

TNO PUBLIC

TNO report

TNO 2019 R10014 | Final

In-Service Conformity test on a Volvo FH420 LNG-diesel dual fuel truck with a Euro VI step-C certified engine

Technical Sciences

Automotive Campus 30 5708 JZ Helmond P.O. Box 756 5700 AT Helmond The Netherlands

www.tno.nl

T +31 88 866 57 29 F +31 88 866 88 62

Date April 10, 2019

Author(s) Maarten Nijenhuis

Copy no 1 No. of copies 1

Number of pages 96 (incl. appendices)

Number of 7

appendices

Sponsor Dutch Ministry of infrastructure and Water management
Project name lenM - Steekproef LD 2017 e.v. lenM - Steekproef LD 2017 e.v.

Project number 060.21429

All rights reserved.

No part of this publication may be reproduced and/or published by print, photoprint, microfilm or any other means without the previous written consent of TNO.

In case this report was drafted on instructions, the rights and obligations of contracting parties are subject to either the General Terms and Conditions for commissions to TNO, or the relevant agreement concluded between the contracting parties. Submitting the report for inspection to parties who have a direct interest is permitted.

© 2019 TNO

Summary

In the framework on the Netherlands in-service testing program for heavy-duty vehicles of the Ministry of Infrastructure and Water management TNO has conducted three on-road emission tests with PEMS on a N3 Euro VI Step-C truck conform Regulation EU No. 582/2011 [1] as amended by EU No. 2016/1718 [2], to verify that the vehicle meets the requirements concerning the applicable heavy duty vehicle in-service conformity emission regulations.

- For the three valid tests the 90% cumulative exhaust emissions conformity factors for NO_x, THC and CO are below the maximum allowed value of 1.5.
- The 90% cumulative NO_x conformity factors for test 1,2 and 3, determined according the work based method are 0.50, 0.33 and 0.32, and on average 0.38.
- The 90% cumulative NO_x conformity factors for test 1,2 and 3, determined according the CO₂ based method are 0.52, 0.33 and 0.33, and on average 0.39.

Considering the demonstrated validity of the measurements, the results of the measurements are interpreted as plausible. During testing, no anomalies were encountered. The CF results show that for both work- and CO₂ based window methods the limit of 1.5 was not exceeded for components NO_x, CO and THC(with application of the emission limits set for PI engines according to (EU) No.133/2014[3]).

The CF for PN has not yet been determined. This means the CF for PN are purely indicative and do not account for pass/fail. Notable is the strong decline in CF for PN during the course of the test program. It is unknown if a regeneration of the particulate filter took place before the start of the first test.

Contents

	Summary	2
1	Introduction	2
1.1	Background	2
1.2	Goal	2
1.3	Assignor	3
1.4	Method of testing	3
2	Test Setup	4
2.1	Test vehicle	4
2.2	Equipment used	9
2.3	Test route	12
2.4	OBD error check	13
2.5	Test procedure	14
2.6	Data processing	14
3	Results summary	15
3.1	Checks and conditions	15
3.2	Emission results	21
4	Conclusion	23
5	References	24
6	Signature	25
	Appendices	
	A Test fuel	
	B Test #1	
	C Test # 2	
	D Test #3	
	E Calibration reports OBS One	
	F Details of the gases used	
	G Vehicle mass receipt	

1 Introduction

1.1 Background

The Ministry of Infrastructure and Water management has contracted TNO to conduct the in-service emissions testing programme for heavy duty vehicles. In this programme TNO tests on an annual basis a selection of vehicles of which the data is used to:

- Determine the emissions factors for heavy commercial vehicles
- Determine trends over the different EU standards and steps:
 - Are the vehicles getting sufficiently cleaner each generation/step <u>in the real</u> world?
 - Use the data and insights in Brussels in discussions about the improvement of the test procedures
- Screen the in-service conformity
- Assess new/alternative technologies
- Provide information to stakeholders. To help make purchase decisions for cleaner and more fuel efficient transport

In the framework of this programme in 2017 TNO has tested two articulated trucks that are running on LNG to determine the level of criteria pollutants and to determine the tank-to-wheel greenhouse gas emissions. Because the test sample of vehicles was small due to the fact that only few types of vehicles running on LNG were offered on the market it was then recommended to test additional vehicles when they would arrive on the market. Since September, 2018 Volvo Trucks offers a tractor with a dual fuel engine running on LNG as the main fuel.

A number of PEMS tests have been performed on one truck. The test programme contained in-service conformity tests according the applicable PEMS test requirement for testing the in-service conformity as well as additional tests that were focussed on typical representative driving conditions. The results of the in-service tests performed over the applicable N3 test cycle are discussed in this report. An overview of the results of all tests are presented and discussed in TNO report R10193[7].

1.2 Goal

Euro VI certified Heavy duty engines need to fulfil requirements with regard to the in-service conformity. Those requirements are laid down in EC Regulation (EU) No. 582/2011 [1] and amendments and prescribe PEMS tests to be performed under specified conditions to check the in-service conformity of the regulated gaseous emissions NOx, CO and THC. In addition PN was measured as requested by the Ministry of Infrastructure and Water management as it is not regulated yet. The goal of the series of PEMS tests that were performed in the test programme in accordance with the requirements of the EC regulation was to check the in-service conformity of the subject, a Volvo FH420 with a dual fuel engine.

1.3 Assignor

The emissions tests were performed at the request of the Dutch Ministry of infrastructure and Water management.

1.4 Method of testing

To check the in-service conformity, three tests has been performed with a Portable Emissions Measurement System (PEMS) on a vehicle that was made available by a transport company. The vehicle has Vehicle Identification Number YV2RZ70A3JA829953. This vehicle is an N3 Euro VI Step-C vehicle with a dual fuel engine running on LNG-Diesel with an odometer reading of 19.990 km at intake of the vehicle. The tested vehicle is shown in Figure 1.

The tests have been performed conform Regulation (EU) No. 582/2011 [1] as amended by EU No. 2016/1718 [2] to verify that the vehicle meets the requirements concerning heavy duty vehicle ISC emission regulations. The emission test has been performed under the ISO 17025 accreditation of TNO Power Trains.

The engine is classified as a 1A Dual fuel engine, which means the average Gas Energy Ratio(GER) is not lower than 90% and does not idle using exclusively diesel and has no diesel mode. According to (EU) No.133/2014[3] the emission limits set for PI engines in annex I to regulation (EC) No. 595/2009[4] are applied.

Figure 1 The test subject, a Volvo FH420 tractor with a Euro VI step C certified '1A' dual fuel engine with LNG as the main fuel.

2 Test Setup

2.1 Test vehicle

The vehicle identification and engine certification label is shown in Figure 2 and 3. Locally available LNG and EN590 market fuel was used during the tests. Detailed information about the fuel and exhaust parameters can be found in Appendices B.4, C.4 and D.4.

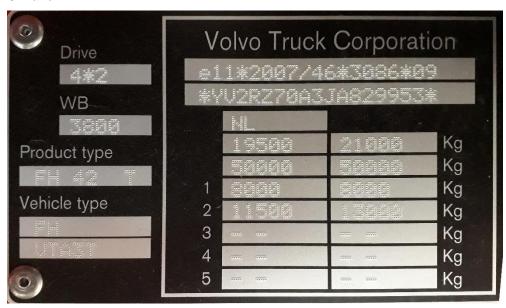


Figure 2 Vehicle identification of the tested vehicle.

Figure 3 Engine certification label.

2.1.1 Vehicle information

Table 1 lists the relevant information on the test vehicle.

Table 2 and Table 3 list the relevant information on the engine and aftertreatment system respectively.

The vehicle received a regular scheduled software update at the local dealer daily before the test programme. Information about the software and calibration identification on the engine and aftertreatment can be found in Table 4. It is unknown whether an DPF regeneration has taken place prior to testing.

Table 1 General information.

Model	Volvo FH420
Vehicle owner	Peter Appel Transport B.V.
License plate no.	77-BLB-4
EEC Type approval	595/2009*2016/1718C
Date of registration	04-07-2018
Odometer reading at intake	19990 km
vehicle	
Maximum technically	21000 kg
permissible laden mass	
Gross Train Weight (GTW) ¹	46440 kg
Registered mass running order	8131 kg
truck	
Registered mass running order trailer	7400 kg
	044001
Loading capacity combination	34489 kg
Payload combination (53%)	16389 kg
Combination weight during test	31920 kg
Axle configuration	4 x 2
VIN (chassis number)	YV2RZ70A3JA829953
Wheelbase	3.8 m
Vehicle class	N3
Gearbox make + type	Volvo Sweden - AT2612F
Number of forward gears	12
Tyre make and type rear axle	Continental Hybrid HD3
Tyre size	315 / 70 / R22,5
Tyre test pressure	8.5 bar
Fuel tank capacity Diesel	195 I
Fuel tank capacity LNG	205 kg
AdBlue tank capacity	64 I

 $^{^{1}}$ The maximum GTW is limited due to the maximum axle loads of the combination as described in TNO report R10193[7].

Table 2 Engine information.

Engine type	G13C420 (LNG engine)	
Fuel injection system	Combined Diesel/Gas Injector	
Engine serial number	805066	
Number of cylinders	6	
Displacement	12.777 I	
Euro Class	Euro VI	
Turbo	Yes	
Intercooler	Yes	
EGR	Yes (Uncooled)	

Table 3 Aftertreatment information.

Aftertreatment system	Diesel Oxidation Catalyst (DOC)
	Diesel Particulate Filter (DPF)
(downstream)	Selective Catalytic Reduction (SCR)
,	Ammonia Slip Catalyst (ASC)
Consumable reagent	AdBlue

Table 4 Software versions and identifications.

Engine Control Module		Aftertreatment Control Module	
Software version	23338537	23385413	
Software ID	23154053	23154361	
Calibration ID	23154058	23154435	

2.1.2 Test fuel

Before and during the tests the vehicle was fuelled with market fuel LNG at gas station 'Truckstop 8' in Eindhoven. See Annex A for detailed information on the LNG composition.

2.1.3 Vehicle payload

According to Annex 2, paragraph 4.1 of EU No. 2016/1718 [2], the vehicle payload shall be 10 - 100% of the maximum payload (in absence of statistics to demonstrate a representative payload for the vehicle). In order to be able to compare results with previously measured LNG trucks as mentioned in TNO report R10193[7], the specific load percentage results in 53%.

The specified load percentage of 53% results in a mass of the ballast load of 16389 kg. Therefore a combined test mass of 8131 kg (running order mass truck) + 7400 kg (running order mass trailer) + 16389 kg (loading mass) = 31920 kg (total test mass). Prior to testing, the total combination mass was measured as shown in Appendix G.

An artificial payload is used to load the combination to 53% payload (= 16389 kg). The load consisted of concrete blocks, a container filled with water and the measurement equipment. The payload is shown in Figure 4.

Figure 4 The vehicle payload inside of the trailer.

2.2 Equipment used

2.2.1 Gaseous emissions

The analyser that was used for measuring the gaseous emissions is the OBS-ONE-GS12 (PEMS) with serial number 63JNMN52. For its specifications see Table 5. Detailed information about the checks performed for the calibration of the gaseous analysers can be found in Appendix G.

The PEMS analyser installed in the vehicle is shown in Figure 5.

Table 5 OBS-ONE-GS12 specifications.

