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Efficient code generation for image processing applications continues to pose a challenge in a domain where

high performance is often necessary to meet real-time constraints. The inherently complex structure found

in most image-processing pipelines, the plethora of transformations that can be applied to optimize the per-

formance of an implementation, as well as the interaction of these optimizations with locality, redundant

computation and parallelism, can be indentified as the key reasons behind this issue. Recent domain-specific

languages (DSL) such as the Halide DSL and compiler attempt to encourage high-level design-space explo-

ration to facilitate the optimization process. We propose a novel optimization strategy that aims to maximize

producer-consumer locality by exploiting reuse in image-processing pipelines. We implement our analysis

as a tool that can be used alongside the Halide DSL to automatically generate schedules for pipelines imple-

mented in Halide and test it on a variety of benchmarks. Experimental results on three different multi-core

architectures show an average performance improvement of 40% over the Halide Auto-Scheduler and 75%

over a state-of-the art approach that targets the PolyMage DSL.
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1 INTRODUCTION

High-tech systems such as wide-format printers, radars, and health-care monitoring applications

execute complex image-processing algorithms on a target platform that is typically a multi-core

CPU (e.g., from ARM or Intel) with SIMD extensions. To meet the real-time constraints, the
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final implementation needs to be highly optimized for the target platform. Traditional optimiza-

tions usually include a series of loop transformations, such as tiling and loop fusion, as well as

vectorization and parallelization and aim to exploit locality (spatial and temporal), data-level par-

allelism, and task-level parallelism, respectively. However, manually applying these transforma-

tions significantly reduces code readability and portability and discourages high-level design-space

exploration.

Recently, domain-specific languages (DSLs) such as Halide [21] and PolyMage [16] were intro-

duced to facilitate the optimization process in high-performance image-processing applications.

These DSLs allow developers to express applications in a more abstract format while maintaining

the ability to apply low-level optimizations and transformations on the final code. The benefits of

these approaches can be invaluable in the case of image-processing pipelines where a combination

of optimizations including stage interleaving or stage fusion, tiling, vectorization, and paralleliza-

tion are necessary to achieve high performance.

An image-processing pipeline can be defined as a series of functional stages, where each stage

contains an arbitrary number of nested loops and depends on data produced during an earlier

stage. As a result, interleaving the computation of these stages can offer significant performance

improvement by exploiting producer/consumer locality and ensuring that intermediate buffers

are kept inside the local caches or registers. Both Halide and PolyMage employ techniques that

allow for the automatic optimization of such imaging pipelines. The Halide Auto-Scheduler [15]

attempts to group stages together and evaluates an effective tiling in each group. PolyMage can use

both auto-tuning to search parts of the design space as well as a recently introduced model-driven

approach [10]. This new approach quickly attempts to fuse stages and extends the search space to

cover more solutions than the previous auto-tuning method. However, all three techniques [10, 15,

16] focus on the interleaving of the computation of each stage using overlapping tiles and therefore

lead to solutions with limited reuse possibilities and often miss sliding window opportunities.

In this article, we present a novel optimization strategy for image-processing pipelines that

considers stage fusion for maximum producer/consumer locality in conjunction with tile size se-

lection while evaluating reuse possibilities not considered in previous state-of-the-art approaches.

Our technique is driven by an analytical model that takes relevant application and architecture-

specific parameters (such as the number of cores/threads, cache size, interaction with hardware

prefetching) into account and is capable of producing optimized schedules within seconds, even

for complex pipelines with a large number of stages. We implement it as a tool to be used with

the Halide DSL as an alternative cost model and analysis to the Halide Auto-Scheduler and evalu-

ate it across a variety of benchmarks and target platforms. We compare our solutions to the ones

produced by the Halide Auto-Scheduler, the manual solutions given for the Halide DSL on the

same benchmarks when applicable, as well as the ones produced by PolyMage (using both the

original auto-tuned method, as well as the DP-fusion technique implemented in Reference [10])

on the same target architectures. We observe a substantial performance improvement across all

platforms and architectures.

It is important to remark that our technique is not restricted to Halide. It can be used with

other DSLs and general-purpose compilers that target image processing or tensor or linear algebra

applications and offer control over the production and consumption of pipeline stages as well as

the allocation of intermediate buffers.

The rest of this work is organized as follows: Section 2 discusses related work. Section 3 gives

a motivational example, while Section 4 presents our proposed optimization technique in detail.

Section 5 showcases the experimental results that were obtained. Conclusive remarks are finally

discussed in Section 6.
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2 RELATED WORK

In this section, we discuss prior related work. We identify the limitations of traditional loop fu-

sion and tiling techniques used in general-purpose languages when optimizing image-processing

pipelines and investigate some of the benefits of recent image-processing domain-specific

languages.

2.1 General-purpose Languages

Loop fusion in conjunction with tiling has been extensively studied in the past, especially in the

case of general-purpose compilers. Most of these approaches focus on exploiting data locality

while maintaining parallelism in applications dominated by linear algebra or stencil computations

[11, 17, 25, 27, 28]. More specifically, the authors in Reference [28] propose a hierarchical tiling

technique for iterative solver applications to reduce communication overhead without introducing

severe redundant computation. In Reference [17], the effects of various inter-loop optimization

strategies on PDE solvers are investigated.

In Reference [4], the authors propose an optimization strategy for compute-intensive multi-

dimensional summations that involve products of several arrays. They investigate the effects of

loop fusion and tiling in such applications while also reducing the memory footprint of interme-

diate temporary buffer requirements.

Other approaches have focused on enabling loop fusion in applications with complex data de-

pendencies between loop iterations [14, 26]. The authors of Reference [26] propose a technique

that eliminates fusion-preventing dependencies by means of loop tiling and array copying. After

iteratively applying the aforementioned method to multiple loop nests, a single equivalent nested

loop can be formed that can be tiled for cache locality. In a similar fashion, Reference [14] proposes

a way of mitigating the presence of fusion-preventing dependencies, while maintaining parallelism

and eliminating cache conflicts in the subsequent fused loops.

However, all aforementioned methods involve traditional loop fusion techniques that target

time-iterated stencils, the scope of which differs from the complex multi-dimensional problems

defined in the context of image-processing pipelines, a term that covers all applications within the

scope of this work. Stages in these pipelines perform various data-parallel computations before

having their output consumed by the next stage, which in turn executes a different computation

or stencil.

