 
wide reasoning and decision tracing, relations between KDs should be known. Therefore, KD owners must understand 
each other and agree on these interfaces.

Figure 1(a) introduces an electric bicycle case, which will be used to illustrate the challenge in system wide 
reasoning and decision making. Note that due to its purpose this example is a simplification, where the presented 
approach has been successfully applied to larger and more complex cases. The challenge is to decide on the cost and 
the intended usage of the bicycle, where cost and usage are related, and a decision should be made that is possible and 
supported by all related KDs. In the figure, relevant KDs are sketched by giving their names. Important parameters 
are near the names to indicate their relation. Next to the KD name, an image of the owner is sketched. To make 
decisions on cost and usage, and reason about them, the cost and usage relation between the “Frame”, “Electric 
drivetrain” and “Marketing” KDs should be understood. Such a relation has to be made explicit by relating parameters 
of the KDs.

Five sources of misunderstanding for decision making have been identified, as illustrated in Figure 1(b). The 
sources of misunderstanding are illustrated by a black circle with a number. Source one shows that there can be a 
misunderstanding between KDs on the used terminology and definitions, which hampers decision making. For 
example, when the "Marketing”, “Usability”, “Frame”, and “Electric drivetrain” discuss the usage of the bicycle, they 
refer to the “usage”, “stiffness”, and “efficiency”, respectively. These parameters probably have different units and 
meanings, because the KDs are from different disciplines. A second source of misunderstanding can be an unclear 
relation between KDs. For the relation between “Marketing” and “Frame”, the intended “usage” of the bicycle should 
be translated in the desired “stiffness”. A third source of misunderstanding can be the absence of a clear owner of a 
KD, which results in difficulties to agree on a relation. A KD that has an unclear scope with non-related information 
is the fourth source of misunderstanding, because the encompassed KDs may each have different interests, which can 
obfuscate the discussion and thereby the realization of relations. As a fifth source of misunderstanding, there can be a 
difference in used abstraction level. One KD can have an abstract high-level description, whereas the description of 
another KD can be focused and detailed. These five sources of misunderstanding can make it difficult to explicitly 
relate KDs and thereby reason about the impact of a decision.

Approaches are available for system wide reasoning or decision making. The A3 architecture overviews [4] and 
DoDAF 2.0 [5] provide multiple views on a system, but do not explicitly relate the parts. The Geeglee approach [6, 
7] prescribes a process with six filled score cards to compute design risks and make decisions. To make decisions and 
to reason about their system wide impact, explicit relations with the impacted parts of a system are desired.

a 

 

b 

 

Figure 1: Electric bicycle case, to illustrate the system wide reasoning challenge for making architecture and design decisions (a), and an annotation 
with possible sources of misunderstanding for decision making (b).
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Figure 2: Ontology for system wide architecture reasoning structure.

In this paper, we present an architecture reasoning structure with which KDs from different disciplines can be 
explicitly related, which enables system wide reasoning and decision making. A fixed set of eight Language Elements 
(LEs) is given that is sufficient to describe the KDs of a system in a Knowledge Domain Structure (KDS). With these 
LEs the information of KDs can be captured, where quantitative and qualitative relations inside and between KDs can 
be described. Via these relations, both qualitative and quantitative reasoning can be performed, such that the impact 
of design decisions can be traced. This approach was validated in the industrial context of Océ professional printing 
systems, where it has been applied for system wide quantitative and qualitative reasoning and decision making.  

The KDS is developed and validated in the context of the Model-Based System Architecting (MBSA) 
methodology. In this methodology, the clarity and transparency of models is used in the conceptualization, quantitative 
reasoning, and decision making. The LEs that are used to describe KDs include validations, transformations, models, 
and parameters. In KDs, transformations can be used that have a model which determines the values of its output 
parameters based on input parameter values. Between KDs, validations that have a model can be used. The model of 
a validations shows if similar values are used for the related parameter, which indicates the level of agreement between 
KDs on the parameter values. The validations and transformations, with their models, make relations between 
parameters explicitly and can be used to calculate parameters values, which enables quantitative reasoning. Qualitative 
reasoning is made possible by using relations inside and between KDs.

An ontology of our system wide reasoning structure for architectures is given in Figure 2. This figure shows that a 
system architecture can be expressed by a KDS that is described by quantitative and qualitative LEs. Decision making 
is hampered by sources of misunderstanding, whereas it can be supported by system level reasoning via the LEs. 

