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Abstract Bacterial fructosyltransferase enzymes belonging to
glycoside hydrolase family 68 (GH68) are not known to require
a metal cofactor. Here, we show that Ca2+ ions play an impor-
tant structural role in the Lactobacillus reuteri 121 levansucrase
(Lev) and inulosucrase (Inu) enzymes. Analysis of the Bacillus
subtilis Lev 3D structure [Meng, G. and Futterer, K. (2003)
Nat. Struct. Biol. 10, 935–941] has provided evidence for the
presence of a bound metal ion, most likely Ca2+. Characteriza-
tion of site-directed mutants in the putative Ca2+ ion-binding
sites of Lb. reuteri Lev and Inu revealed that the Inu Asp520
and Lev Asp500 residues play an important role in Ca2+ binding.
Sequence alignments of family GH68 proteins showed that this
Ca2+ ion-binding site is (largely) present only in proteins of
Gram-positive origin.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Bacterial fructosyltransferase (FTF) enzymes are found in

Gram-negative and Gram-positive bacteria (see CAZY data-

base: http://afmb.cnrs-mrs.fr/~cazy/CAZY/index.html). They

convert sucrose into fructan polysaccharides, in most cases

with b2,6 glycosidic bonds (a levan). A few FTF enzymes of

Gram-positive bacteria synthesize inulin, with b2,1 glycosidic

bonds [1–3]. Previously, we have characterized the Lactobacil-

lus reuteri strain 121 levansucrase (Lev; E.C. 2.4.1.10) [4] and

inulosucrase (Inu; E.C. 2.4.1.9) [5] enzymes, and identified

the catalytic triad in both enzymes [6]. These two FTF enzymes

are very closely related (86% similarity and 56% identity over

768 amino acids), both depending on Ca2+ ions for activity (al-

beit to a different extent) and displaying unusually high tem-

perature optima (about 50 �C) (see Section 3). They differ

most clearly in fructans synthesized, levan and inulin. Fructan

synthesis by FTF enzymes of this (probiotic) Lb. reuteri strain

is of strong interest for food and nutrition applications.
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Analysis of the first high-resolution (1.5 Å) 3D structure of a

Bacillus subtilis Lev [7] has provided evidence for the presence

of a bound metal ion, most likely Ca2+. Amino acid residues

involved in this putative Ca2+ ion-binding site are conserved

in most of the FTF proteins from Gram-positive bacteria,

but not in all members of family GH68 (bacterial FTF and

invertase enzymes) [7] (see Section 3). In B. subtilis Lev,

Asp339 was suggested to make a most important contribution

to Ca2+ binding. Data for FTF Asp339 mutant enzymes have

not been reported yet. In the present study, we have analyzed

the (differences in) sensitivity of the Lb. reuteri strain 121 Lev

and Inu enzymes for Ca2+ ions and EDTA. Moreover, the sug-

gested role in Ca2+ binding of residues Asp500 (Lev) and

Asp520 (Inu), equivalent to Asp339 in B. subtilis Lev, was

probed by site-directed mutagenesis.
2. Materials and methods

2.1. Bacterial strains, plasmids and growth conditions
Escherichia coli strain Top10 (Invitrogen) was used for expression of

wild type (WT) and mutant Lb. reuteri 121 ftf genes, inulosucrase (inu;
GenBank Accession No. AF459437) and levansucrase (lev; GenBank
Accession No. AF465251). Plasmid pBAD/myc/his/C (Invitrogen)
was used for cloning purposes. Plasmid carrying E. coli strains were
grown at 37 �C on LB medium [8] supplemented with 100 lg/ml ampi-
cillin and 0.02% (w/v) arabinose for ftf gene induction. WT and mutant
proteins were expressed in E. coli as constructs with a C-terminal trun-
cation of 32 amino acid residues, and a C-terminal poly-histidine tag
[2].