2.2 Domain-specific Languages

Recently, DSLs have emerged that enable quick design-space exploration in the image-processing

domain. These DSLs provide high-level abstractions in the definitions of the functional steps inside

the pipeline, as well as the ability to apply optimizations on the generated code to ensure high

performance on the final implementation.

Tensor Comprehensions [24] is an example of a recent DSL that targets deep learning applica-

tions such as convolutional and recurrent neural networks. It consists of a high-level language with

syntax that resembles the mathematics of deep learning and a Just-In-Time polyhedral compiler

for CUDA-based GPU architectures. It employs an auto-tuner to automatically generate efficient

polyhedral schedules.

PolyMage [16] is another DSL for image-processing applications that uses a dataflowlike lan-

guage to describe pipelines. It employs polyhedral transformations [9, 13, 19] to optimize the com-

putations performed by the functional stages of the pipeline with a grouping-then-tiling approach.

More specifically, it relies on auto-tuning over various tile dimensions, which are all powers of two,

to decide which stages of the pipeline will be grouped together. It then applies polyhedral opti-

mizations on each group to generate the final nested loops. An alternative optimization strategy
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Fig. 1. 3 x 3 Blur pipeline.

for pipelines implemented in PolyMage was introduced in Reference [10]. This method introduced

a dynamic fusion and tiling model that extends the search space to tile sizes that are not powers of

two and resolves the need for auto-tuning. However, due to the nature of the analysis that is used

in the PolyMage compiler, its application scope is limited to stencil computations and up/down

sampling.

Halide [21] is perhaps the most prominent of the DSL attempts. Halide separates the algorithmic

description of a pipeline from its optimization schedule. Image-processing pipelines in Halide are

defined as directed acyclic graphs, where each node of the graph represents a functional stage.

Each stage is equivalent to a Halide function, which specifies all producer/consumer relations at

the specific stage. Furthermore, the functional description of the pipeline is independent of its

optimization schedule. In other words, the Halide functions define the relations and dependencies

between the stage of the pipeline but do not influence the way the stages will get executed. As a

result, the optimization schedule can control both the order of execution within a single stage, as

well as the way the computation of stages gets interleaved during the execution of the pipeline.

Figure 1(b) shows a simple two-stage blur filter implemented in Halide, along with its optimization

schedule. Given this schedule, the compiler will tile the loop of the blury filter using a tile size of

256 × 32, vectorize the innermost intra-tile loop (xi ) using vectors of size 8, and parallelize its

outermost inter-tile loop (yo). Furthermore, the computation of the blurx stage will be interleaved

on a per-tile basis and its innermost loop will also be vectorized using vectors of size 8. In other

words, before each intra-tile loop iteration, Halide will first allocate buffer space and compute all

pixels of blurx that will get consumed during this iteration. The equivalent loop-nest in pseudo-C

can be seen in Figure 1(c).

Halide initially employed an auto-tuning framework to automatically generate optimized sched-

ules for pipelines [21] that required an extensive amount of time to derive an adequate schedule.

A more generic auto-tuning approach that is driven by genetic algorithms was proposed in the

auto-tuning framework Opentuner [2]. This framework was able to generate efficient schedules

in less time for small pipelines (e.g., bilateral grid), but fails to converge to a good solution for

larger, more-complex problems.

Currently, Halide uses a heuristic-based Auto-Scheduler that was initially proposed in [15] but

then received an updated cost model by the Halide community [7]. This method uses a greedy

grouping algorithm to group stages of the pipeline together to maximize producer/consumer lo-

cality and applies tiling to the output stage of each group independently. However, the grouping

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 10. Publication date: April 2019.
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Fig. 2. 3 × 3 Blur pipeline—scheduling options.

strategy excludes parts of the design space and considers only a limited number of tile sizes, and its

analysis does not cover buffer allocation and storage scheduling. As a result, while it can quickly

produce schedules within seconds, it misses interesting solutions of the design space that may

benefit from sliding window opportunities. Those missed solutions may, however, allow for better

SIMD vector unit utilization and better exploitation of the hardware prefetchers.

Recently, another analytical model was introduced in Reference [23] that automatically sched-

ules kernels in Halide. This method takes hardware prefetching into account and involves a hier-

archical tiling approach, but it is limited to single-stage pipeline and -stage fusion falls outside its

analysis.

Our method considers both the compute as well as the storage levels of a stage while deter-

mining its final optimization schedule. We show that by taking both compute and store level into

account, we can reduce the amount of intermediate temporary buffer space required, which in

return allows for different grouping and tiling options as well as increased producer/consumer lo-

cality. Furthermore, our analytical model takes hardware prefetching inherently into account and

investigates tile sizes in a larger scope.

3 MOTIVATIONAL EXAMPLE AND PROBLEM FORMULATION

In this section, we use the blur pipeline seen in Figure 1 as a motivational example to demonstrate

the limitations of current state-of-the-art approaches, as well as the idea behind our work.

As already mentioned, optimizing an image-processing pipeline usually involves dealing with

a complex tradeoff among parallelism, locality, and recomputation. The transformations that are

often considered include a combination of loop interchange, splitting, fusion, parallelization, and

vectorization. Choosing a proper fusion strategy for each stage in a pipeline has a significant ef-

fect on the performance of the final implementation. Figure 2 shows three example schedules for

the blur pipeline in pseudo-C syntax. The amount of reuse or recomputation, as well as the size

of the intermediate buffer that is required can be controlled through the combination of various

loop permutations, tile sizes, and levels at which we compute and store each stage of the pipeline.

For example, the solution shown in Figure 2(a) computes all necessary pixels in blurx before con-

suming them to compute blury. Such a schedule avoids all recomputation but suffers from poor

locality and a large intermediate buffer (depending on the problem size). However, fully inlining

the producer (blurx ) into its consumer (blury) increases locality but at the cost of the highest

recomputation.

Current state-of-the-art approaches (e.g., the current Halide Auto-Scheduler) only consider

scheduling options where compute and store are set to the same level of a loop nest. As an ex-

ample, consider the schedule seen in Figure 2(b). In this case, tiling the iteration space of blury
and fusing its producer into the innermost inter-tile loop (xo) allows for an intermediate solution

that offers increased locality compared to the fully stored implementation and less recomputa-

tion than the fully inlined one. Furthermore, it does not hinder parallelization of the outermost
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inter-tile loop, since the computation of blurx is interleaved at a lower level than the parallel loop.