In the remainder of the paper, we use a bottom-up presentation order, starting from LEs towards a KDS, to enable 
quantitative and qualitative reasoning. First, Section 2 presents related work. Section 3 introducers the LEs. Using 
these LEs, KDs are described in Section 4. A KDS suitable for system wide reasoning and making design decisions 
is presented in Section 5. Finally, Section 6 presents the conclusions.

2. Related work

Related work describes methods to support decision making for architectures or designs. First, methods to architect 
systems will be discussed, followed by approaches that visualize and describe architectures, to support decision 
making. Finally, approaches to make decision based on quantitative system models are discussed. 

Methods to architect a system are given by the CAFCR and BoDERC methods. The CAFCR method [1] uses 
customer objectives, application, functional, conceptual, and realization viewpoints to analyze the system and help 
the architect in deciding on a consistent and balanced system. However, the structure of the information for a viewpoint 
is not described and relations are not made explicit via parameters. The BoDERC design methodology [8] describes 
a quantitative model-based architecting process. A design is prepared by obtaining key drivers and core domain 
knowledge, followed by the selection of critical design aspects for which tensions and conflicts are identified, for 
which options are evaluated via models and measurements. However, this methodology does not explicitly relate the 
knowledge in a way that is needed for quantitative reasoning.

Approaches to visualize and describe architectures are given by the 4+1 view model, the A3 architecture overviews, 
DoDAF, and SysML. The 4+1 view model [9] for software architectures uses a development, logical, physical, and 
process view, and a set of scenarios to describe these views. Each view has an architecture, and these architectures are 
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related. However, this approach focusses on the software discipline and does not relate views explicitly via parameters. 
The A3 architecture overviews [4] enable an informal process to make architecture knowledge explicit, with an A3 
per important system aspect for which qualitative reasoning is allowed. Compared to traditional documents, the
information in A3s is easier to understand and read for stake holders. However, the relation between the information 
in A3s is not explicitly checked and managed. DoDAF 2.0 [5] describes eight views with corresponding models. In 
each view, the system is described with a certain focus, e.g. data and information. Together, the views and models 
describe the architecture, such that stakeholders can more effectively make key decisions. The views are prescribed, 
and models suggested, but the exact models and their relations are free to choose. SysML [10] is a software oriented 
visual modeling language to support amongst others the specification, analysis, and design of systems. Multiple 
diagrams with each a modelling language are described. The software-oriented languages focus on models for 
realizations, whereas for a system and its KDs also system aspects and their relations are important.

The Geeglee and Contact and Channel approaches can be used to make decisions, based on computation of a 
quantitative system model. The Geeglee approach [6, 7] prescribes a process in which six score cards are filled and 
used to identify design challenges and make design decisions. The score cards rely on quantitative reasoning, for 
which engineers have to determine and provide all values for relations in a predefined format, to perform a 
computation on which decisions can be based. Instead of providing all values in a fixed format, architects will desire 
the support of incrementally building up the system information, where they can see the KDs, such that they get insight 
in design risks and can reason about decisions. The Contact and Channel approach [2] can be used to model the 
functional behavior of a system, with linked simulation models and visualizations of the design in SysML. A visual 
description of the system and the mapping of functions in the system is provided. However, this approach focuses on 
the functional realization and does not consider for example system aspects like cost.

We introduce a KDS in which explicit relations can be used between KDs from different disciplines. The explicit 
relations enable a combination of qualitative and quantitative reasoning. LEs to describe the KDs of a system are 
provided to capture and visualize information about the whole system, making the information easily accessible for 
reasoning and decision making. 

3. Language elements and information structure

In this section, the LEs needed to describe the structure and definitions of a system in an IS are introduced. Eight 
LEs are sufficient to describe a system in an IS.

The eight LEs to describe an IS, are given in Table 1. The LEs can be subdivided in three categories; structural 
elements, quantification elements, and relational elements. The usage of the LEs in an IS will be illustrated for the 
bicycle case in Figure 3.

Table 1: Eight LEs, with which an IS can be created.

Language element Reasoning Category Usage 
Block 

Qualitative Structural 
Creates structure, or qualifies an entity, with its name. 

Image Clarifies or illustrates other LEs. 
Text Annotates or explains a LE. 
Parameter 

Quantitative Quantification 

Quantifies an aspect from a block. 
Model Makes the relation of a validation or transformation quantitative and explicit. 

Examples are a mathematical expression, a simulation, executable code, or a 
loop-up table. 

Relation Qualitative 
Relational 

A qualitative relation between parameters, blocks, images, or text. 
Validation Quantitative A comparison of parameter values to satisfy a given condition. 
Transformation A transformation of input parameter values into output parameter values. 