Gaseous component	Analyser	Range	Accuracy
THC	Flame Ionization Detector (FID)	0 – 10000 ppmC	Within ±0.3% of full scale or 2.0% of readings (whichever is larger)
СО	Non-Dispersive Infrared (NDIR)	0 – 10 %	Within ±0.3% of full scale or 2.0% of readings (whichever is larger)
CO ₂	Non-Dispersive Infrared (NDIR)	0 – 20 %	Within ±0.3% of full scale or 2.0% of readings (whichever is larger)
NO	Chemi- Luminescence (CLD)	0 – 3000 ppm	Within ±0.3% of full scale or 2.0% of readings (whichever is larger)
NO _x	Chemi- Luminescence (CLD)	0 – 3000 ppm	Within ±0.3% of full scale or 2.0% of readings (whichever is larger)

Figure 5 The PEMS analyser mounted in the cabin of the truck.

2.2.2 Exhaust flow meter

The exhaust mass flow, pressure and temperature are measured with a Pitot Flow Meter Unit (PF) and flow tube as shown in Figure 6, for its specifications see Table 6. Detailed information about the calibration of the pitot flow module and tube can be found in Appendix E.

Table 6 Horiba Pitot Flow Meter specifications.

PF serial number	PG7RUL35	
Flow tube serial number	150502F	
Flow tube diameter	4 inch (F-tube)	
Flow measurement range	0 – 30 m³/min	
Flow measurement accuracy	Within ±0.5 % of full scale or ±2.0 % of	
•	readings (whichever is larger)	
Exhaust temperature measurement	0-800°C	
range		
Exhaust temperature accuracy	Within ±2.0 % of full scale	
Exhaust pressure measurement	70-115 kPa (abs)	
range	, ,	
Exhaust pressure accuracy	Within ±2.0 % of full scale	
EFM Cable	Exhaust H/L Tube and Thermocouple	
	Cable	

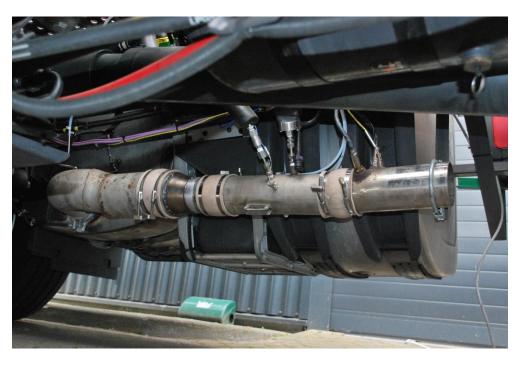


Figure 6 The flow tube connected to the exhaust of the truck.

2.2.3 Particle Number Measurement

At the request of the Dutch Ministry of infrastructure and Water management, Particle Number (hereinafter PN) has been measured during the campaign using a PN-PEMS module. Table 7 shows its specifications. Detailed information about the checks performed for the calibration of the particle counter can be found in Appendix E.

Table 7OBS-ONE-PN specifications

TUDIO 7 ODO ONE TH			
Detectable particle	Limited to 1 µm by inlet cyclone		
Detection	<60% at 23 nm		
efficiency	>60% at 50 nm		
Particle	Single particle counting (nominal 100:1 dilution)		
concentration	1 000 : 50 000 000 particle/cm ³		
Condensing liquid	99.5% isopropyl alcohol		
Catalytic stripper	Efficiency >99.9% of 30 nm		
Particle concentration accuracy	±15% compared to the standard		
Environmental operating conditions	Temperature -10 – 40 °C Pressure 86 – 106 kPa		
Sample interval	2 Hz		

2.2.4 Other equipment

Table 8 lists the remaining equipment that was used to operate the measurement system.

Table 8 Other equipment.

System software	1.3.6		
Horiba Post			
Processing	2.12.0		
software version			
Power supply	Honda 20i EAAJ-1820185		
Power terminal	24V Power supply		
Power cable	Power Cable BATT24V to DC3 + DC4 to DC3		
Power Cable	extension cable		
GPS sensor	U-Blox ANN-MS-1-005 GPS Antenna		
Weather station	Temp and RH sensor Horiba 61361448		
Protocol adapter	Kvaser Leaf Light v2 73-30130-00685-0		
Heated line	Single Heated Line 191°C		
System battery	2x 12V 170 Ah 1000 A (EN)		
Silverscan	6.22.36.28520		
software version	0.22.30.20320		
Silverscan CAN interface	Kvaser Leaf Light v2 018504		

2.3 Test route

A test route was selected that meets the following requirements for a N3 category vehicle:

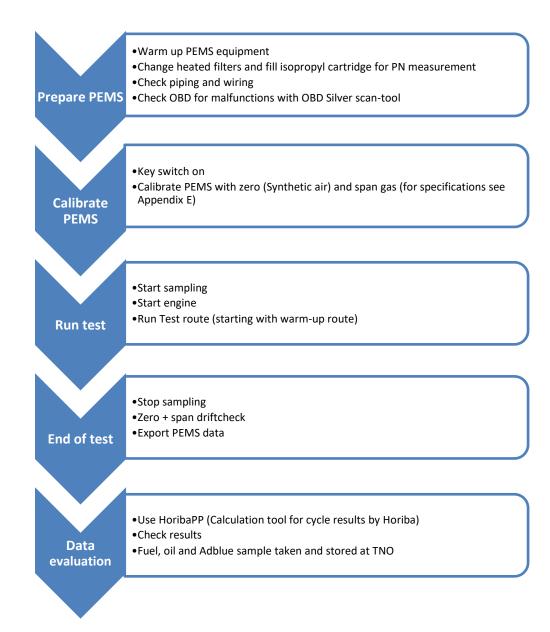
- Target time share of urban, rural and motorway operation: 20, 25 and 55% (±5%) respectively;
- A total cycle work between 4-7 times reference work (World Harmonized Transient Cycle work) or a total CO₂ mass between 4-7 times reference CO₂ mass (World Harmonized Transient Cycle CO₂ mass);
- The assessment of trip composition shall start after the engine coolant temperature has reached 343 K (70°C) for the first time or after the coolant temperature is stabilized within ±2 K over a period of 5 minutes whichever comes first but no later than 15 minutes.

All tests started with a cold engine (engine coolant temperature below 303 K(30°C)) as required in point 2.6.1. of EU No. 2016/1718 [2] . For more details see Appendices B.1, C.1 and D.1.

The route that was driven is shown in figure 7. To determine the start of the rural and motorway parts, the first acceleration method has been used. This means that the first acceleration above 55km/h indicates the beginning of the rural part, and the first acceleration above 75km/h indicates the start of the rural part.

Figure 7 The test route.

2.4 OBD error check


An OBD error check was performed by TNO prior to the first PEMS test. No active emission related error codes were found in the vehicle during the whole measurement programme.

Software: Silver Scan-Tool 6.22.36.28250

Adapter: Kvaser Leaf Light v2 73-30130-00685-0

2.5 Test procedure

The figure below shows the daily test procedure in a flowchart:

2.6 Data processing

HoribaPP (Post Processing) version 2.12.0 has been used as data processing tool. The detailed test results for test 1, 2 and 3 can be found in Appendices B, C, and D respectively. The main results are discussed in the next section.

3 Results summary

3.1 Checks and conditions

Several data checks were performed in order to minimise measurement errors. Sections 3.1.1 to 3.1.3 show the result of these checks for analyser drift, odometer and test conditions respectively. In addition, a consistency check on the fuel flow was performed as described in section 3.1.4 including the brake-specific fuel consumption (hereinafter BSFC) of all three tests. The requirements regarding trip composition and trip characteristics are shown in section 3.1.5 and 3.1.6. Finally, in section 3.1.7, the full-load curve is used to determine if the measured torque values correlate with the full-load curve provided by the manufacturer.

3.1.1 Drift check

The analysers were calibrated prior to testing and checked for zero and span during periodic checks and after the test completed. During post-processing, the analyser drift was determined. If the difference between the pre and post-test results is equal to or greater than 2 % as determined during the drift check, the test shall be voided or the measured concentrations shall be corrected for drift. All drift values were below 2% of full-scale after the data were evaluated so no drift correction was applied.

The results of the drift checks are shown in Figure 8 to Figure 10.

Figure 8 Drift check test #1.

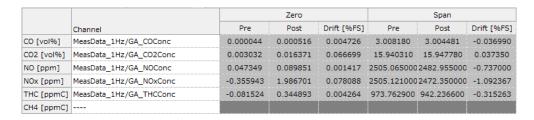


Figure 9 Drift check test #2.

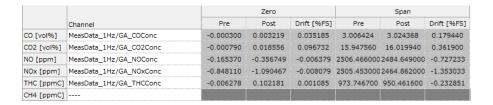


Figure 10 Drift check test #3.

3.1.2 Odometer distance check

The odometer reading was recorded before and after each test. The travelled distance is compared to GPS and OBD data from the PEMS in Table 9. The results show that the vehicle odometer corresponds well to the calculated OBD distance.

Table 9 Odometer distance check against GPS data.

Test #	Odometer start	Odometer end	Odometer distance	OBD distance	GPS distance
	km	km	km	km	km
1	20095	20273	178	177.4	178.6
2 ²	20286	20477	191	190.5	191.8
3	21218	21395	177	175.9	177.0

3.1.3 Test conditions

The PEMS cycles with the test-vehicle were measured under the conditions as shown in Table 10. The conditions encountered are valid for ISC testing as set by EU No. 582/2011[1].

Table 10 Test conditions PEMS tests.

Test #	Date	Test definition	Cycle	Payload	Traffic	Ambient temp.	Weather
1	12-10- 2018	PEMS test	N3	53%	Regular	24°C	Sunny
2	27-08- 2018	PEMS test	N3	53%	Regular	24°C	Cloudy
3	30-08- 2018	PEMS test	N3	53%	Regular	16°C	Cloudy

For more detailed test conditions see Appendices B.1, C.1 and C.1.

² The Urban duration for test 2 was 4 minutes longer than test 1. As the motorway duration ratio for test 1 was on the lower limit(50,5%), the decision was made to extend the Motorway part to avoid a failure on trip composition.

3.1.4 Fuel consistency check

The fuel consistency check was performed by TNO as shown in Figure 11. The consistency of the data was verified using a correlation between the measured fuel flow from the ECU and the fuel flow calculated from exhaust mass flow measured by the EFM and gaseous exhaust components that include carbon according to EU No. 2016/1718 [2].

In absence of a Diesel- and LNG fuel flow signal, a diesel equivalent signal is broadcasted by the ECU. A linear regression was performed for the measured and calculated fuel rate values which resulted in a regression coefficient R² > 0.9.

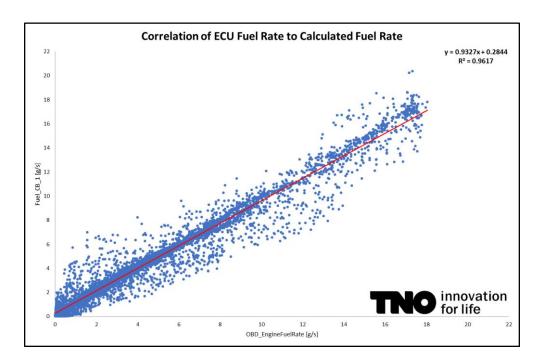


Figure 11 Correlation of ECU fuel rate to calculated fuel rate for test 1

The fuel consistency check result is valid for test 1, 2 and 3. The results are shown in Table 11 and in Appendices B.8, C.8 and D.8.

Table 11 Linear regression fuel rate correlation.

Test #	Slope	Intercept	Regression
	m	b	R ²
1	0.93	0.28	0.96
2	0.94	0.34	0.96
3	0.90	0.26	0.96

In addition to this fuel consistency check, the brake-specific fuel consumption was calculated by dividing the total fuel consumption (in grams) by the total cycle work (kWh). The result for the calculation from OBD and emission data are shown in Table 12.