We can quantify the amount of intermediate storage (Bblur x ) needed as well as the amount of

recomputation (Rblur x ) in such a schedule for arbitrary tile dimensions:

Bblur x = Tx (Ty +vy ) · sizeo f (DataType ), (1)

where Tx ,Ty are the tile sizes in the x and y dimensions and vy is the amount of overlap between

blurx and its consumer blury in the y dimension (in this example vy = 2),

Rblur x = Cp
bluryxo

xo

blur x
−Croot

blur x , (2)

where Cp
bluryxo

xo

blur x
is the total computation cost of blurx in this fusion scenario and Croot

blur x
is the

cost when all of its pixels are computed and stored before being consumed (as in Schedule (a)).

More specifically, Cp
bluryxo

xo

blur x
is the cost of blurx when fused into blury with its computation

(subscript xo) and allocation (superscript xo) set to the xo level/index of the loop-nest of blury.

Similarly,Croot
blur x

is the cost of computing and storing blurx outside the loop nest of the consuming

stage blury,

Cp
bluryxo

xo

blur x
= Tx (Ty + 2)

Bx

Tx

By

Ty
, (3)

Croot
blur x = Bx (By + 2), (4)

where Bx ,By are the problem sizes (loop bounds) in the x and y dimensions, respectively.1

Similar equations can be used to calculate the load cost (Cl ) for blurx , which is equivalent to

the load cost for the input data (Cblur x
input ). In detail:

Cl
bluryxo

xo

blur x
= Cblur x

input = (Tx + 2) (Ty + 2)
Bx

Tx

By

Ty
. (5)

In the presence of a streaming hardware prefetcher,2 the previous equation becomes

Cl
bluryxo

xo

blur x
= (Ty + 2)

Bx

Tx

By

Ty
, (6)

where we eliminate the sequential accesses across cache lines. Finally, the amount of data that

needs to stay in the cache to benefit from input data reuse is

Binput = (Tx + 2) (Ty + 2) · sizeo f (DataType ). (7)

Such a schedule benefits from increased locality compared to the one with root storage. Further-

more, as seen in the above equations, the tradeoff between redundant computation and locality can

be controlled by tuning the applied tile dimensions. It should also be noted that a different inter or

intra-tile loop permutation leads to different buffer requirements and cost-functions. Figure 3(a)

shows a visual representation of the schedule for an 8 × 8 output image with 4 × 4 tiling (Bx = 8,

By = 8,Tx = 4, andTy = 4). As seen in the figure, all blue pixels of blurx are evaluated and stored

before being consumed to produce one red tile of blury.

The third schedule (Figure 2(c)) shows an implementation where computation and storage are

set to different levels. Such schedules benefit from sliding window opportunities that usually en-

able the folding of intermediate buffers without reducing the amount of data reuse. As an exam-

ple, consider the buffer requirements for this schedule (all of the other costs will be the same as in

1To keep the equations and the example clear, we assume that the loop bounds in each dimension are a multiple of the tile

size.
2We assume that the problem size in the column dimension is larger than the size of a physical page, and therefore the

constant stride prefetchers cannot follow the stride of the non-consecutive load operations.
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Fig. 3. Overlapping tiles and sliding window implementations.

schedule 2(b)). Starting from Equation (1) (since the store level remains the same), we can calculate

the memory footprint of the producer blurx stage as follows:

Bblur x = Tx (Ty + 2) · sizeo f (DataType ). (8)

Since pixels of blurx are now computed per line of the output tile (yi), we do not need to keep all

of them in the intermediate buffer but only those that can be reused across intra-tile iterations (or

across one xo iteration). Therefore, Bblur x can be folded down to a circular buffer of size:

Bblur x = Tx (1 + 2) · sizeo f (DataType ) = 3Tx · sizeo f (DataType ). (9)

The same holds for the input data buffer, which will now be

Binput = (Tx + 2) (Ty + 2) · sizeo f (DataType ) (10)

and will be folded down to:

Binput = (Tx + 2) (1 + 2) · sizeo f (DataType ) = 3(Tx + 2) · sizeo f (DataType ). (11)

Figure 3(b) shows a visual representation for a small 8 × 8 output image with an applied tile

size of 4 × 4 (Bx = 8, By = 8, Tx = 4, and Ty = 4). Unlike Figure 3(a), pixels of the producing stage

blurx are produced per line (yi) of the consuming stage blury as needed. For example, three lines

of width equal to Tx will be computed during the first yi iteration to produce one tile row, but

only one line of blurx will need to be computed for yi > 0, since two lines may be reused. Pixels

that are no longer needed (cannot be reused across one iteration of xo) are discarded.

Note that the above schedule does not ensure maximum folding of the intermediate buffer al-

located for blurx . For example, consider the schedule seen in Figure 4(a), interchanging the loop

such that the ordering (from innermost to outermost) is (yi,xi,yo,xo), setting the compute level

of blurx to yi , and its storage to y would allow the buffer to get folded down to just the amount of

overlap across y without any extra recomputation compared to the previous schedule:

Bblur x = (1 +vy ) · sizeo f (DataType ) = 3 · sizeo f (DataType ). (12)

However, as it can also be seen from Figure 4(b), computing blurx at the innermost level of its

consumer causes the loading of the input buffer to be much less efficient. In detail, since input
is accessed in a column major order (three horizontal pixels at a time are needed to produce one

pixel of blurx ), prefetched (consecutive) cache lines will only be used after Ty iterations or will

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 10. Publication date: April 2019.
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Fig. 4. Maximum folding of the intermediate buffer blurx .

Fig. 5. Fusion solution space, adapted from Reference [21].

not even be used at all ifTy is too large, and they get evicted from the cache. As a result, the input

load cost is now equal to:

Cl
blury

yi
xi

blur x
= Cblur x

input = 3(Ty + 2)Tx
Bx

Tx

By

Ty
= 3(Ty + 2)Bx

By

Ty
, (13)

where theTx factor can no longer be simplified, since accesses to input are not consecutive and the

schedule does not benefit from hardware prefetching (as much as the previous one). For reference,

the previous schedule (Figure 2(c)) performs twice as fast compared to this one, even though it

does not maximize folding.