2.2. Molecular techniques
Alignments of FTF and invertase enzymes of family GH68 (CAZY,

URL: http://afmb.cnrs-mrs.fr/~cazy/CAZY/index.html) were con-
structed using the Clustal X (1.5b) program. Using site-directed muta-
genesis, the Lb. reuteri 121 Lev Asp500 and Inu Asp520 amino acids
were replaced by Asn and Ala residues. Single mutations were intro-
duced in the inu and lev genes using the ‘‘megaprimer’’ method [9]
and were confirmed by sequencing. PCRs with Pwo polymerase
(Roche biochemicals) used plasmid pBAD/myc/his/C containing the
lev or inu genes as templates. All PCR products were digested with
NcoI and BglII and ligated into the pBAD/myc/his/C vector, down-
stream of an inducible arabinose promoter and upstream of a His
tag. For site-directed mutagenesis (synthesis of ‘‘megaprimers’’) the
following oligonucleotides were used in PCRs: AD520A, 5 0-
CCAATGGTAAGCGCTGAAATTGAG-3 0 (Inu D520A); BD500A,
50-GGCTAGTGCTGAAGTTGAACGAC-30 (Lev D500A); BD500N-I,
50-CGTTTGGTCGTTCAACTTCATTACTAGCCATC-30 (Lev D500N);
AD520N, 50-CAATGGTAAGCAATGAAATTGAG-30 (Inu D520N).
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Relationship between the specific activities (VG) of the
Lb. reuteri 121 Inu and Lev wild type enzymes and incubation
temperature, measured in the absence or presence of 1 mM Ca2+ ions.
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Additionally, two flanking primers were used in all reactions:
pBADRV-I, 5 0-TCTGAGATGAGTTTTTGTTCGG-30; pBADFD,
5 0-TCCTACCTGACGCTTTTTATCG-3 0. The underlined codons
indicate mutations introduced; -I: antisense primer.

2.3. Purification of FTF proteins
All proteins produced were expressed in His-tag versions and puri-

fied by Ni–NTA affinity chromatography as described [2]. MilliQ water
was used in all purification steps to minimize the calcium concentration
in protein samples. However, no metal ion chelators were added. Pur-
ity was checked by SDS–PAGE. Enzyme concentrations were deter-
mined using the Bradford reagent (Bio-Rad, Munich, Germany) with
bovine serum albumin as standard.

2.4. FTF enzyme activity assays
Activity variations with temperature (22–57 �C) were determined in

25 mM sodium acetate buffer, pH 5.4, with 100 mM sucrose (and Ca2+

ions as indicated), using purified Lb. reuteri 121 enzymes, WT Inu
(2.9 lg/ml protein) and Inu mutants D520N, A (7.2 and 104 lg/ml,
respectively), WT Lev (4.5 lg/ml protein) and Lev mutants D500N,
A (13.8 and 21.6 lg/ml, respectively). At the highest temperatures
(Lev mutants 45–55 �C, Inu mutants 50–57 �C), 5-fold higher protein
concentrations were used. After preincubation of the assay mixture
at the assay temperature for 5 min, reactions were started by enzyme
addition. Samples were taken every 3 min and used to determine the
amount of glucose released from sucrose [10]. The amount of glucose
formed reflects the total amount of sucrose utilized during the reaction
(VG). Experiments were performed in duplicate. Effects of EDTA were
analyzed by determining temperature optima of Inu and Lev enzyme
activity using the standard assay but with the reaction buffer contain-
ing 1 mM EDTA instead of Ca2+ ions.

2.5. FTF affinity for calcium-ion binding
Lev and Inu enzyme activities were determined as described above

with CaCl2 at concentrations of 0 (calcium-free buffer, prepared with
MilliQ water) to 10 mM. The data obtained were used to estimate
the Ca2+ binding affinity of the proteins. The Sigma Plot (version
8.0) program was used for curve fitting of data, with the standard
Michaelis–Menten equation: [y = (ax)/(b + x)]. In this formula, y is
the specific enzyme activity [U/mg], x is the calcium concentration
[mM], a is the Vmax and b is the apparent Kd ðK 0

dÞ [mM of calcium].

2.6. Thermostability of Inu and Lev enzymes
The WT Inu (2.9 lg/ml protein) and WT Lev (4.5 lg/ml protein) en-

zymes were incubated at a range of temperatures (37–60 �C) for 30 min
with 1 mM calcium or in calcium-free buffer. The remaining enzyme
activities were assayed at 37 �C according to the standard procedure
(see Section 2.4). Samples preincubated in the presence and absence
of calcium were assayed in buffer containing 1 mM calcium or in cal-
cium-free buffer, respectively.
3. Results and discussion