Table 12 Brake specific fuel consumption.

Test #	BSFC from OBD	BSFC from emissions
	g/kWh	g/kWh
1	199.4	199.5
2	2 200.2 206.2	
3	199.3	190.9

3.1.5 Trip composition

All trips meet the required trip composition requirements as set by EU No. 2016/1718[2] as seen in Table 13 to Table 15. The trip characteristics are shown in Table 16. The vehicle speed trace for the three tests is shown in Figure 12.

Table 13 Test compositions PEMS test #1.

Test # 1		Urban	Rural	Motorway
Average speed	km/h	27.8	60.6	79.4
Distance	km	19.5	41.9	113.0
Duration	h:min:s	0:42:05	0:41:30	1:25:21
Duration ratio	%	24.9	24.6	50.5
Target	%	20	25	55
Valid/invalid		Valid	Valid	Valid

Table 14 Test compositions PEMS test #2.

Test # 2		Urban	Rural	Motorway
Average speed	km/h	24.4	60.9	77.7
Distance	km	18.0	41.9	127.7
Duration	h:min:s	0:44:16	0:41:15	1:38:36
Duration ratio	%	24.0	22.4	53.6
Target	%	20	25	55
Valid/invalid		Valid	Valid	Valid

Table 15 Test compositions PEMS test #3.

Test # 3		Urban	Rural	Motorway
Average speed	km/h	25.6	59.6	80.6
Distance	km	17.5	41.9	113.0
Duration	h:min:s	0:40:53	0:42:11	1:24:05
Duration ratio	%	24.5	25.2	50.3
Target	%	20	25	55
Valid/invalid		Valid	Valid	Valid

Table 16 Trip characteristics all tests.

Test #	Accelerating time ratio	Decelerating time ratio	Cruising time ratio	Stop time ratio
	%	%	%	%
1	14.0	9.8	72.0	4.2
2	12.0	8.5	73.1	6.4
3	12.9	9.7	72.1	5.4

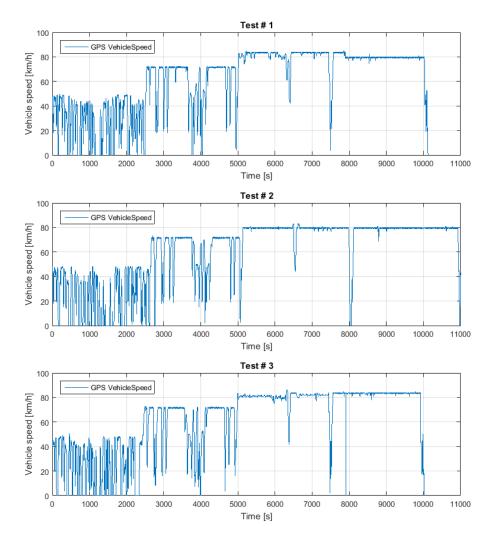


Figure 12 Vehicle speed trace for all tests.

3.1.6 Full load curve check

The torque data provided by the ECU was compared to the full load curve provided by Volvo. The first test is shown in Figure 13. The result of all tests can be found in Appendices B.10, C.10 and D.10. The red curve displays the provided full-load curve from Volvo, the blue dots are the measured ECU torque points during the test. The figure shows that the measured engine load is slightly higher in comparison with the full-load curve. According to ECE R49 revision 6 Amendment 1 [5] a correction is not necessary as the maximum ECU torque signal is within 7% of the provided full load curve.

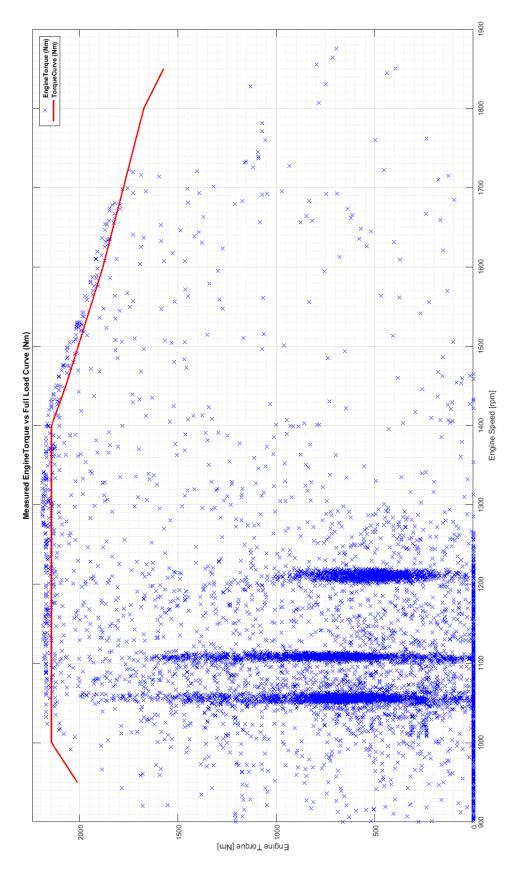


Figure 13 Full load curve check.

3.2 Emission results

The results of the emissions measurements and subsequent data processing are described in sections 3.2.1. to 3.2.3.

3.2.1 Brake specific emission

Table 17 shows the total cumulative gaseous and particulate emissions divided by the total cycle work. For the calculation of cycle work, all negative engine torque values are set to zero.

Table 17 Test evaluation: Total cycle emissions.

Test #	со	CO ₂	THC	NOx	PN	Cycle work	WHTC reference work ratio
	g/kWh	g/kWh	g/kWh	g/kWh	#/kWh	kWh	-
1	2.479	543.8	0.303	0.155	5.515e+11	213.5	6.4
2	2.720	564.4	0.301	0.115	3.234e+11	214.1	6.4
3	2.445	519.0	0.351	0.177	1.815e+11	213.8	6.4

For more detailed test results see appendix B.1, C.1 and D.1.

3.2.2 Conformity Factors

The CF (Conformity Factor) results for NO_x emission, for both work- and CO₂ window based methods are shown in Table 16 and Table 19.

Data was processed according to EU No.2016/1718 [2], which means that:

- Data evaluation starts after the coolant temperature has reached 70°C for the first time or after the temperature has stabilised within ±2K over a period of 5 minutes whichever comes first but no later than 15 minutes.
- Windows are marked valid when the average engine power exceeds the minimum power threshold of 20%. When the resulting share of valid windows is below 50%, the power threshold is lowered in steps of 1% (to a minimum of 15%) until the amount of valid windows exceeds 50%;
- From the resulting valid windows, per emission component the 10th percentile of the windows with the highest calculated emissions are discarded;
- The conformity factor is determined by dividing the resulting highest emission by the legislative limit for Positive Ignition(PI) engines, therefore the CH₄ limit was used for THC.

Table 17 and Table 19 show that the CF results for NO_x , THC and CO for both the work and CO_2 based window results are below the limit (CF 1.5) as demanded by EU No. 582/2011 [1].

The CF for PN has not yet been determined. This means the CF for PN as shown in Table 17 and Table 18 are purely indicative and does not account for pass/fail. Notable is the strong decline in CF for PN during the course of the test program. It is unknown if a regeneration of the particulate filter took place before the start of the first test.

For detailed information about the reference parameters that were used during the data processing, see Appendices B.5, B.6, C.5, C.6, D.5 and D.6.

Table 18 Test results: 90% cumulative percentile of the work-based exhaust emission conformity factors of the engine system tested.

	Work based window							
Test #	со	CO THC ³ NO _x PN ⁴ Valid Pow windows threst						
	CF	CF	CF	CF	%	%		
1	0.57	0.65	0.50	2.33	93.5	20		
2	0.65	0.63	0.33	1.39	93.9	20		
3	0.77	0.77	0.32	0.53	91.2	20		

Table 19 Test results: 90% cumulative percentile of the CO₂-based exhaust emission conformity factors of the engine system tested.

	CO ₂ based window					
Test #	со	THC ³	Valid windows	Power threshold		
	CF	CF	CF	CF	%	%
1	0.57	0.65	0.52	2.41	91.1	20
2	0.64	0.61	0.33	1.30	93.3	20
3	0.83	0.81	0.33	0.57	89.4	20

For more detailed test results see appendices A.5 & 6, B.5 & 6 and C.5 & 6.

3.2.3 TNO binning results

TNO binning [6] has been performed on all tests.

The brake specific results of the binning method match the results as described in 3.2.1. since no data is discarded for the binning method.

Test # 1 : See appendix B.11 & B.12 Test # 2 : See appendix C.11 & C.12 Test # 3 : See appendix D.11 & D.12

The results of the binning method suggest that the highest NO_x emissions per amount of CO₂ can be found at relatively high engine loads (rural speed bins).

³ The window based THC emissions are divided by the limit for CH4 set for PI(positive ignition) engines according to (EU) No.133/2014[3].

⁴ CF for PN is not regulated. Window based PN is divided by WHTC CI limit from Annex I of EC 595/2009

4 Conclusion

Three on-road emission tests were performed with PEMS on a N3 Euro VI Step-C truck conform Regulation (EU) No. 582/2011 [1] as amended by (EU) No. 2016/1718 [2] to verify that the vehicle meets the requirements concerning heavy duty vehicle in-service conformity emission regulations.

- For the three valid tests the 90% cumulative exhaust emissions conformity factors for NO_x, THC and CO are below the maximum allowed value of 1.5.
- The 90% cumulative NO_x conformity factors for test 1,2 and 3, determined according the work based method are 0.50, 0.33 and 0.32, and on average 0.38.
- The 90% cumulative NO_x conformity factors for test 1,2 and 3, determined according the CO₂ based method are 0.52, 0.33 and 0.33, and on average 0.39.

Considering the demonstrated validity of the measurements, the results of the measurements are interpreted as plausible. During testing, no anomalies were encountered. The CF results show that for both work- and CO_2 based window methods the limit of 1.5 was not exceeded for components NO_x , CO and THC(with application of the emission limits set for PI engines according to (EU) No.133/2014[3]).

The CF for PN has not yet been determined. This means the CF for PN are purely indicative and do not account for pass/fail. Notable is the strong decline in CF for PN during the course of the test program. It is unknown if a regeneration of the particulate filter took place before the start of the first test.