The block, image, and text are structural elements, used to create structure in an IS. They can be used to create a 
kind of hierarchy, with a parent child structure between structural LEs.

The parameter and model are quantification elements that explicitly quantify parts of a system. A parameter
quantifies structural elements, e.g. weight, or cost. Typically, a parameter has a unit attached, like “m/s” or “$”. When 
hard quantification is not possible, a parameter can contain qualitative discrete values like “+”, “heavy”, or 
“acceptable”, which may not have a unit.
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Figure 3: IS for the electric bicycle case from Figure 1.

Relational elements can be used between blocks, images, texts, and parameters. Both a transformation and a 
validation are defined by a quantitative model. A transformation uses its model to compute the values of its output 
parameters, given the values of its input parameters. A validation validates values of input parameters by using its 
model to compare these values. The result of the comparison can be true, false, maybe, or undetermined.

The presented LEs can be used to describe entities, relations, and quantifications of a system in an IS. In an IS, 
blocks are used to represent entities. Parameters are related to a block, because they quantify an aspect of its entity. 
Blocks can be related, either directly via qualitative relations, or indirectly via quantitative transformations or 
validations between their parameters. The relations between entities in an IS make it possible to perform qualitative 
and quantitative reasoning about the impact of decisions, as will be presented in Section 5.

To describe qualitative relations from a system in an IS, blocks and relations are required, where images or texts 
are used to clarify the relations or blocks. Blocks represent entities of a system, like the “Frame” or the “Usability”. 
Between blocks there can be a qualitative relation, where a text or an image explains the relation. 

To describe quantitative relations from a system in an IS, blocks, parameters, transformations, validations, and 
models are required. The quantitative transformation or validation requires the involved blocks to have parameters. 
The transformation writes values in its output parameters, and thereby keeps the parameter values consistent among 
the blocks, according to its model. The validation compares parameter values and shows the outcome, according to 
its model.

To describe a system with both qualitative and quantitative relations in an IS, the eight LEs from Table 1 are 
required. Qualitative relations are easier to capture and derive, compared to quantitative relations for which values, 
units, and models are needed. Therefore, typically initially an IS will contain only qualitative relations. Only relations 
that are unclear or critical should be made quantitative, because quantification requires a significant amount of time 
and effort. Note that as a step towards quantitative relations, blocks can be quantified with parameters where a 
qualitative relation is used between these parameters.

We use the term IS, rather than the more commonly used term knowledge graph [11]. For our IS, we use eight 
distinctive and different LEs, whereas a graph typically consists of a single type of nodes.

In Figure 3, an example of an IS for the electric bicycle case is shown, annotated with black boxes that contain the 
name of the LEs. The “Marketing”, “Usability, “Frame”, and “Seat post” KDs are represented by blocks. The 
qualitative relation is made explicit by the relation between the “Cost” parameters of the “Frame” and “Seat post” 
KDs. To make quantitative relations explicit, parameters are added to blocks. This is visualized by placing these 
parameters near their blocks. Values and units are added to the parameters. In the “Usability” KD, the parameter 
“Usage” has the value “recreation”. This value is compared via a validation with the value of “Usage” in the 
“Marketing” KD and it is used as input for the transformation with which the “Frame stiffness” and “Seat post 
comfort” values are determined. Models are added to transformations and validation to perform the computation. In a 
visualization, the colour of a validation shows the result of its comparison, where green is used for true, red for false, 
orange for maybe, and white for no output. 

The example in Figure 3 shows KDs for the bicycle case from Figure 1 for which the information is made explicit 
by capturing it with LEs. Explicit relations between and inside the “Marketing”, “Usability”, “Frame”, and “Seat post” 
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Figure 4: Application of the KD pattern with essential, advised, and visual supportive information, for the “Frame” KD from Figure 3.

KDs are shown. This IS of the bicycle shows its architecture and the parameters on which the owners of the KDs have 
to agree, for this example related to usage and cost.

The presented IS reduces, or avoids, misunderstanding on the used terminology, definitions, and relations in a 
system. LEs explicitly describe the information of and relations in a system. 

4. Knowledge domain pattern

In this Section, a KD pattern is described that helps to define the scope and to describe essential information of a 
KD. This pattern can be applied for KDs in an IS. The pattern describes essential, optional and visual supportive 
information.