3.1. Effects of Ca2+ ions and EDTA on Lb. reuteri 121 FTF

enzyme activity

Plots of Lb. reuteri 121 Inu and Lev specific activity (initial

rates) versus temperature in the presence or absence of Ca2+

(or EDTA, data not shown) revealed interesting similarities

and differences between the two proteins (Fig. 1). Without

addition of EDTA or Ca2+, the E. coli produced and purified

Lev enzyme lost activity at temperatures above 40 �C and was

completely inactive at 50 �C, whereas Inu activity decreased

above 45 �C and was completely inactive at 55 �C. Addition

of 1 mM EDTA strongly reduced the activities of both en-

zymes. At room temperature, there was no effect of EDTA

on Inu activity whereas a 60% reduction in Lev activity oc-

curred. The negative effect of EDTA strongly increased with

temperature, reaching 65% (Lev) and 40% (Inu) reduction in
activities at 30 and 37 �C, respectively, the temperature optima

for activity in the presence of EDTA (data not shown). With

additional Ca2+ ions (1 mM) present, the Lev and Inu enzymes

both showed considerably enhanced activities at higher tem-

peratures, Inu now displaying an optimum at 55 and Lev at

45 �C (Fig. 1). The presence of (extra) Ca2+ ions thus appeared

essential, especially at higher temperatures, to prevent inacti-

vation of both the Lev and Inu enzymes (Fig. 1), most likely

by temperature-dependent unfolding (see below). These effects

of calcium ions and EDTA on both Lb. reuteri FTF proteins

are in agreement with previously published observations for

B. subtilis Lev [11–14] and Streptococcus salivarius FTF [15–

17]. Our observations thus suggest that Ca2+ ions play an

important structural role in these bacterial FTF enzymes and

promote the Lb. reuteri Lev and Inu enzyme activity at ele-

vated temperatures. Both Lb. reuteri WT FTF enzymes

showed a high-affinity for Ca2+ binding, with K 0
d values of

6.9 lM (Lev at 45 �C) and 0.48 lM (Inu at 50 �C). By compar-

ison, a somewhat lower affinity for Ca2+ binding (Kd of 18 lM)

has been reported for the S. salivarius Lev [18].

Chambert and Petit-Glatron [11] have shown previously that

proper folding of Lev of B. subtilis depends on the presence or

absence of a metal chelator. Our data show that also the two

FTF enzymes of Lb. reuteri are affected in a similar way by

the presence and absence of calcium ions and the chelator

EDTA.

3.2. Effects of Ca2+ ions on thermostability of Lb. reuteri 121

FTF enzymes

The Inu and Lev proteins were incubated at a range of tem-

peratures for 30 min, followed by determination of the remain-

ing activity at 37 �C. A drastic loss of Inu activity was observed

at temperatures above 45–50 �C, the presence of Ca2+ ions

providing clear protection (Fig. 2A). Rather different profiles

were obtained for the Lev protein (Fig. 2B). Following incuba-

tion of Lev at temperatures of 50–60 �C, 50–80% of activity

was recovered at 37 �C. Also in this case the presence of

Ca2+ ions provided protection. A clear reduction in Lev activ-

ity (initial rates) was observed at higher temperatures (Fig. 1),

but the Lev protein apparently suffered no irreversible damage

and recovered activity upon subsequent incubation at 37 �C



Fig. 3. Partial amino acid sequence alignment of family GH68 proteins of
strongly conserved putative Ca2+ ion-binding site (B. subtilis numbering: Asp
FTF catalytic residues shown in this alignment, the transition state stabilize
Glu342) [6,7], are underlined. SACB_STRMU, Streptococcus mutans SacB; S
subtilis SacB; INU_LACRE, Lactobacillus reuteri Inu; LEV_LACRE, Lacto
LEV_CLOAC, Clostridium acetobutylicum levansucrase; LEV_GEOST, Geo
johnsonii levansucrase precursor; LEV_LACSA, Lactobacillus sanfranciscen
UNK_BACLI, Bacillus licheniformis unknown protein; FTF_ACTNA, Act
globiformis beta-fructofuranosidase; and INU_LEUCI, Leuconostoc citreum i
one of the following �strong� group is conserved NEQK, NHQK, NDEQ, QH
�weaker� groups is conserved: CSA, ATV, SAG, STNK, STPA, SGND, ND

Fig. 2. Thermostability of the Lb. reuteri 121 Inu (2.9 lg/ml protein)
(A) and Lev (4.5 lg/ml protein) (B) wild-type enzymes, measured in the
presence and absence of 1 mM Ca2+ ions. The relationship between the
temperature of pre-incubation (for 30 min) and the remaining specific
activity (VG, measured at 37 �C), is shown.
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(Fig. 2B). We speculate that this involved a reversible protein

unfolding–refolding process. In contrast, the damage of higher

temperatures to the Inu protein is more drastic, with no such

strong recovery apparent (compare Figs. 1 and 2A).