Based on the above (Equations (9) and (11) and Figure 3), we can conclude that folding the inter-

mediate buffers leads to much smaller local memory requirements without sacrificing data reuse

or increasing the amount of redundant computations. As a result, solutions that were previously

not considered, e.g., tile sizes that led to large memory footprints can now easily be captured by

separating the computation and storage of a stage. However, as seen by comparing Equations (13)

and (6), maximum folding does not always ensure exploitation of the spatial locality or the hard-

ware prefetching mechanisms of the platform. Due to this, a tradeoff analysis among reuse, re-

computation, input loading cost, and memory requirements has to be conducted.

Figure 5 shows an abstract representation of the design space when considering stage fusion. As

already mentioned, previous state-of-the-art techniques only consider solutions that reside within

a small area of this space. The Halide Auto-Scheduler only produces solutions where the compute
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Fig. 6. Fusion solution space for the blur example.

granularity of a stage is the same as its storage granularity. As a result, the generated schedules

are limited to fully inlined, fully stored, and tiled implementations with redundant computations

where the computation and storage are set to the innermost inter-tile level (overlapping tiles).

Figure 6 shows the distinct solutions for the above loop permutation of the blur example. The root

and inlined solutions have been excluded due to limited reuse, parallelism, or locality as explained

in the above example. We can notice that most solutions of the design space are currently not

considered and all sliding window opportunities are missed.

Our method enables fast exploration of this new design space. We will show that through the

use of heuristics, we can quickly prune the space down to a single solution (e.g., of the 10 valid

schedules in Figure 6, we only need to evaluate 1). This is achieved by automatically eliminating

most uninteresting schedules that are pareto dominated by other more efficient solutions. Domi-

nant schedules are considered the following:

(1) Schedules that offer more reuse with the same buffer requirements, e.g., consider the

schedules (yi,yi) and (yi,xo). The second schedule provides more reuse while the slid-

ing window optimization allows for the same memory requirements.

(2) Schedules that offer the same amount of reuse with the smaller buffer requirements.

e.g., schedules (xo,xo) and (yi,xo) as explained in the previous example.

The final solution is then evaluated through a cost function to pick the tile sizes. The analysis has

to be repeated for different loop permutations, since that leads to a different design space with

different solutions.

4 PROPOSED METHOD

In this section, we present each major step in our optimization flow. We follow a grouping-then-

tiling technique that only attempts to split the pipeline into smaller segments if the initial solution

does not fit within the memory constraints. More specifically, Section 4.1 discusses the algorithms

responsible for choosing the compute and store level of a stage inside a pipeline (or a segment

of a pipeline). Section 4.2 presents the tiling analysis that determines the proper tile sizes for a

pipeline/segment. Section 4.3 demonstrates the procedure that is followed to split a pipeline into

smaller segments. Some final optimizations are discussed in Section 4.4, and an overview of the

optimization flow is given in Section 4.5

4.1 Fusion Strategy

This subsection introduces the analysis and heuristics that are used to determine which single

point of the fusion space should be chosen for further evaluation. More specifically, this section

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 10. Publication date: April 2019.
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addresses the problem of choosing the computation and allocation level of each stage inside a

pipeline (or a segment of it).

As already mentioned, our goal is to eliminate inefficient schedules without evaluating their

costs. Algorithms 1 and 2 show the procedure that is followed to accomplish that. In detail,

Algorithm 1 takes a pipeline (P ) as an input that can be either the whole DAG of the initial pipeline

or a sub-graph of it and identifies the compute and store level for each stage (K ) in P . However,

Algorithm 2 attempts to inline stages with trivial computational costs.

The pipeline can be described as a DAG of m connected nodes such that P = {K0,K1, . . . ,Km },
where Km is the output/final stage of P . Furthermore, to be able to describe all necessary depen-

dencies between the nodes of the DAG, as well as the schedule of each stage, we perform the

following definitions for all i ≤ m:

• A linearly ordered set Di = {xi0,xi1, . . . ,xin1,xo0,xo1, . . . xon2} that represents the tiled

loop nest of Ki where the xi and xo are the intra and inter-tile loop indices, respectively.

• A list of tuplesWi = {Y0,Y1, . . . ,Yl , . . . ,Yt }, 0 ≤ t < m, with Yl = {Kl , Il }, Kl the consuming

stage and Il = {E0,E1, . . . ,Ez }, z the number of unique indices in the loop nest of Ki , E =
(x ,v ),vϵN , while xϵDKl

is the dimension where the dependency exists and v the amount

of overlap.

• A list of producers Li = {K0,K1, . . . ,Kp }, 0 ≤ p < m.

• A tuple Si = (xcompute ,xstor e ),xϵDm , which will partially define the final schedule and

where xcompute and xstor e are indices of the output domain.

ALGORITHM 1: Stage Fusion Analysis

Input: P ,D0,D1, . . . ,Dm ,W0,W1, . . . ,Wm

Output: S0, S1, . . . , Sm

i ←m
repeat

if Wi � ∅ then
ci ←max (

⋃
Y ϵWi

select (
⋃

EϵI
select (x ,E),Y ))

if ciϵDm then
si = next (Dm , ci )
if ci =min(Dm ) or is_reduction(ci ) then

ci = next (Dm , ci )
Si ← (ci , si )

end

else Si ← (min(Dm ),min(Dm ))

end

else Si ← (inline,−)
i ← i − 1

until i = 0

ALGORITHM 2: Inline Trivial Stages

Input: P ,L0,L1, . . . ,Lm , S0, S1, . . . , Sm

Output: S0, S1, . . . , Sm

i ←m
repeat

if Si � (inline,−) then

if trivial (Ki ) = True then

for j in 0 ≤ j ≤ pi do

if trivial (Kj ) = False & Sj = (inline,−) then
Sj ← Si

end

end

Si ← (inline,−)
end

end

i ← i − 1
until i=0

Algorithms 1 and 2 determine the compute and store level of a stage inside a pipeline. More

specifically, Algorithm 1 first checks whether a stage has overlap with any of its consumers