5 References

- [1] Commission Regulation (EU) No 582/2011, of 25 May 2011, implementing and amending Regulation (EC) No 595/2009 of the European Parliament and of the Council with respect to emissions from heavy duty vehicles (Euro VI) and amending Annexes I and III to Directive 2007/46/EC of the European Parliament and of the Council.
- [2] COMMISSION REGULATION (EU) 2016/1718 of 20 September 2016, amending Regulation (EU) No 582/2011 with respect to emissions from heavyduty vehicles as regards the provisions on testing by means of portable emission measurement systems (PEMS) and the procedure for the testing of the durability of replacement pollution control devices
- [3] COMMISSION REGULATION (EU) No 133/2014 of 31 January 2014, amending, for the purposes of adapting to technical progress as regards emission limits, Directive 2007/46/EC of the European Parliament and of the Council, Regulation (EC) No 595/2009 of the European Parliament and of the Council and Commission Regulation (EU) No 582/2011
- [4] REGULATION (EC) No 595/2009 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 18 June 2009 on type-approval of motor vehicles and engines with respect to emissions from heavy duty vehicles (Euro VI) and on access to vehicle repair and maintenance information and amending Regulation (EC) No 715/2007 and Directive 2007/46/EC and repealing Directives 80/1269/EEC, 2005/55/EC and 2005/78/EC
- [5] United Nations Regulation No. 49 Revision 6 Amendment 1, Uniform provisions concerning the measures to be taken against the emission of gaseous and particulate pollutants from compression-ignition engines and positive ignition engines for use in vehicles.
- [6] Heijne et al. 2016, Assessment of road vehicle emissions: methodology of the Dutch in-service testing programme, TNO report 2016 R11178.
- [7] Vermeulen et al. 2019, Emissions testing of a Euro VI LNG-diesel dual fuel truck in the Netherlands, TNO report 2019 R10193

6 Signature

Helmond, April 12, 2019

TNO

Martijn Stamm Head of department Maarten Nijenhuis Author

A Test fuel

	Slot start date-time:
Gate terminal	2018-10-04 15:00:00
Maasvlakteweg 993	
Maasvlakte	Slot end date-time:
Tel: +31 181 79 90 00	2018-10-04 16:30:00

Slot ID number:	Weegbrug volgnummer / Weighbridge sequence number:
SNV_1008101	2017003090

Shell W	estern LNG B.V.
Carel va	an Bylandtlaan 30 2596 HR The Hague The Netherlan
NL	
Klant / C	Customer:
Shell N	ederland Verkoopmaatschappij B.V.
Weena	70 3012 CM Rotterdam
NL	
	n Truck / License plate truck:
36-BFF	-7
Kenteke	n Trailer / License plate trailer:
ON-80-	-PG
Contain	er ID (if applicable, e.g. HOYU 434433 3):
Not Ap	plicable
Aflevera	dres 1 / Delivery address 1:
Shell re	tail station Waalwijk Nederland
	dres 2 / Delivery address 2:
	tail station Eindhoven Nederland
Shell re	tali station cindnoven Nederland
Aflevera	dres 3 / Delivery address 3:
Naam &	handtekening Chauffeur / Driver name & signature:
Peter V	erkooijen
Manus Or	handtekening Operator / Operator name & signature:

UN1972 Aardgas, Sterk Gekoeld, Vloeibaar, 2.1, (B/D) Natural Gas, Refrigerated Liquid, 2.1, (B/D)					
Ticket Datum / 1 2018-10-04	icket Date:	Ticket Tijd / Tick 15:51:53	et Time:		
Compositie / Composition (Vol %):					
Methane	93.846	Neo Pentane	0.002		
Ethane	5.144		0.006		
Propane	0.600	Hexane	0.000		
Normal Butane	0.137	Carbon dioxid	le 0.000		
Iso Butane	0.138	Nitrogen	0.126		
Normal Pentane 0.002					
GHV (MJ/Kg):	LHV (MJ/kg):	Methane nr:	Temp. LNG (°C):		
54.933	49.596	80.970	-157.620		
		DIN EN 16726			
GHV (kWh/kg): 15.259	WI (MJ/Nm3): 54.583	Dens. (kg/m3): 437.491	Dens. (kg/Nm3) 0.764		
Tot. energie gela 297.248	den / Total energ	y loaded (MWh)	S (mg/Nm3) 0.000		
Gewicht VOOR laden / Weight BEFORE loading: 21700 kg LB02 3914 2018-10-04 14:58					
Gewicht NA lade	n / Weight AFTER	loading:			
41180 kg LB02 3915 2018-10-04 15:51					
Netto gewicht geladen / Net weight loaded: 19480 kg					

Cooldown service:	
No	
Commentaar / Comm	ents:
×	

Product:

B Test #1

B.1 Emission report

HORIBA Automotive Test Systems

Emission Report

Test Vehicle Device

 Test ID
 : 148
 Vehide Name
 : 77-BLB-4
 Cell Name
 : 0BS-ONE

 Test Dale
 : 2018/10/12
 Vehide Type
 : N3
 Cell Description
 :

 Test Start
 : 10:56:51
 Fuel Type
 : CNG

 Test End
 : 14:13:22
 Description
 : L731_Volvo_

Ortver : Ricardo Comment :

Emission (Include Cold Start)

	Total Mass	Unit	Mass / Distance	Unit	Mass / Work (*4)	Unit	Conc. Max.	Conc. Ave.	Unit
CO	699.5	g	3.916	g/km	3.209	g/kWh	2.932	0.03857	vol%
CO2	1.222E5	g	684.0	g/km	560.4	g/kWh	9.703	3.839	vol%
THC	72.08	g	0.4035	g/km	0.3306	g/kWh	845.6	78.83	ppmC
CH4	_	g		g/km		g/kWh	_	_	ppmC
NMHC	_	g		g/km		g/kWh	_	_	ppmC
NO (*1)	25.93	g	0.1452	g/km	0.1190	g/kWh	965.2	13.21	ppm
NO2 (*2)	30.90	g	0.1730	g/km	0.1418	g/kWh	223.3	5.989	ppm
NOx	56.83	g	0.3182	g/km	0.2607	g/kWh	982.3	18.92	ppm
PM	_	g		g/km	_	g/kWh	(*3)	(*3)	mm/cm3
PN	1.22E14	#	6.81E11	#/km	5.58E11	#/kWh	3.65E6 (*3)	6.69E4 (*3)	#/cm3

Fuel Economy 32.3 L/100km

- (*1): NO mass is calculated by molecular weight.
- (*2): NO2 mass is subtracted NO mass from NOx mass. NO and NOx mass are calculated by molecular weight.
- (*3): at 0degC
- (*4): Mass / Work and Total Work is not corrected data.

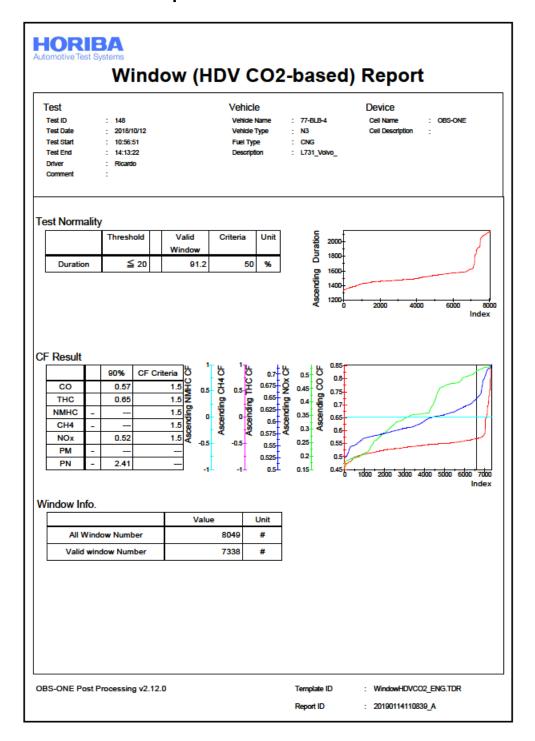
Trip Condition

	Min.	Max.	Ave.	Unit
Temperature	294.6	300.5	297.0	K
R.H.	44.8	64.8	55.6	%
Pressure	101.5	101.9	101.7	kPa
Altitude	9.6	43.3	25.8	m
•				

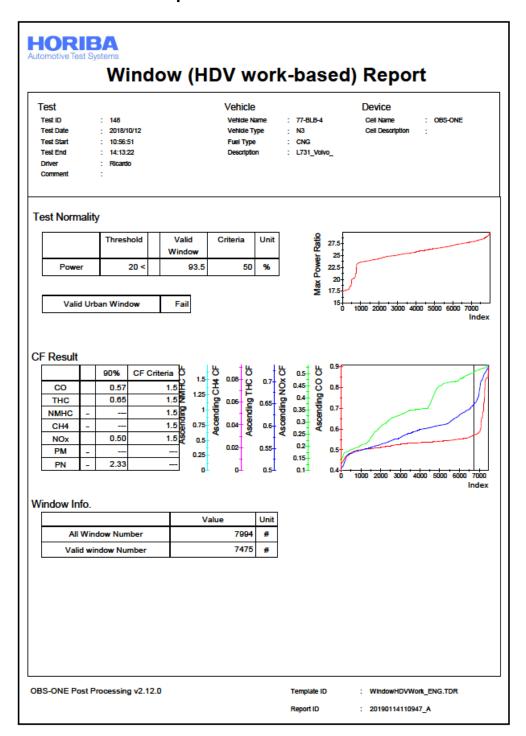
Trip Summary

	Max.	Ave.	Unit
Velocity GPS	85.4	58.6	km/h
Velocity OBD	85.0	58.2	km/h
Velocity EIU		_	km/h
Eng. Speed	1876	1054	rpm
Eng. Torque		_	Nm
Eng. Power	324.2	69.7	kW

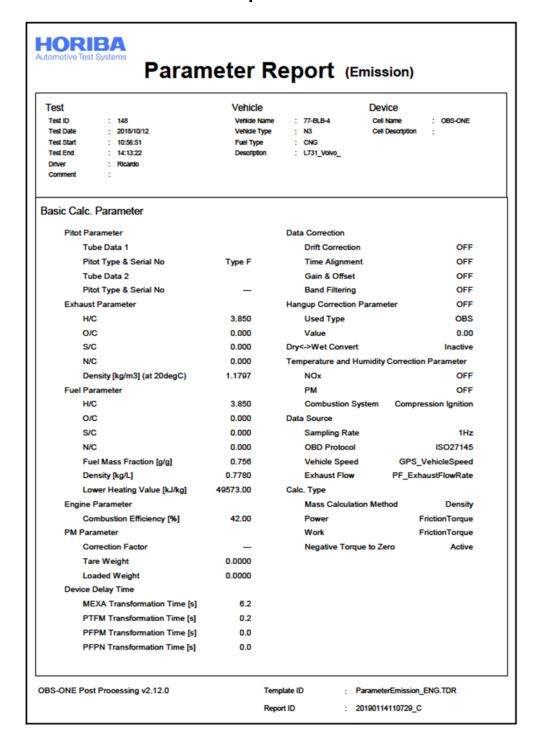
Total Distance	178.612	km
Total Work (*4)	217.994	kWh


Total Trip Duration	3:02:53	h:min:s
Stop Duration	12:04	min:s
Number of Stop		#
Trip Maximum Speed	85.43	km/h
Min. Coolant Temp	293.2	K
Max. Coolant Temp	357.2	K