3.3. Sequence alignments of members of family GH68
Analysis of the B. subtilis Lev 3D structure provided evi-

dence for the presence of a metal binding site, most likely for

Ca2+ ions, showing (in) direct interactions with a number of

amino acid residues [7]. This site is penta-bipyramidally coor-

dinated with a water and the carbonyl oxygen of Leu308 on

the apices, and with Asp339 Od1 and Od2, Asn310 Od1,
Asp241 Od1 and Gln272 Oe1 on the equatorial positions.

Alignment of all known family GH68 (a total of 22 bacterial

FTF and invertase) enzymes revealed that only Asp339 is con-

served in all sequences (data not shown). Ca2+ is coordinated

by the B. subtilis Asp339 (conserved in all 22 GH68 sequences),

present in the conserved DEIER motif, which also contains the

general acid catalyst (Glu342 in the B. subtilis Lev; Glu523 and

Glu503 in the Lb. reuteri Inu and Lev proteins, respectively)

(Fig. 3) [6,7]. Alignment of the 15 known GH68 sequences

from Gram-positive bacteria revealed that the five residues in-

volved in calcium binding are conserved in most members of

this group (Fig. 3). The B. subtilis Leu308 is conserved in 8

of these 15 family GH68 proteins of Gram-positive origin,

e.g., in Lb. reuteri Lev (Leu431), but is present as a Trp, Thr

or Tyr residue in the other 7 FTF proteins, e.g., in Lb. reuteri

Inu (Trp486). The B. subtilis Gln272 is conserved in 13 FTF

proteins of Gram-positive origin, except for the Arthrobacter

globiformis beta-fructofuranosidase and the Leuconostoc citr-

eum inulosucrase. The B. subtilis Asp241 and Asn310 are con-

served within all these sequences of Gram-positive origin,

except for the A. globiformis beta-fructofuranosidase and Acti-

nomyces naeslundii FTF. Only Asp339 and none of the other

residues forming the putative calcium-binding site is conserved

in FTF proteins of Gram-negative origin. The putative Ca2+-

binding site in B. subtilis levansucrase thus is (largely) con-
Gram-positive bacteria. The 5 FTF amino acid residues forming the
241, Gln272, Leu308, Asn310, Asp339; [7]) are shown in bold. The two
r (SACB_BACSUAsp247) and the acid/base catalyst (SACB_BACSU-
ACB_STRSA, Streptococcus salivarius SacB; SACB_BACSU, Bacillus
bacillus reuteri Lev; SACB_BACAM, Bacillus amyloliquefaciens SacB;
bacillus stearothermophilus levansucrase; LEV_LACJO, Lactobacillus
sis levansucrase; LEV_PAEPO, Paenibacillus polymyxa levansucrase;
inomyces naeslundii fructosyltransferase; BFF_ARTGL, Arthrobacter
nulosucrase. Asterisks (\) indicate conserved residues; (:) indicates that
RK, MILV, MILF, HY, FYW; (.) indicates that one of the following
EQK, NDEQHK, NEQHRK, FVLIM, HFY.
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served within most of the family GH68 enzymes of Gram-po-

sitive origin and is missing in the FTF enzymes from Gram-

negative bacteria. Previously, Ohtsuka et al. [19] and Hettwer

et al. [20] have shown that the activity and stability of the

levansucrases from the Gram-negative bacteria Rahnella aqua-

tilis and Pseudomonas syringae are not affected by the presence

of calcium or EDTA.

A low affinity Ca2+ binding site (K 0
d of 1.25 mM, pH 7) has

been mapped to Thr265 in the B. subtilis Lev [13]. This Thr265

hydroxyl hydrogen bonds to Asn310 Nd2 [7] but is not in-

volved directly in binding of calcium ions. Also the B. subtilis

Thr265 residue is conserved in 13 out of the 15 GH68 proteins

of Gram-positive bacteria, including both the Lb. reuteri 121

Inu (Thr443) and Lev (Thr423) (Fig. 3).

3.4. Site-directed mutagenesis of the Lb. reuteri FTF putative

Ca2+-binding site

The functional role of the conserved Asp339 residue in Ca2+

binding was studied by mutating the equivalent residues in the

Lb. reuteri 121 Inu and Lev enzymes. Inu mutants D520N,

D520A, and the Lev mutants D500N, D500A were con-

structed, expressed in E. coli and purified. The Lev and Inu

mutants displayed interesting differences. In each case a strong

reduction in activity was observed over the whole range of

temperatures tested (compare Figs. 1 and 4). Especially Inu
Fig. 4. Relationship between specific activities (VG) of the Lb. reuteri
121 Inu D520N, (A) and Lev D500N, (B) mutant enzymes and
incubation temperature, measured in the absence or presence of 1 mM
Ca2+ ions.
activity had become severely reduced. In both Inu and Lev,

the Asp to Ala mutations caused a stronger reduction in activ-

ity than the Asp to Asn changes. The stimulatory effects of

Ca2+ ions had become much smaller in the mutant enzymes,

especially in case of the Asp to Ala mutations (compare Figs.