(whether any of its values can be reused across iterations). If that is true, then the algorithm

searches for the dependency index with the highest intra-tile order. If that index is also present in

the loop nest of the output stage and is not the innermost one, then it is set as the compute level

of the stage. Its store level is set to one level higher to benefit from sliding-window opportunities

and ensure that all possible reuse is captured as explained in Section 3. While there might be cases
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where maximum folding and therefore even smaller buffer requirements can only be obtained by

either moving the store level higher or the compute level lower than what Algorithm 1 considers,

the above heuristics allow us to quickly choose a single point in the design space while ensuring

maximum reuse. Furthermore, if the chosen index corresponds to the innermost intra-tile loop of

the loop nest or is a reduction dimension that offers full reuse, then the compute level is also set

to one level higher. This decision is made to better exploit spatial locality and hardware prefetch-

ing in cases where the compute level is set to the column (as also explained in the motivational

example) or vector index (which often corresponds to the innermost intra-tile loop) of a loop-nest

and avoid redundant computation in reductions that have full overlap with their consumers. If,

however, the chosen index is not found in the output loop nest, then it means that there is no

direct overlap between the output domain and the stage that is being scheduled, but dependencies

exist across intermediate stages. Its compute and store levels are therefore set to the innermost

intra-tile loop of the output stage of that segment. The above method allows us to quickly choose

a compute/store level for each stage of the group/segment. Furthermore, as explained in Section 3,

moving the compute level even higher (to be the same as the store level) would lead to domi-

nated solutions that require larger buffers only to achieve the same reuse. Finally, if a stage has

zero overlap with its consumers, then its computation is inlined. We should note that all stages

are scheduled with respect to the output stage of the pipeline. This eliminates any possibilities of

nested loop fusion, which would add extra recomputation between the loops. We also introduce

notation for two helper functions (select and next ) where:

• select returns the first subset (or element) denoted by the first argument that belongs to the

tuple (or pair) denoted by the second argument.

• next also takes two arguments and returns the element that belongs to the ordered set

specified by the first argument and the position equal to the second argument plus one.

Algorithm 2 uses the partially defined output schedules of Algorithm 1 and attempts to inline

the trivial stages of the pipeline. A stage is considered trivial only if its computational cost is

equivalent to its load cost (similarly to the analysis followed by the Halide Auto-Scheduler) and

only if all of its producers are non-inlined. After finding that a stage is trivial, the algorithm checks

whether any of its direct producers that were previously inlined (due to zero overlap) may now

have to be scheduled. In such a case, the compute and store levels of the newly found non-trivial

stage is set to be the same as the ones of the now inlined stage.

4.2 Group Tiling

This section presents the analysis that chooses a proper tiling for a given pipeline/group.

Algorithm 3 shows the procedure in detail.

The algorithm requires a pipeline (or segment) P as well as the linearly ordered setDm as inputs.

The latter represents the ordering of the tiled loop nest of the output stage and can initially be any

(arbitrary) permutation of the loop nest as long as the intra-tile loops (xi) do not mix with the

inter-tile ones (xo). The cost of evaluating each stage without any recomputation (Croot
Ki
, SKi =

(root , root )) is computed to be able to calculate the amount of recomputation for a given schedule.

While this factor will be constant and will not alter the analysis within a group, it can affect the

total cost of the pipeline when a different grouping is considered (and different stages have zero

recomputation). As explained in the previous sections, the various discrete points in the fusion

space depend on the loop permutation of the pipeline. As a result, the algorithm needs to try all

possible intra and inter-tile loop permutations. Since the number of possible schedules explodes

for large pipelines with multiple nested loops (such as convolutional neural networks), we do not

attempt to interchange the kernels or other loops that only perform a few iterations. This decision
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ALGORITHM 3: Tiling Analysis

Input: P ,Dm

Output: Tm0,Tm1, . . . ,Tmn1, Pf used

for all i in 0 ≤ i < m do Evaluate Croot
Ki

repeat
Per f orm Staдe Fusion Analysis
Inline trivial Staдes
repeat
Ctotal ← 0

for all i in 0 ≤ i < m do

Ctotal+ = w ·Cl
Kmsi

ci

Ki
+Cp

Kmsi
ci

Ki
−Croot

Ki

until all valid tile sizes evaluated

until all valid loop permutations evaluated

Table 1. Notation

Tmn Tile Size in nth dimension

Cl
Kmsi

ci

Ki
Load Cost of Ki

Cp
Kmsi

ci

Ki
Compute Cost of Ki

Croot
Ki

Root Compute Cost of Ki

Ctotal Total Cost of all stages

Bmn Problem Size in nth dimension

w Relative cost of load operation

allows us to easily eliminate the loop overhead in many cases by unrolling those loops. For each

possible loop permutation, we perform the fusion analysis described in Algorithm 1 and then

attempt to inline any trivial stages (Algorithm 2). At this point we can evaluate all relevant costs

presented in Section 3 for each stage of the pipeline individually, for an arbitrary tiling dimension.

We iterate over all possible tile sizes that fit into specific constraints:

• The tile size of the innermost intra-tile dimension (which is not part of the kernel) has to

be a multiple of the cache-line size, as well as a multiple of the native vector width.

• The tile size of the outermost inter-tile dimension has to fulfill:

Bmno

Tmno
≥ Nthr eads . (14)

• The tile size in a dimension where a dependency exists has to be at least as large as the

amount of maximum overlap in that dimension such that, if x is the dimension of interest

then:

Tmx ≥ max ��
�

⋃

Y ϵWi

select �
�

⋃

EϵI

select (v,E),Y�
�
��
�
. (15)

In detail the first constraint is imposed to maintain vectorization in conjunction with spatial

locality across cache lines. The second constraint ensures that the final schedule will have enough

parallelism to utilize the multi-threaded aspects of the target architecture. The third constraint

avoids invalid tile sizes that would lead to redundant computations without extra buffer benefits

(since due to the inter-stage dependencies the memory allocation would be at least equal to the

amount of overlap anyway). Finally, we do not consider tiles where the total footprint of stages

without folded storage (compute and store level are the same) does not fit into the L2 cache. This

constraint ensures that values that will be immediately consumed and cannot be reused in future

iterations stay local. We calculate the costs defined in Section 3 for each stage individually using

a weighted cost function and sum them together to compute the total cost of the pipeline. Our

cost function uses the load cost of a stage (Cl
Kmsi

ci

Ki
) multiplied by the relevant overhead of a load

operation compared to a computation (w) plus the amount of recomputation of that stage (Cp
Kmsi

ci

Ki

- Croot
Ki

). The combination of loop permutation, fusion choice, and tile size (Tm0,Tm1, . . . ,Tmn1)

that minimizes the total cost (Ctotal ) of the pipeline is chosen as the final schedule.
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ALGORITHM 4: Group Stages