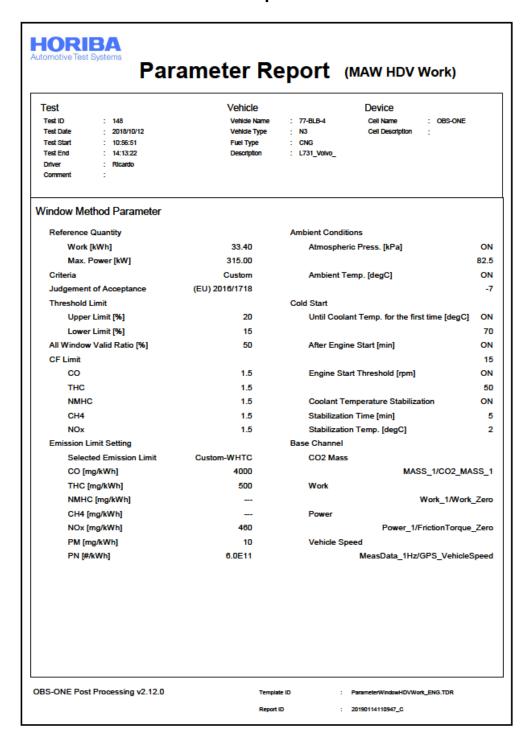
OBS-ONE Post Processing v2.12.0

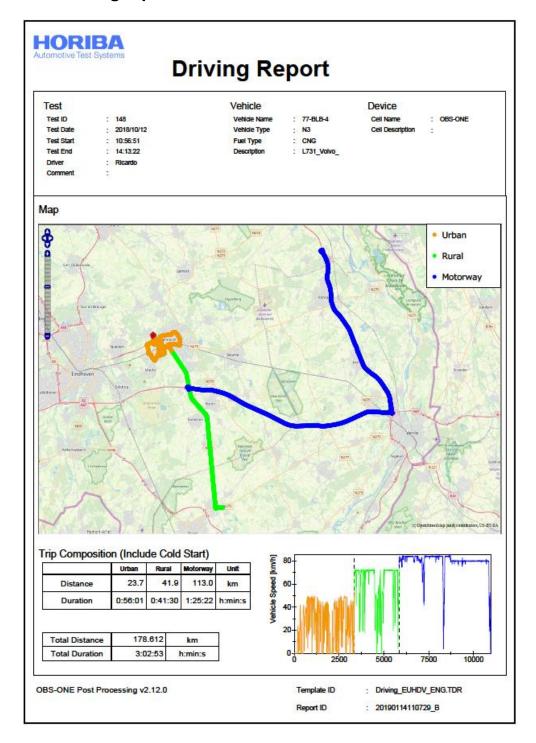

Template ID : Emission_EC_ENG.TDR

Report ID : 20190114110729_A

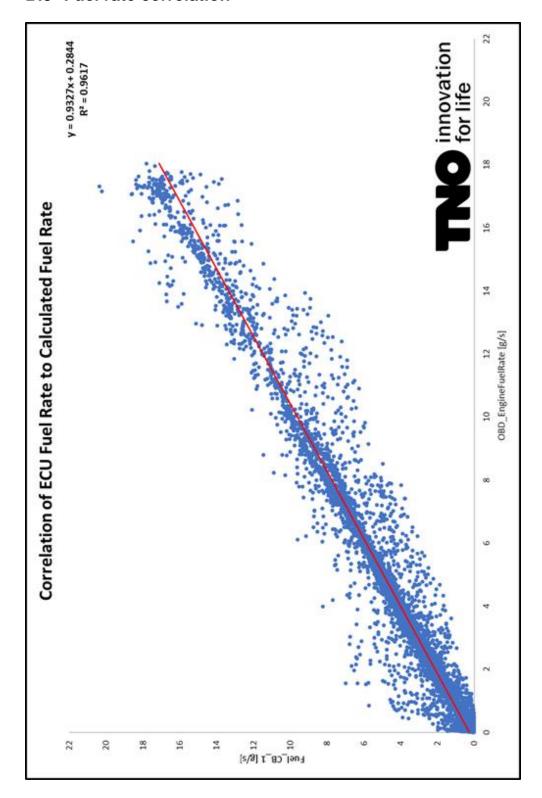

B.2 CO2-based report

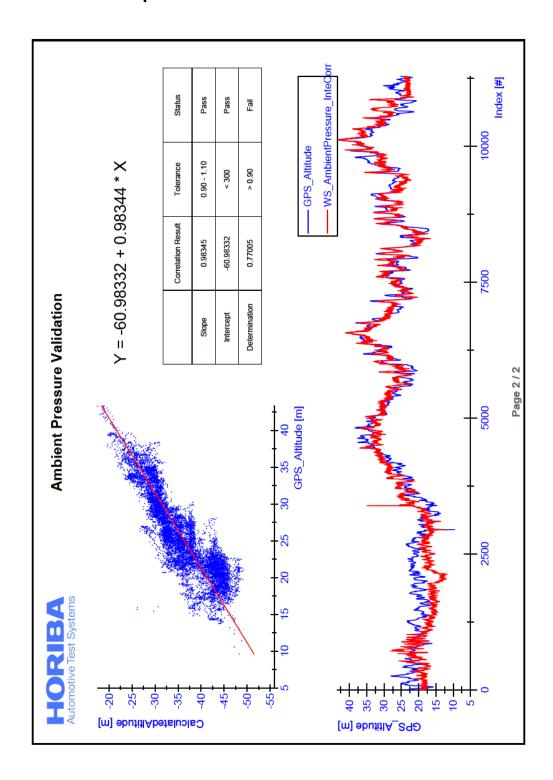
B.3 Work-based report

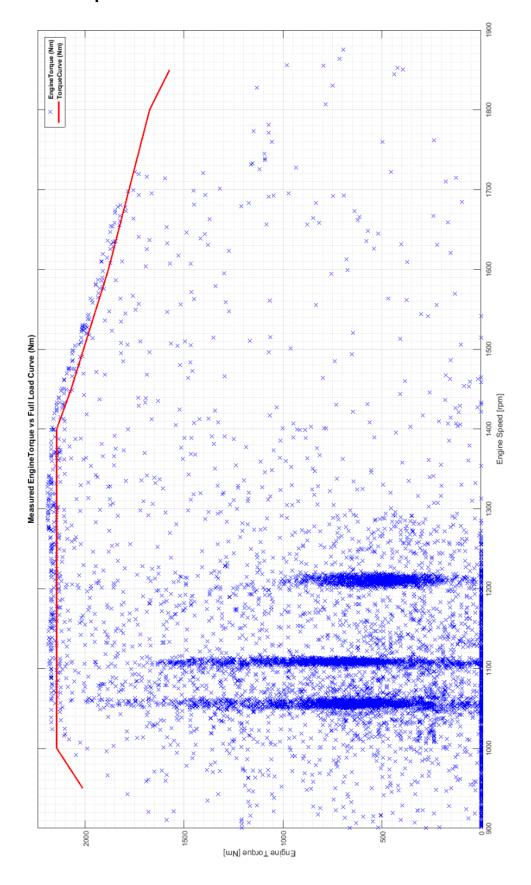

B.4 Parameter emission report

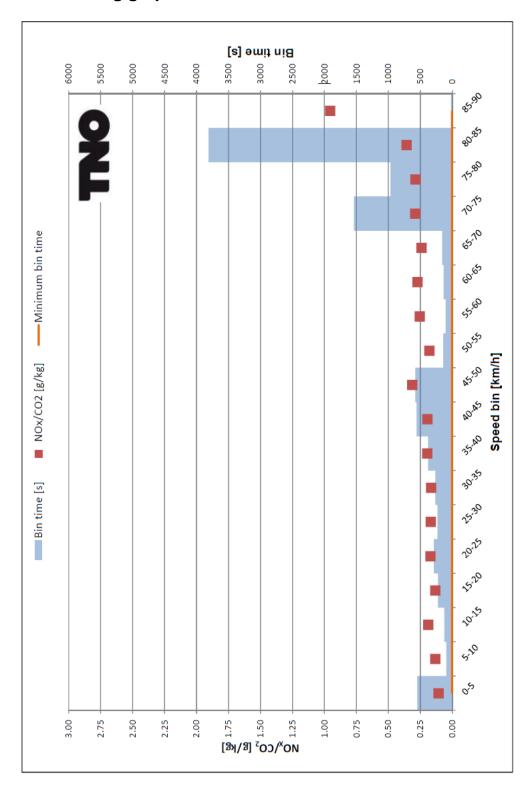

B.5 Parameter CO2-based report

Test		Vehicle	Device	
Test ID	: 148	Vehicle Name	: 77-BLB-4 Cell Name : OBS-ONE	
Test Date	2018/10/12	Vehicle Type	; N3 Cell Description ;	
Test Start	: 10:56:51	Fuel Type	: CNG	
Test End Driver	: 14:13:22 : Ricardo	Description	: L731_Volvo_	
Comment	:			
Nindow M	ethod Parameter			
Reference			Ambient Conditions	
	-	18300.00		01
CO2	lgj Power [kW]	315.00	Atmospheric Press. [kPa]	82.5
Criteria	rower [kw]		Ambient Temp IdeaCl	
	nt of Acceptance	Custom (EU) 2016/1718	Ambient Temp. [degC]	ON -7
Threshold		(EU) 2010/1718	Cold Start	
	er Limit [%]	20	Until Coolant Temp. for the first time [deg0	1 01
	er Limit [%]	15	Ondi Coolant Temp. for the first time (dego	70
	er Duration [s]	1909	After Engine Start [min]	01
	er Duration [s]	2545	Arter Engine Start [min]	15
	w Valid Ratio [%]	50	Engine Start Threshold [rpm]	01
CF Limit	w valid (Yado [Joj	30	Engine Start Tilleshold (pm)	50
CO		1.5	Coolant Temperature Stabilization	01
THC		1.5	Stabilization Time [min]	
NMH	c	1.5	Stabilization Temp. [degC]	2
CH4		1.5	Base Channel	
NOx		1.5	CO2 Mass	
	Limit Setting		MASS 1/CO2 N	MASS 1
	cted Emission Limit	Custom-WHTC	Work	_
	mg/kWh]	4000	Work_1/Wo	rk Zero
_	[mg/kWh]	500	Power	_
	C [mg/kWh]		Power_1/FrictionTorqu	ue_Zero
	[mg/kWh]		Vehicle Speed	_
	[mg/kWh]	460	MeasData_1Hz/GPS_Vehicl	eSpeed
	mg/kWh]	10		-
_	#/kWh]	6.0E11		
PN [#	#/kWh]	6.0E11		


B.6 Parameter work-based report


B.7 Driving report


B.8 Fuel rate correlation


B.9 Ambient pressure validation

B.10 Torque curve correlation

B.11 Binning graph

B.12 Binning results

General		
Filename		L731_02
Test #		1
Trip		N3
Payload	[%]	48

Trip data		
Time	[s]	10137
Distance	[km]	174.41
Average Speed	[km/h]	61.9

Results 1				
Totals	[g/km]	[g/tonkm]	[g/kWh]	g/kgCO2
CO2	666	20.9	544	1000
со	3.04	0.10	2.48	4.56
NOx	0.19	0.01	0.15	0.28
HC	0.37	0.01	0.30	0.56
NO2	0.06	0.00	0.05	0.10

Results 2	[km/h]	0<50	>=50<75	>=75
PEMS bins				
Avg speed in bin	[km/h]	28.4	69.0	81.7
CO2	[g/km]	1279	660	522
СО	[g/km]	8.1	2.2	2.1
NOx	[g/km]	0.25	0.18	0.18
НС	[g/km]	0.7	0.4	0.3
NO2	[g/km]	0.1	0.1	0.1
Time	[s]	3272	2070	4795
Time relative	[%]	32%	20%	47%
NOx/CO2	[g/kg]	0.20	0.27	0.34