1 and 4). Not surprisingly, compared to an Asn residue, the

introduction of an Ala residue at this position thus had a much

stronger effect. The activities of mutants Lev D500N and

D500A, however, were still clearly stimulated by Ca2+ ions

(Fig. 4B).

At 50 �C, Inu mutant D520N was inactive in the absence of

Ca2+, with <1% of wild-type activity remaining in the presence

of 1 mM Ca2+ (specific activity reduced from 180 to 1 U/mg)

(Fig. 4A). Mutant D520A displayed a low activity at 50 �C
in the absence of calcium (0.3 U/mg); its activity was clearly

stimulated by the presence of calcium ions (3.6 U/mg). Mutant

Inu D520N displayed a very severe reduction in affinity for

Ca2+ binding, with a K 0
d value of 790 lM at 50 �C (WT Inu

at 50 �C: K 0
d ¼ 0:48 lM; approximately 1600-fold reduction

in affinity). At lower temperatures, the Ca2+ dependency of

Inu mutants D520N and D520A became reduced, also result-

ing in somewhat higher activities (11 and 6 U/mg, respec-

tively). Inu WT incubated with 1 mM EDTA displayed the

same relationship of activity with temperature as mutant

D520N (without the presence of EDTA), albeit at a different

level of activity (60 and 11 U/mg, respectively). Clearly, the

mutations introduced in the Inu protein reduced its affinity

for calcium binding, affecting both its stability and activity.

Characterization of Lev D500N revealed a clear but much

smaller reduction in affinity for Ca2+ binding than observed

for Inu D520N. Lev D500N displayed a K 0
d value of 260 lM

at 45 �C (Lev WT at 45 �C: K 0
d ¼ 6:9 lM; approximately 35-

fold reduction in affinity). At 45 �C, Lev mutants D500N

and D500A were inactive in the absence of Ca2+ ions, with,

respectively, 45% and 15% of wild-type activity remaining in

the presence of 1 mM Ca2+ (Fig. 4B). In the presence of

1 mM Ca2+, the Lev D500N and D500A mutants displayed

highest activity at 40 �C (53 and 19.5 U/mg, respectively). In

the absence of Ca2+ ions, the optimal temperature for activity

of the Lev D500N and D500A mutants was 30 �C (22.5 and

11 U/mg, respectively) (Fig. 4B). Lev WT enzyme exhibited

the same relationship for activity with temperature in the pres-

ence of 1 mM EDTA (12 U/mg, data not shown) as mutant

D500N.
4. Conclusions

The Inu and Lev enzymes studied in this paper have the same

bacterial origin (Lb. reuteri 121) and share high sequence simi-

larity. Nevertheless, they display interesting differences in ther-

mostability and calcium dependency. Lev activity becomes

reduced at relatively low temperatures already (Fig. 1), but this

protein is clearly more resilient, largely recovering from activity

loss during high temperature preincubations, even in the ab-

sence of calcium ions (Fig. 2). Mutations in the D520 (Inu)

and D500 (Lev) residues in both cases resulted in strongly re-

duced activity levels (Fig. 4). Inu mutant D520N, however,

was much more affected in its activity and affinity for calcium

ion binding than Lev mutant D500N, with 1600 (at 50 �C)
and 35-fold (at 45 �C) reduced K 0

d values, respectively. The

structural basis for these differences remains to be elucidated.
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The data presented in this paper thus show that calcium ions

have an important structural role in the Lb. reuteri 121 Lev

and Inu proteins. Both proteins possess high-affinity Ca2+

binding sites. Residues D520 (Inu) and D500 (Lev), equivalent

to D339 of B. subtilis levansucrase, are important for binding

of the metal ion. The specific mutations D520N, D520A (Inu)

and D500N, D500A (Lev) themselves, and/or the absence of

Ca2+ caused by these mutations, may change the conformation

of the strongly conserved DEIER motif, with the general acid

catalyst [6,7], affecting catalysis and resulting in a strong reduc-

tion in FTF activities. Residues constituting this Ca2+ binding

site [7] are completely conserved in most family GH68 enzymes

from Gram-positive bacteria, suggesting that the stabilizing

function of calcium ions is a general property of these proteins.

This calcium-binding site appears to be absent in family GH68

enzymes of Gram-negative origin.
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