Input: P ,Dm

Output: H0,H1, . . . ,Hw

nP ← 0

for all i in 0 ≤ i < m do

if size (Wi ) > 1 then
Si = {root , root }
HnP ←
{K0i , . . . ,Kt i ,Ki }, nP + +

P ← erase ({K0i , . . . ,Kt i ,Ki })
end

end

Hn ← P
for j in 0 ≤ j ≤ nP do
SplitSeдment (Hj )

end

ALGORITHM 5: Split Segments

Input: H
Output: H0,H1, . . . ,Hw

TilinдAnalysis (H )
if wsetH > csize then
nH ←max_split
repeat
SnH = {root , root }
Hn ← {K0, . . . ,Kn }, nH + +

H ← erase ({K0, . . . ,Kn })
TilinдAnalysis (Hn )
if wsetHn

< csize then
SplitSeдment (H )

end

until wsetHn
> csize

end

Fig. 7. Pipeline segmentation strategy.

4.3 Stage Grouping

If the memory footprint of the final schedule is larger than the size of the last-level-cache, then

the pipeline is split into segments, and each segment is scheduled independently of the others.

Given the fact that current multi-core architectures contain caches of many MBs in size that will

likely fit many stages, our strategy attempts to reduce design time by only attempting to split the

pipeline if the initial solution (where all stages are either fused or inlined into the output stage)

does not fit into the cache. The memory footprint of the pipeline is equal to the amount of memory

required/allocated for all intermediate stages of the pipeline (or segment). Data from intermediate

stages will either be stored to be reused in future intra-tile iterations (in circular/folded buffers)

or will immediately be consumed in the current intra-tile iteration and are not needed afterward.

Buffers in the former category are folded down to the maximum amount of overlap (only in the

dimension specified by the compute level of the stage), and their total size needs to fit into the

last-level cache for future use, while buffers that will not get folded need to fit inside the L2 cache

(such that their data stay local between production/consumption). All buffers are calculated based

on the areas required (allocated) by the compiler for a given schedule.
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Algorithms 4 and 5 show the steps that are followed to split the pipeline P into non-overlapping

segments (H0,H1, . . . ,Hw ). Algorithm 4 takes the initial pipeline as an input and first checks

whether any stages have more than one consumers. In that case, these stages form a new pipeline,

along with their producers, and are erased from the initial DAG. This is done to limit the design

space and enable faster optimization runtime. While as a result we may end up end up with multi-

ple smaller segments in some pipelines, we did not notice any significant performance degradation

due to this fact. Further investigation of performance benefits that may be captured by merging

those smaller segments is left as future work. During the next step, we attempt to schedule all

new pipelines, along with the remainder of the previous step (remaining stages of the original

pipeline). Algorithm 5 checks whether the footprint of the new segments is still larger than the

available cache size and then recursively splits those into smaller segments using the following

process. Starting from the nth stage of the pipeline, where n is set to max_split (an integer value

that controls the minimum size of a segment), we schedule all stages up to the nth. If the seg-

ment fits, then we attempt to schedule the remaining stages by recursively repeating the same

algorithm. After having evaluated all possible configurations for a specific n, we increase it by

1, and the process is repeated until the working set of the segment no longer fits. This ensures

that we skip configurations with invalid segment sizes. Each (unique) valid solution generated by

Algorithm 5 where all stages of the original pipeline (P ) have been successfully scheduled is cached,

and the sum of all independent sub-pipelines’ cost is evaluated. The configuration that results in

the minimum (summed) cost is chosen as the final solution. We should also note that if the initial

value of max_split is set to 1, then the algorithm will evaluate all valid grouping configurations

for the pipeline.

Evaluating all possible configurations may require an extensive amount of time for larger

pipelines (such as deep neural networks). Our method reduces the runtime of the grouping process

by eliminating non-interesting segmentations. This is achieved in two ways:

• Upon identifying that the memory footprint of a segment is larger than the available cache

size, we do not attempt to fuse more stages into the same segment. This choice can be

explained as follows: A segment with a memory requirement larger than the available cache

size will only grow larger if more stages are included into it, especially if the newly included

stage has extra dependencies.

• We do not attempt to split the final segment of a pipeline into smaller ones, since that

would only add external load costs from the previous root stages to the subsequent con-

suming ones. This choice allows us to significantly reduce the time needed to find the final

configuration, especially in the context of modern multiprocessor architectures with large

cache sizes.

The steps followed for an example pipeline can be seen in Figure 7.

4.4 Final Optimizations

Upon finding the final configuration of a pipeline, we have groups of stages with a specified tiling

and loop permutation per group. We vectorize the innermost intra-tile loop of a group that is not

part of a reduction (or a kernel) and parallelize its outermost inter-tile loop among the platform’s

threads/cores as explained in Section 4.2 (Equation (14)). However, we have not yet considered any

changes in the permutation of individual stages within a stage. We optimize the loop nest of each

producing stage within a segment through loop interchange that improves reuse distance by re-

ordering loop indices with minimum strides to be innermost. Moreover, the loop that corresponds

to the compute level of a stage is always set as outermost, since that loop will always iterate once
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Fig. 8. Optimization flow for a pipeline segment—Algorithm 3.

Fig. 9. Optimization flow for an arbitrary pipeline.

(or once plus the equivalent overlap with its consumer) and would add extra loop overhead in any

other position.

4.5 Optimization Flow Overview

Figure 9 shows the optimization flow for an input pipeline along with all iteration steps involved,

while Figure 8 shows the steps followed to schedule each segment (or the initial whole pipeline

if it fits in the cache). In detail, for all valid permutations of the tiled loop nest, Algorithm 3 calls

Algorithms 1 and 2 to determine the compute/store levels of each stage. It then evaluates the to-

tal cost of the pipeline for all valid tile sizes and the combination of Dm ,Tm (loop permutation

and tile sizes respectively) that minimizes Ctotal is chosen. If the memory footprint of the final

schedule is larger than the constraints imposed by the last-level cache of the target system, then

Algorithms 4 and 5 are used to split the pipeline into smaller segments, with Algorithm 3 (and

subsequently Algorithms 1 and 2) used again to schedule each new segment. Every valid configu-

ration (where all stages of the original pipeline have been successfully scheduled) is cached to be

evaluated at the end of the process. The segmentation/configuration that minimizes the total cost

of the original pipeline is chosen as the final, now scheduled pipeline.