Bins	[km/h]	Total	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55	55-60	60-65	65-70	70-75	75-80	80-85	85-90
Bin time	[5]	10137	547	06	123	221	286	228	264	377	557	625	142	101	134	156	1537	964	3812	19
Bin time share	[%]	100%	2%	1%	1%	7%	3%	7%	3%	4%	2%	%9	1%	1%	1%	7%	15%	10%	38%	%0
Distance	[km]	174.41	0.09	0.19	0.43	1.08	1.79	1.73	2.38	3.95	6.57	7.65	5.06	1.61	2.33	2.95	30.72	21.25	87.18	0.45
Work	[kWh]	213.50	1.21	1.40	2.63	3.88	6.16	09'9	7.97	9.78	11.55	9.32	3.73	3.84	4.91	6.30	28.66	22.96	82.55	0.03
Power	[kw]	75.82	7.99	55.95	77.06	63.24	77.56	104.15	108.70	93.40	74.66	57.98	94.49	137.03	131.99	145.49	67.12	85.75	96.77	6.11
Speed	[km/h]	61.9	9.0	7.4	12.5	17.6	22.5	27.4	32.4	37.7	42.5	47.6	52.3	57.5	62.5	0.89	72.0	79.3	82.3	85.3
Exhaust temp	X	558.1	546.5	548.6	551.6	552.2	548.9	552.0	555.1	554.8	554.8	546.4	551.3	554.1	555.5	554.6	559.2	562.3	563.3	572.5
Coolant temp	[K]	353.9	354.4	354.2	354.2	354.1	353.5	353.6	353.9	354.0	354.2	353.3	354.5	354.3	354.1	354.6	353.8	353.9	354.0	353.5
NOx/CO2	[g/kg]	0.28	0.11	0.13	0.19	0.13	0.17	0.17	0.17	0.20	0.19	0.31	0.18	0.25	0.27	0.24	0.29	0.29	0.36	0.95
CO2	[5/8]	11.45	1.96	7.75	8.93	11.19	10.99	15.24	14.98	14.13	11.12	9.75	14.15	19.73	18.70	19.46	10.83	12.78	11.67	1.17
00	[8/8]	0.05	90.0	0.30	0.26	0.12	0.05	0.04	0.04	0.04	0.04	0.04	0.04	0.05	0.04	0.05	0.04	0.05	0.05	0.02
NOx	[s/8]	0.00	00.00	0.00	00.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	00.00
НС	[s/8]	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	00.00
NO2	[s/s]	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C02	[g/km]	999	12055	3760	2570	2288	1760	2004	1664	1348	943	737	974	1235	1077	1030	542	280	510	49
03	[g/km]	3.04	354.61	147.36	73.76	23.90	7.21	5.75	4.12	3.75	3.11	3.13	5.69	3.16	2.36	2.40	5.09	5.09	2.17	08.0
NOx	[g/km]	0.19	1.29	0.50	0.48	0:30	0:30	0.34	0.28	0.26	0.18	0.23	0.17	0.31	0.29	0.25	0.16	0.17	0.18	0.05
НС	[g/km]	0.37	25.61	3.77	2.04	1.20	0.82	0.75	0.64	0.51	0.46	0.45	0.43	0.50	0.34	0.32	0.41	0.27	0.29	0.04
NO2	[g/km]	90.0	0.75	0.16	0.18	0.11	0.15	0.15	0.13	0.12	60.0	0.16	0.05	0.08	90.0	0.04	0.05	0.05	0.05	0.03
C02	[g/kWh]	544	882	499	417	637	510	527	496	545	536	909	539	518	510	481	581	536	539	689
8	[g/kWh]	2.48	26.03	19.54	11.98	9.65	5.09	1.51	1.23	1.52	1.77	2.57	1.49	1.33	1.12	1.12	2.24	1.94	2.29	11.18
NOx	[g/kWh]	0.15	0.09	0.07	0.08	0.08	60.0	60.0	0.08	0.11	0.10	0.19	0.10	0.13	0.14	0.12	0.17	0.15	0.19	99.0
HC	[g/kWh]	0.30	1.88	0.50	0.33	0.34	0.24	0.20	0.19	0.21	0.26	0.37	0.24	0.21	0.16	0.15	0.44	0.25	0.30	0.61
NO2	[g/kWh]	0.05	90.0	0.02	0.03	0.03	0.04	0.04	0.04	0.05	0.05	0.13	0.03	0.03	0.03	0.02	90.0	0.05	90.0	0.42

C Test # 2

C.1 Emission report

HORIBA Automotive Test Systems

Comment

Emission Report

Test Vehicle Device

 Test ID
 : 149
 Vehide Name
 : 77-BLB-4
 Cell Name
 : 08S-ONE

 Test Date
 : 2018/10/15
 Vehide Type
 : N3
 Cell Description
 :

 Test Start
 : 10:36:14
 Fuel Type
 : CNG

 Test End
 : 14:06:59
 Description
 : L731_Volvo_

Emission (Include Cold Start)

	Total Mass	Unit	Mass / Distance	Unit	Mass / Work (*4)	Unit	Conc. Max.	Conc. Ave.	Unit
CO	701.2	g	3.656	g/km	3.198	g/kWh	2.589	0.03811	vol%
CO2	1.270E5	g	662.2	g/km	579.2	g/kWh	9.020	3.914	vol%
THC	72.51	g	0.3781	g/km	0.3308	g/kWh	7301	80.09	ppmC
CH4	_	g	-	g/km		g/kWh	_	_	ppmC
NMHC	_	g	-	g/km		g/kWh	-	_	ppmC
NO (*1)	23.25	g	0.1212	g/km	0.1061	g/kWh	1136	12.22	ppm
NO2 (*2)	26.59	g	0.1387	g/km	0.1213	g/kWh	143.0	4.389	ppm
NOx	49.84	g	0.2599	g/km	0.2273	g/kWh	1138	16.40	ppm
PM	_	g	-	g/km		g/kWh	(*3)	(*3)	mm/cm3
PN	7.04E13	#	3.67E11	#/km	3.21E11	#/kWh	2.49E6 (*3)	3.89E4 (*3)	#/cm3

Fuel Economy 31.3 L/100km

(*1): NO mass is calculated by molecular weight.

(*2): NO2 mass is subtracted NO mass from NOx mass. NO and NOx mass are calculated by molecular weight.

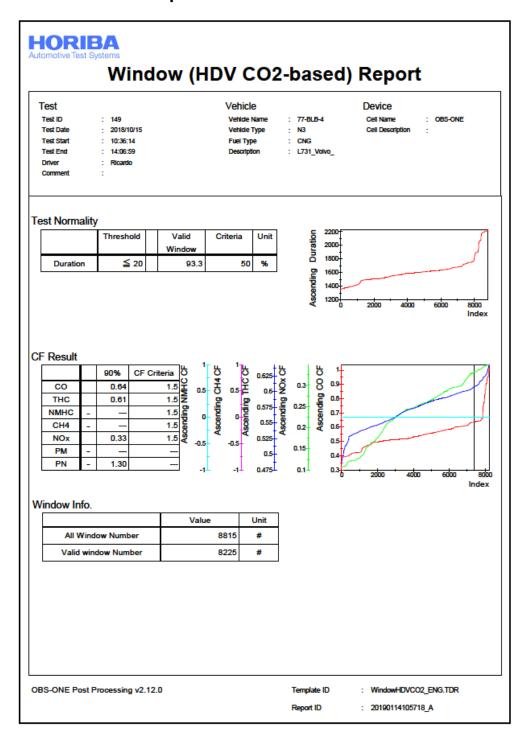
(*3): at 0degC (*4): Mass / Work and Total Work is not corrected data.

Trip Summary

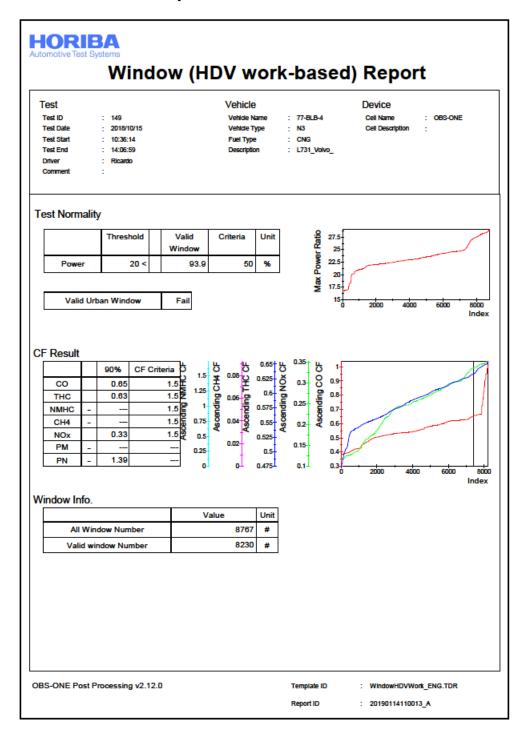
	Max.	Ave.	Unit
Velocity GPS	84.0	58.3	km/h
Velocity OBD	83.5	57.9	km/h
Velocity EIU	_	_	km/h
Eng. Speed	1978	1030	rpm
Eng. Torque		_	Nm
Eng. Power	324.3	65.1	kW

Total Distance	191.762	km
Total Work (*4)	219.226	kWh

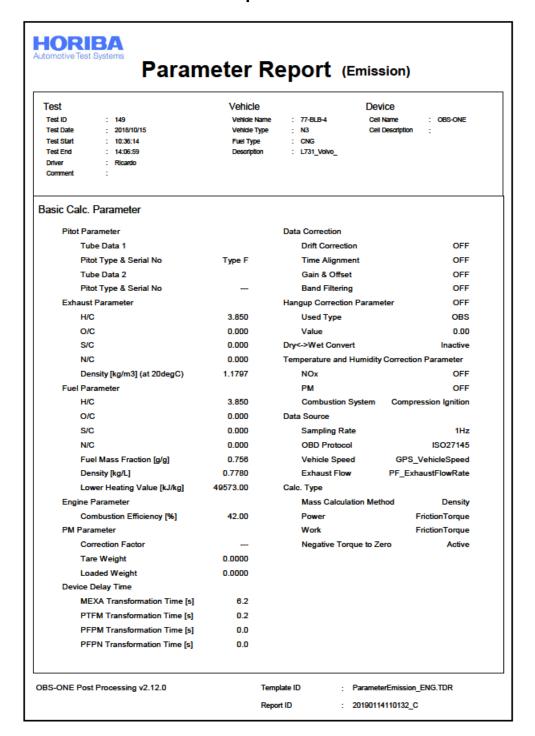
Total Trip Duration	3:17:27	h:min:s
Stop Duration	15:46	min:s
Number of Stop		#
Trip Maximum Speed	84.02	km/h
Min. Coolant Temp	273.2	K
Max. Coolant Temp	357.2	K

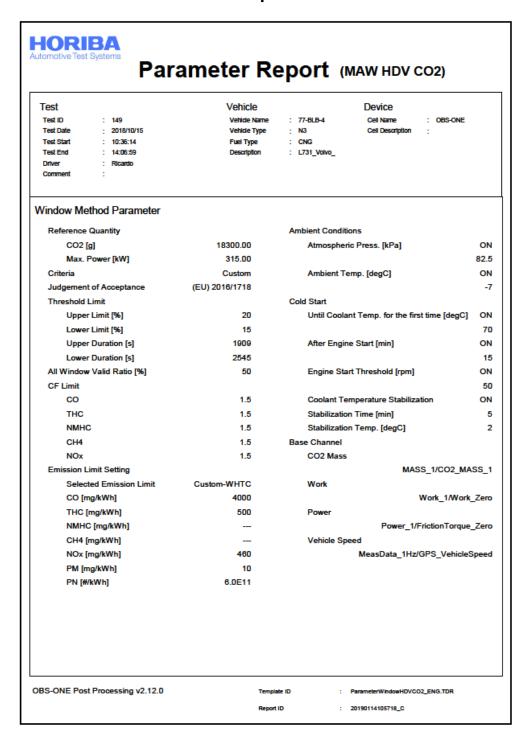

Trip Condition

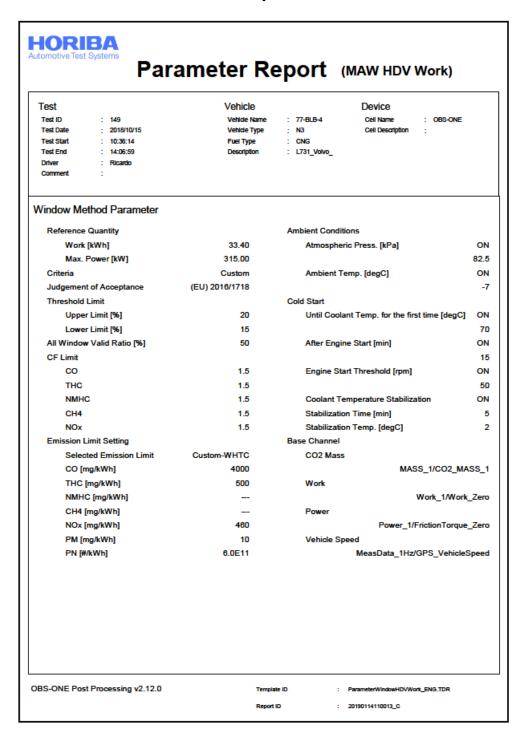
	Min.	Max.	Ave.	Unit
Temperature	293.3	300.2	296.7	K
R.H.	34.0	56.7	43.4	%
Pressure	100.9	101.2	101.1	kPa
Altitude	14.5	42.0	25.7	m