The essential information for a KD, annotated with black boxes in Figure 4, are a main entity and an owner. A 
block is used to represent the main entity of a KD, which should have a name that clearly describes the area of a KD. 
Typically, this name is a noun. The name should clearly reflect the scope of the KD area. With an image and text, the 
picture and name of the owner for a KD should be included. Explicitly defining ownership helps other users to 
recognize the responsible person for a KD. 

For a KD, the advised information, annotated with dark grey boxes in Figure 4, are sub entities, parameters, 
relations, and transformations. Besides the main entity, additional information and structure for KD can be given by 
including blocks for sub entities, like the “Seat post” in the given example. With sub entities, a decomposition of the 
important parts of the main entity can be made, where it is possible to create a nesting of sub entities. The names of 
sub entities are typically a noun. Parameters can be added to entities to indicate the presence of quantitative or 
qualitative information about an aspect of the entity, the name of the parameter gives information about the aspect. A 
value and a corresponding unit can be added to refine the information of the parameter. Entities in a KD should be 
related, this can be via a relation between entities or via relations or transformation between parameters of entities. 

Visual supportive information, annotated with light grey boxes in Figure 4, make a KD easier to understand and 
thereby supports the reasoning for decisions. An image can be used as a background, to contain all LEs belonging to 
the KD. This shows the boundary and scope of the KD. Text can be used to show the title of the KD. An explanation 
of entities in the KD by using text or images, shows the knowledge area and eases clear understanding.

Qualitative reasoning can be performed via relations. For parameters or blocks that have a relation, the owner 
should decide if their values should be changed due to a decision, via qualitative reasoning. The owner can decide if 
the impact of a change is acceptable, by tracing the impact of the change via the qualitative relations, with support 
from annotations in text or images.

Quantitative reasoning about decisions in a KD is enabled by transformations and their models. Quantitative 
reasoning can be performed by deciding if a change to a parameter is acceptable given its computed output parameter 
values. To reason on a desired change to an output parameter value of a transformation, a search for acceptable input 
parameter values is needed.

Figure 4 shows the application of the KD pattern for the “Frame”, from Figure 3, which enables reasoning and 
decision making. By applying the pattern, the “Frame” and “Seat post” entities are included in the KD, such that the 
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covered knowledge area is explicit. The relations and transformations in this KD can show if there is a tension between 
parameter values. As an example, assume that the owner has to minimize the cost of the “Frame” whilst maintaining 
a stiffness above the 100 Nm/°/kg. For the qualitative relation between the “Cost” of the “Frame” and “Seat post”, the 
owner has to reason about the changes to the values. The owner is supported by a quantitative transformation for the 
less obvious transformation of “Material” into “Cost” and “Stiffness”. If the owner would change the value of the 
“Material” parameter into “steel”, the outcome of the transformation may result in an acceptable “Cost” for the 
“Frame”, but a too low “Stiffness” and an unrealistic low “Cost” for the “Seat post”. By observing the changes and 
tracing them, the owner can make decisions for his KD. 

The KD pattern sets an explicit scope for the knowledge area, via the name of its entities and the background. If 
information is unclear, there is an owner that can be contacted. By applying the KD pattern, essential information is 
described which avoids misunderstanding.

5. Knowledge domain structure

System wide reasoning to make architecture or design decisions, becomes possible by relating KDs explicitly, as 
discussed in this Section. By applying the KD pattern on all information in an IS, it becomes a KDS. Quantitative and 
qualitative relations between KDs make it possible to reason about the impact of a change in one KD by tracing its 
relation to the other KDs, such that a balanced decision can be made that takes trade-offs into account. At the end of 
this Section, system wide reasoning is explained for the bicycle case.

In a KDS, KDs are related via quantitative validations or qualitative relations. Each KD should have at least a 
validation or relation with another KD. An isolated KD indicates that something is wrong and that a discussion with 
its owner is needed. KDs in a system should be related. Besides relating, a validation or relation also decouples the 
KDs. If an owner of a KD makes a change to a parameter value, it will not change the information in other KDs that 
are managed by other owners.

A validation between KDs relates offer or target parameters. Validations relate KDs via parameters, where the 
parameter in one KD sets a target and the parameter in the other KD represents the offer. An example of this is the 
“Cost” target set by “Marketing” and the corresponding offer from “Frame”, in Figure 3. The validation has a model
for the comparison of both “Cost” values to show if the offer is sufficient for the target. The model used for a validation 
should be agreed upon by the involved KDs, therefore it is a contract between the KDs on the comparison. In this 
case, a green validation indicates agreement between the KDs for the offer and target parameter values. 