5 EXPERIMENTAL RESULTS

This section demonstrates the results obtained across a wide variety of image-processing applica-

tions on three different architectures.
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Table 2. Platform Features

Platform LLC size (MB) L2 cache size (KB) Nthreads

Intel i7-6700 8 256 8

Intel i7-5930K 12 256 12

ARM Cortex A15 2 512 4

5.1 Experimental Setup

The architectural details of each platform used in the experiments are listed in Table 2. Table 3

provides a description of each benchmark along with the problem size considered as well as the

optimization runtime. Most of the descriptions were found in Reference [15]. The chosen bench-

marks include image-processing pipelines used in Reference [15], the pyramid blending algorithm

used in Reference [10], as well as a popular recent Deep-Neural-Network used for single image

super-resolution (VDSR) that was introduced in Reference [12]. All problem sizes are chosen to

be the same as the ones found either on the official Halide repository on GitHub [7] or as the

ones used in Reference [10]. The optimization flow of most benchmarks is automated, with the

exception of three pipelines (that are marked with an asterisk). These are only partially automated

due to complex reductions and inter-stage dependencies such as extensive helper-function us-

age (argmin, maximum, lerp, etc.) in these applications. As a result, some steps of the algorithms

defined in Section 4 had to be manually implemented for these pipelines. However, such depen-

dencies can easily be derived by the Halide compiler and therefore will easily be captured when

our framework has access to all information available to the compiler.

In the following graphs, the manual implementations refer to the manual schedules found in

the Halide repository (the only exceptions being the pyramid benchmark, the manual schedule of

which was found in Reference [10], as well as the VDSR network that we implemented in Halide).

The PolyMage-A and PolyMage-DP implementations refer to the results replicated using the arti-

facts and instructions provided by the authors of References [10] and [20]. However, implementa-

tions were provided for only six benchmarks, which are also the ones considered in Reference [10].

We compare our results to the equivalent ones produced by the other methods: Since all of

our applications are implemented in Halide, we can use the Halide Auto-Scheduler to produce

schedules for all benchmarks. Each benchmark is executed 100 times, and the average execution

time per run is measured. This process is repeated multiple times per benchmark and the minimum

average among those is used as the final average execution time. Furthermore, we properly adjust

the optimizations parameters of both the Auto-Scheduler and PolyMage before our experiments

for the solutions to be tuned to the target platforms. Since PolyMage cannot explicitly vectorize

loops (unlike Halide), the performance of the PolyMage implementations is highly influenced by

the efficiency of the auto-vectorizer of the back-end compiler [10]. Finally, the problem size used in

Reference [10] for the harris and unsharp benchmarks differs from the one in the Halide repository.

We therefore repeat the experiments for this problem size as well and the results of this comparison

can be seen in Table 4. Halide was built using llvm 4.0.0, while the PolyMage implementations were

compiled using icpc on the i7-6700 platform and gcc on the i7-5930K and ARM platforms.

At this point, it is important to emphasize that, as seen in Figures 8 and 9, all of the proposed

algorithms are tightly coupled. As explained in the motivational example ofs Section 3, sliding

windows and circular buffers allow for tile sizes that would otherwise be impossible to consider

(e.g., large tile strips that otherwise would never fit into the local buffer constraints imposed by

the cache size). As a result, evaluating each algorithm independently is not possible; they should

all be considered together.
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Table 3. List of Benchmarks

Benchmark Description
Optimization

runtime

blur
2 stages

6,400 × 4,800
Simple two-pass 3 × 3 blur filter 3ms

bilateral
5 stages

2,560 × 1,536 × 3

Fast bilateral filter using the bilateral grid [3]. Constructs the grid
using a histogram reduction, followed by stencil and sampling
operations.

4ms

unsharp
6 stages

2,560 × 1,536 × 3

Enhances local contrast by smoothing an image with a small
support Gaussian and subtracting it from the original to isolate
the high-frequency content, which is then combined with the
original image.

3ms

harris
13 stages

1,920 × 1,024 × 3

Implementation of the popular harris corner detection algorithm
[8] that combines multiple stencils and point-wise operations.

5ms

camera
30 stages

2,560 × 1,936 × 3

The Frankencamera pipeline for processing raw data from an
image sensor into a color image [1]. The pipeline performs
hot-pixel suppression, demosaicing, color correction, gamma
correction, and contrast.

5ms

interpolate
52 stages

1,536 × 2,560 × 3

Interpolation of image pixel values using an image pyramid for
seamless compositing, based on the newest healing brush in
Photoshop. Pyramid construction deals with image data at
multiple resolutions and creates chains of stages with complex
dependencies

152ms

laplacian
99 stages

1,536 × 2,560 × 3

A local Laplacian filter: an edge-aware, multi-scale approach for
enhancing local contrast [18]. The pipeline builds multiple image
pyramids with complex dependencies and performs
data-dependent sampling.

912ms

lensblur
74 stages

1,536 × 2,560 × 3

Given a rectified stereo pair of images, produces a synthetic
shallow-depth-of-field image. It first solves for depth by
constructing and filtering a cost volume [22] using a convolution
pyramid [6], then renders the synthetically defocused image by
randomly sampling the source image over a virtual aperture.

(617ms)*

nlmeans
13 stages

614 × 1,024 × 3

Fast non-local means image denoising using the method of [5].
Computes a 7×7 image blur with weights determined by 7 × 7
patch similarity

(4ms)*

maxfilter
9 stages

1,920 × 1,024 × 3

Computes the maximum-brightness pixel within a circular
region around each target pixel. Uses a precomputed table of
differently-sized vertical max filters to reduce complexity from
O(radius2) per output pixel to O(radius).

(4ms)*

pyramid
52 stages

1,920 × 1,024 × 3

Pyramid blending that blends two input images into one using a
mask and a Laplacian pyramid of 4 levels.

116ms

VDSR
24 stages

256 × 256 × 64

VDSR [12] is an end-to-end network with 20 convolutional layers
for single image super-resolution.

32s

Table extended from Reference [15].