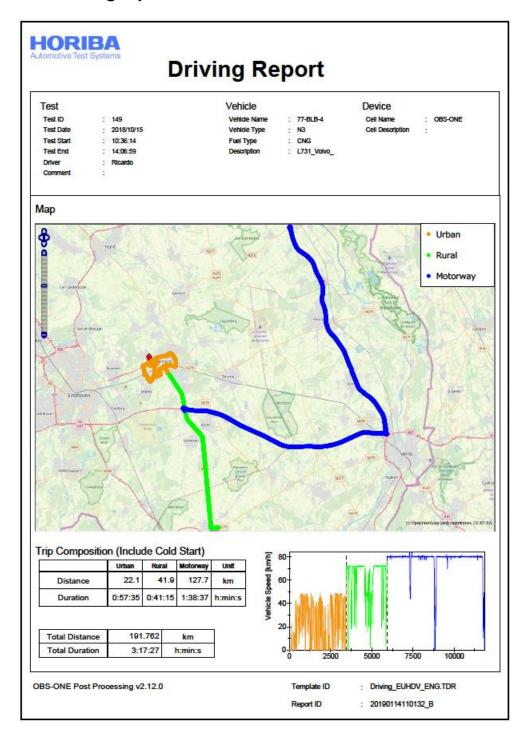

OBS-ONE Post Processing v2.12.0 Template ID : Emission_EC_ENG.TDR

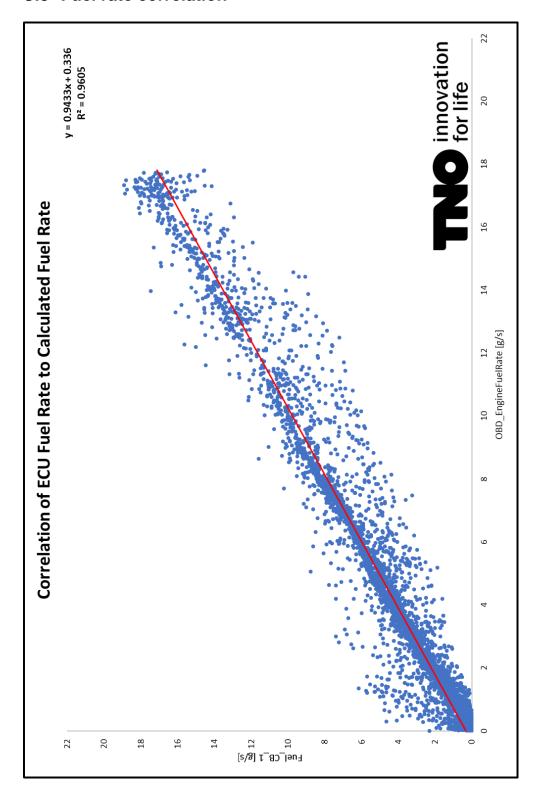
Report ID : 20190114110132_A


C.2 CO2-based report

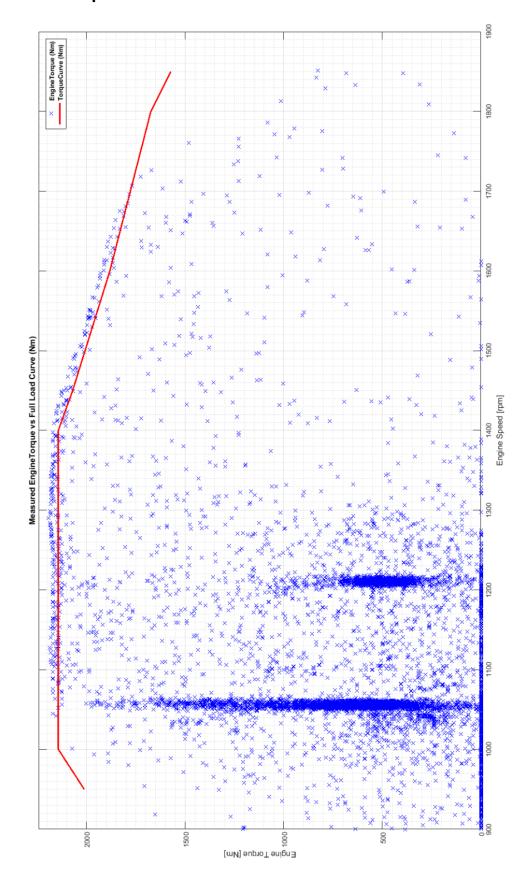

C.3 Work-based report

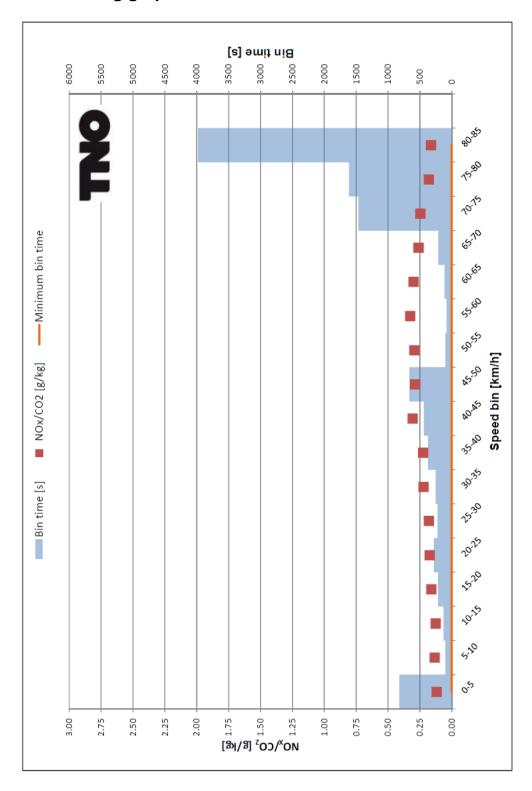

C.4 Parameter emission report


C.5 Parameter CO2-based report


C.6 Parameter work-based report

C.7 Driving report


C.8 Fuel rate correlation


C.9 Ambient pressure validation

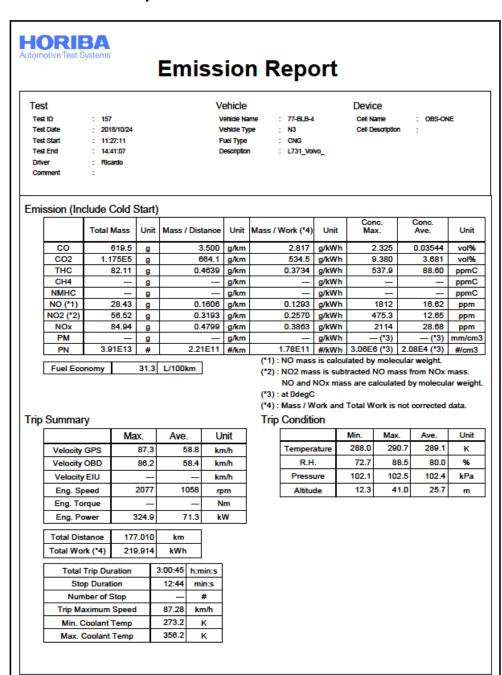
C.10 Torque curve correlation

C.11 Binning graph

C.12 Binning results

General		
Filename		L731_03
Test #		2
Trip		N3
Payload	[%]	48

Trip data		
Time	[s]	11045
Distance	[km]	187.59
Average Speed	[km/h]	61.1

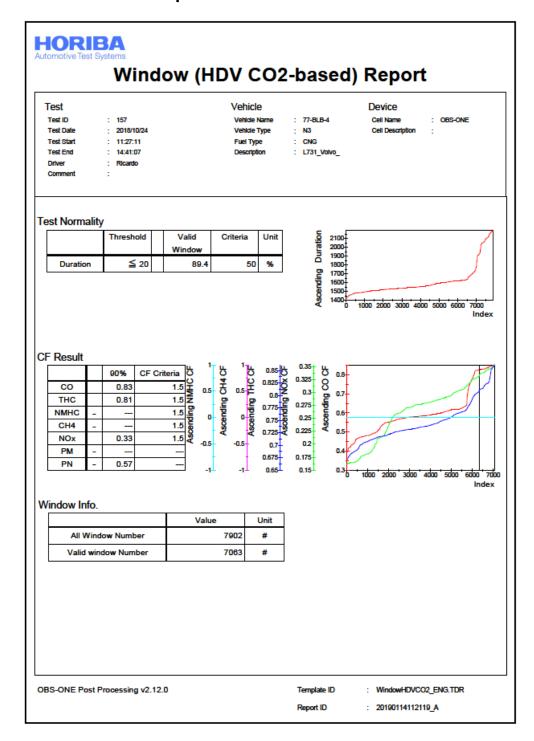

Results 1				
Totals	[g/km]	[g/tonkm]	[g/kWh]	g/kgCO2
CO2	644	20.2	564	1000
CO	3.10	0.10	2.72	4.82
NOx	0.13	0.00	0.11	0.20
HC	0.34	0.01	0.30	0.53
NO2	0.05	0.00	0.04	0.08

Results 2	[km/h]	0<50	>=50<75	>=75
PEMS bins				
Avg speed in bin	[km/h]	26.1	69.3	80.1
CO2	[g/km]	1342	656	499
со	[g/km]	9.9	2.0	2.1
NOx	[g/km]	0.30	0.17	0.08
HC	[g/km]	0.7	0.4	0.3
NO2	[g/km]	0.2	0.1	0.0
Time	[s]	3486	1971	5588
Time relative	[%]	32%	18%	51%
NOx/CO2	[g/kg]	0.22	0.26	0.17