Different types of KDs can be identified for a system, being component, aspect, and stakeholder KD types. These 
different KD types contain different information about the system. Note that all can be captured with the KD pattern. 
A component KD contains information, captured with blocks and parameters, regarding the realization of a part of the 
system. Typically, this KD offers parameter values towards other KDs. An aspect KD describes an aspect that should 
be realized by the system, for which typically targets are given towards component KDs, e.g. on cost or usability. A 
stakeholder KD contains information regarding the stakeholder perspective on the system. From a stakeholder KD 
there will be targets towards aspect KDs, because stakeholders desire a system where the aspects are such that their 
goal is achieved as good as possible.

In a KDS, the validations show the level of reached agreement and where there are tensions. The absence of 
agreement requires either changes in one of the KDs or a new agreement on the model for the comparison. If its owner 
considers changes for a KD, the impact can be observed for its validations that indicate the agreements with other 
KDs. If a KD has relations and changes are made, the owner has to agree on the change with the involved KDs, found 
via the relations. The validations and relations allow tracing the impact of a change over KDs, which makes it possible 
to decide on a change whilst considering the system wide impact. 

The intention of using a KDS is to perform qualitative and quantitative reasoning on changes at system level, such 
that agreement between related KDs can be achieved. To realize an architecture, the system architect can use the KDS 
to determine for which relations discussions with the KD owners are needed to come to an agreement. KD owners can 
observe and trace the impact of a change towards and also for other KDs. They can trace these changes via quantitative 
validations or qualitative relations, which enables quantitative or qualitative reasoning, respectively.  Because system 
wide important information is captured and related in a KDS, it can also be used as a form of documentation.

Figure 5 gives a KDS for the electric bicycle case, based on which decisions can be made. The green color for most 
of the validations between the KDs shows that most KDs reached agreement on the relation of parameter values. 
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Figure 5: KDS that enables system wide quantitative reasoning and decision making.

However, the red validation, between the “Marketing” and “Usability” KDs, shows the system architect that the KD 
owners disagree, such that this solution is not possible. As a solution, consider that the owner of the “Usability” KD 
agrees with the “Marketing” KD owner and changes its “Usage” to “sports”. The owner of the “Usability” KD can 
trace the relations for “Usage” in his or her KD and the validations to other KDs. Inside the KD a transformation is 
used, which enables quantitative reasoning. The “Usability” owner can change “Usage” and observes the output values 
of the transformation. As a continuation of the example, the output value for “Frame stiffness” will become 115 
Nm/°/kg. Because this is larger than the “Stiffness” parameter value of the “Frame” KD, the corresponding validation 
will become false, i.e. red. If the “Frame” and “Usability” owners would decide on increasing the “Stiffness”, the 
“Cost” of the “Frame” KD will increase, for example to 500 $. This results in a false validation on “Cost” between 
the “Marketing” and “Frame” KD. With this information, the architect and owner of the “Marketing” KD can now 
decide on the trade-off between the “Cost” and “Usage” values. The example shows a tension between the “Cost” and 
the “Usage” values, where qualitative and quantitative relations make it possible to perform system wide reasoning 
on the impact of changes. The result of this reasoning can be used to come to a balanced decision, with which the 
involved KD owners can agree.

6. Conclusions

We presented a knowledge domain structure that enables a combination of qualitative and quantitative system wide 
reasoning, such that the tensions of changes become visible and decisions can be made. Eight language elements are 
used to structure the system information in a knowledge domain structure, which we illustrated with an electric bicycle 
system. In this knowledge domain structure, the knowledge domains are decoupled by validations, where the result of 
the validation indicates the level of agreement between the knowledge domains. 

With the language elements and a knowledge domain pattern, the information of a system can be described in a 
knowledge domain structure. The knowledge domain pattern describes essential information, such that the scope and 
owner of the knowledge domain are captured. Relations can be used in a knowledge domain for qualitative reasoning 
on the impact of a change. Transformations enable quantitative reasoning, because changes to input parameter values 
of a transformation are propagated to its output parameter values. Knowledge domains can be related via relations and 
validations. The models that define the validations can be seen as a contract between knowledge domains on the 
comparison of the parameter values. Via the relations inside and between the knowledge domains, a combination of 
qualitative and quantitative reasoning can be performed. This approach has been investigated and validated in the Océ 
professional printing system context, where it was used for system wide reasoning and decision making. An interesting 
extension is the support for reasoning in large industrial systems with hundreds of knowledge domains, which requires 
a pattern to further structure information and scale the approach. 
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