5.2 Performance Results

Figure 10 shows the average execution time (in ms) for each benchmark on the two Intel platforms

listed in Table 2. The results for the harris and unsharp benchmarks on the problem size of the

PolyMage implementations can be seen in Table 4.
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Table 4. Average Execution Time (ms) for Harris and Unsharp

Benchmarks—Problem Size 4,256×2,832

Method Intel i7-6700 Intel i7-5930K ARM Cortex A15

Harris Unsharp Harris Unsharp Harris Unsharp

PolyMage-A 45 27 27 27 377 254

PolyMage-DP 15 21 21 21 304 388

Auto-Scheduler 16 22 14 22 164 206

Proposed 11 20 10 20 171 189

Fig. 10. Performance results on the two Intel platforms.

Our schedules outperform the Auto-Scheduler solutions in almost all cases, with the Laplacian

benchmark being the only exception on the Intel i7-5930K, where the difference in execution time

is still within ≈2%. We noticed that while the initial Auto-Scheduler paper optimizes for L2 cache

size, the currently used and updated one is targeting the shared last-level cache. We conducted

multiple experiments for both choices and noticed that while some benchmarks experience a slight

performance improvement when the memory footprint constraint is set to the size of L2, other ones

suffer a dramatic performance degradation. As a result, we choose to use the currently advised

method of optimizing for last-level cache in the results. Finally, our schedules are also comparable

or even better than the manual ones in many cases.

PolyMage-DP performance is similar to the Auto-Scheduler in almost all cases. The constant

updates and focus on the Auto-Scheduler by the Halide community may explain the difference in

the results presented here and the ones in Reference [10] between the two methods. The efficiency

of auto-tuned PolyMage-A solutions vary per benchmark and platform: The raw camera and bilat-

eral grid implementations of the auto-tuned solutions on the intel i7-6700 are close to (or slightly

better than) the manual Halide schedules. However, they are much less efficient compared to the

other implementations of the harris filter on both Intel platforms.

The results for the ARM Cortex platform can be seen in Figure 11 and Table 4, where a similar

pattern can be discerned. Our schedules outperform both the manual and auto-scheduled ones with

the largest differences observed in the interp, laplacian, and VDSR benchmarks. The performance

of the PolyMage solutions varies per benchmark. For example, it performs significantly worse than

the Halide solutions on the camera pipeline, slightly better than both the Auto-Scheduler and the
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Fig. 11. Performance results on the ARM platform.

manual Halide schedule on the interp benchmark, and much faster than all Halide solutions in

the bilateral pipeline. The main reasons behind this result are the differences in the functional de-

scription of the pipeline between the Halide and PolyMage implementations: Halide uses a built-in

linear interpolation function that performs more complex computations than the PolyMage im-

plementation of it. Upon forcing Halide to use a simpler approach, performance was improved

by up to 40% in all three cases (Auto-Scheduler, Manual, and Proposed). Furthermore, Halide re-

quires all expressions used as indices in functions/stages to be bounded and therefore performs

extra clamping in two stages for the compiler to be able and derive the bounds of the equivalent

producers. These extra computations are the main bottlenecks in the performance of the Halide

bilateral pipeline on the ARM platform. However, finding an efficient description is outside the

scope of this work.

Finally, to test the efficiency of our grouping strategy (Algorithms 4 and 5), we repeat the experi-

ments for the VDSR network and investigate the performance for various problem sizes. We choose

VDSR, since it consists of sequential stages where each subsequent stage consumes the output of

the previous one (except for the input image that is consumed twice). This benchmark is therefore

a good candidate for such an experiment, since various problem sizes will lead to different tiling

choices and therefore different memory footprints, which, due to a constant memory constraint

will require new segmentations. The results of this experiment on the Intel i7-6700 platform for

five different dimensions of the output image are presented in Figure 12. Our schedules perform

more than 2× better than the equivalent Auto-Scheduled solutions for large problem sizes.

To demonstrate the robustness of our method, the same experiment was conducted on another

platform (with an Intel i7-6560U processor) once with the hardware prefetcher enabled and once

with the hardware prefetcher disabled. The experiments followed a similar trend as in Figure 12

when comparing the two implementations. Furthermore, the performance degradation when the

hardware prefetcher was disabled in our solutions was close to 20% while for the Auto-Scheduler

solutions it was more than 2×. Upon further investigation, we noticed that the loop permutation

chosen by the Auto-Scheduler (which attempts to reorder loops based on their stride, i.e., placing

the loop with the smallest stride innermost) interleaves the column, row, and kernel dimensions,

limiting the amount of spatial reuse that can be captured in the process. This incurs a high penalty

when the hardware prefetchers are disabled. However, our proposed method does not reorder

loops with low iterations (similar to the 3 × 3 convolution kernels) and only attempts to exploit

prefetching when determining the tile size dimensions (Algorithm 3). Setting the kernel inner to
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Fig. 12. VDSR performance on the Intel i7-6700 for various problem sizes.

the column and row dimensions allows data to stay in the local caches (or even registers) before

they are reused. As a result, self-spatial reuse can still be exploited across kernel iterations, and

this explains why our schedules do not suffer as much when hardware prefetchers are disabled.

Finally, based on the above results (Figures 10–12), we can observe that larger pipelines with

multiple stages such as the interp, laplacian, and VDSR benchmarks benefit the most from our

schedules, where sliding window opportunities are easily captured, buffers are folded down to

smaller memory footprints, and new tiling opportunities are considered. Moreover, even in cases

where the pipeline does not offer such opportunities (e.g., bilateral, nlmeans), our solutions remain

similar to (or in many cases even better than) both the Auto-Scheduler, and the manual solutions.

6 CONCLUSIONS

In this work, we present a novel platform-aware algorithm for the optimization of image-

processing pipelines running on multi-core CPU-based architectures. We show that our method

captures solutions of the design space that were not covered in previous state-of-the-art techniques

by effectively considering combinations of loop tiling, interchange, and stage fusion with indepen-

dent computation and allocation per stage. Our model takes into account multiple architecture-

specific parameters such as multithreading, vectorization, and hardware prefetching. We evaluate

our proposed method across a variety of image-processing applications implemented in the Halide

DSL and compiler and compare it to both previous state-of-the-art techniques that target the Halide

and PolyMage DSLs, as well as manually optimized Halide solutions. Experimental results show

significant average performance improvements compared to previous related work as well as the

manually optimized implementations of Halide pipelines.
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