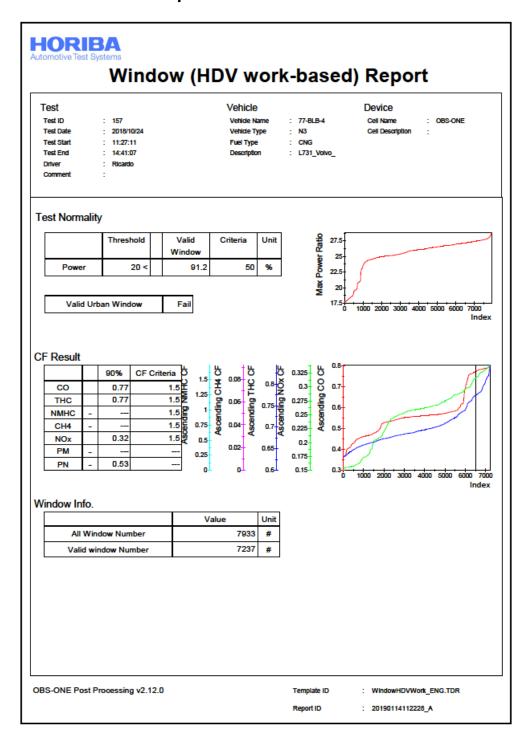
Bins	[km/h]	Total	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55	22-60	9-09	65-70	70-75	75-80	80-85	
Bin time	[5]	11045	821	100	126	214	278	224	252	371	437	663	100	81	113	212	1465	1610	3978	#N/A
Bin time share	[%]	100%	2%	1%	1%	7%	3%	7%	7%	3%	4%	%9	1%	1%	1%	7%	13%	15%	36%	#N/A
Distance	[km]	187.59	0.10	0.21	0.44	1.05	1.73	1.70	2.29	3.85	5.19	8.72	1.44	1.29	1.96	3.98	29.29	35.63	88.71	#DIV/0!
Work	[kWh]	214.13	1.64	1.68	2.59	3.97	6.45	6.59	8.09	8.93	10.40	10.70	3.38	3.71	4.42	6.21	27.06	36.93	71.39	#DIV/0!
Power	[kw]	62.69	7.19	60.55	74.05	66.72	83.51	105.86	115.64	86.67	85.64	58.08	121.79	164.75	140.91	105.43	66.50	82.57	64.61	#DIV/0!
Speed	[km/h]	61.1	0.4	7.4	12.5	17.6	22.4	27.4	32.7	37.4	42.7	47.4	52.0	57.4	62.5	9.79	72.0	7.67	80.3	#DIV/0!
Exhaust temp	X	555.9	544.4	550.6	553.2	551.2	549.7	554.3	552.7	553.0	551.9	550.5	554.9	554.2	557.2	558.7	561.9	558.4	557.7	#DIV/0!
Coolant temp	[K]	353.9	354.3	354.4	354.4	353.8	353.5	354.0	353.8	354.0	353.9	354.0	354.3	354.4	354.7	354.8	353.7	353.9	353.9	#DIV/0!
NOx/CO2	[g/kg]	0.20	0.12	0.13	0.13	0.16	0.17	0.18	0.22	0.22	0.31	0.29	0.29	0.33	0:30	0.26	0.24	0.18	0.16	#N/A
C02	[s/8]	10.94	1.87	7.90	8.75	12.43	11.31	15.74	15.86	13.74	12.69	9.84	17.62	22.34	20.41	14.89	10.82	12.64	10.47	#DIV/0!
00	[s/s]	0.05	90.0	0.39	0.29	0.16	0.05	0.05	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.05	0.05	#DIV/0!
NOx	[8/8]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	00.00	00.00	0.00	0.00	#DIV/0!
HC	[s/8]	0.01	00:00	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	#DIV/0!
NO2	[g/s]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#DIV/0!
CO2	[g/km]	644	16051	3847	2510	2542	1815	2068	1748	1323	1069	748	1220	1400	1176	793	541	571	470	#DIV/0!
00	[g/km]	3.10	484.97	190.63	83.73	33.12	7.35	6.50	4.59	4.12	3.59	2.87	5.69	2.72	2.53	2.39	1.85	2.11	2.03	#DIV/0!
NOx	[g/km]	0.13	1.90	0.51	0.32	0.40	0.31	0.37	0.39	0.29	0.33	0.21	0.36	0.46	0.35	0.21	0.13	0.10	0.08	#DIV/0!
HC	[g/km]	0.34	33.04	4.13	2.00	1.27	0.78	0.71	0.58	0.51	0.44	0.42	0.40	0.42	0.29	0.30	0.37	0.27	0.26	#DIV/0!
NO2	[g/km]	0.05	1.12	0.08	0.05	0.13	0.14	0.15	0.20	0.15	0.21	0.13	0.17	0.21	0.14	0.07	0.05	0.03	0.02	#DIV/0!
CO2	[g/kWh]	564	937	470	425	671	488	535	494	571	533	610	521	488	521	209	286	551	284	#DIV/0!
8	[g/kWh]	2.72	28.32	23.29	14.19	8.74	1.98	1.68	1.30	1.78	1.79	2.34	1.15	0.95	1.12	1.54	2.00	2.04	2.52	#DIV/0!
NOx	[g/kWh]	0.11	0.11	90.0	0.05	0.11	80.0	0.10	0.11	0.13	0.16	0.18	0.15	0.16	0.16	0.13	0.14	0.10	60.0	#DIV/0!
HC	[g/kWh]	0.30	1.93	0.50	0.34	0.34	0.21	0.18	0.16	0.22	0.22	0.34	0.17	0.15	0.13	0.20	0.40	0.26	0.33	#DIV/0!
NO2	[g/kWh]	0.04	0.07	0.01	0.01	0.03	0.04	0.04	90.0	90.0	0.10	0.10	0.07	0.07	90.0	0.05	0.05	0.03	0.03	#DIV/0!

D Test #3

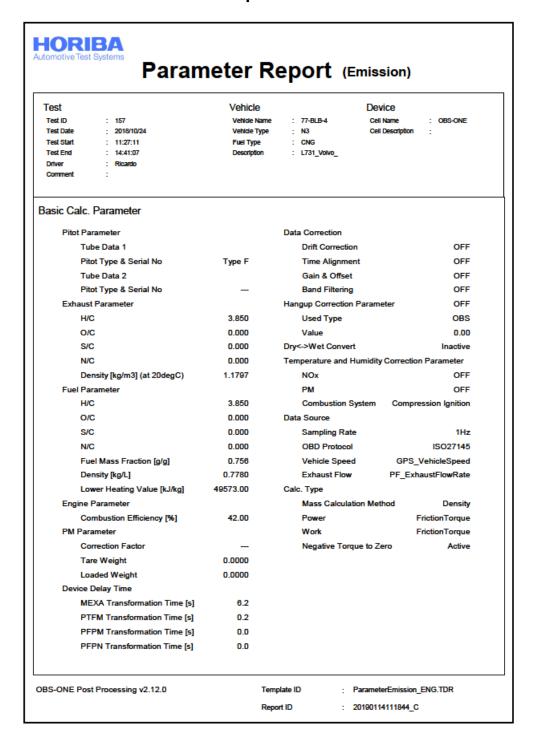
D.1 Emission report



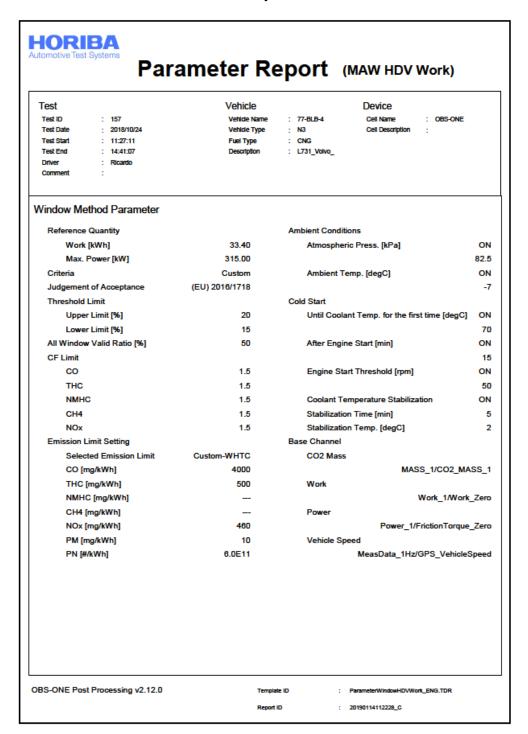
OBS-ONE Post Processing v2.12.0

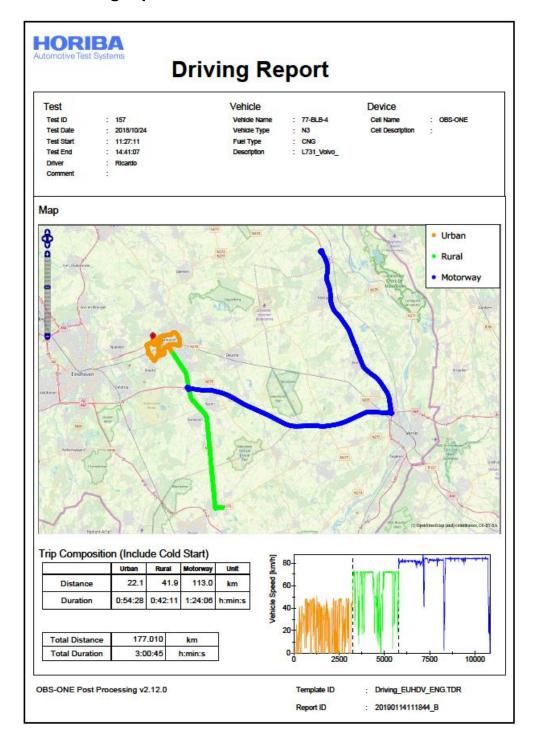

Template ID : Emission_EC_ENG.TDR

Report ID : 20190114111844_A


D.2 CO2-based report

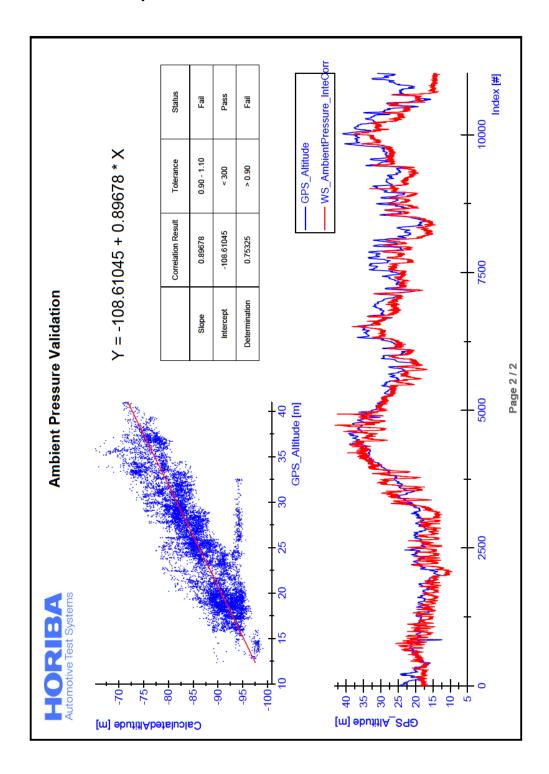
D.3 Work-based report

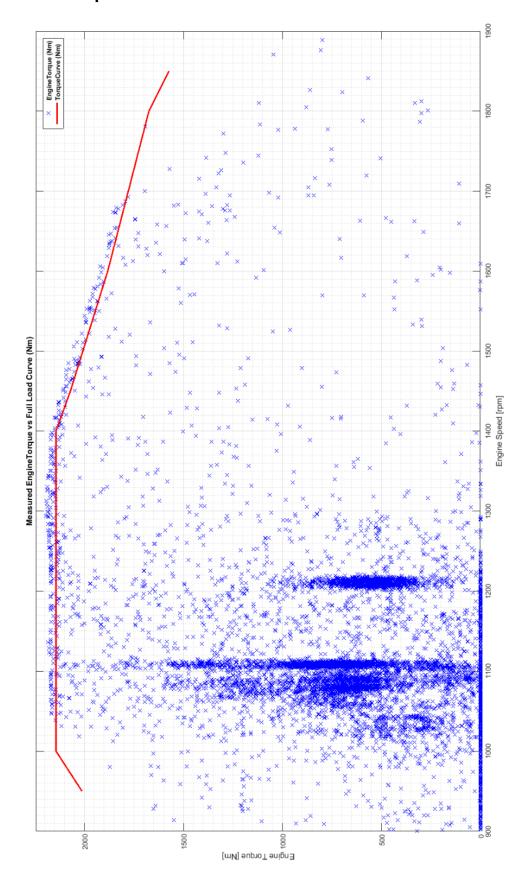

D.4 Parameter emission report

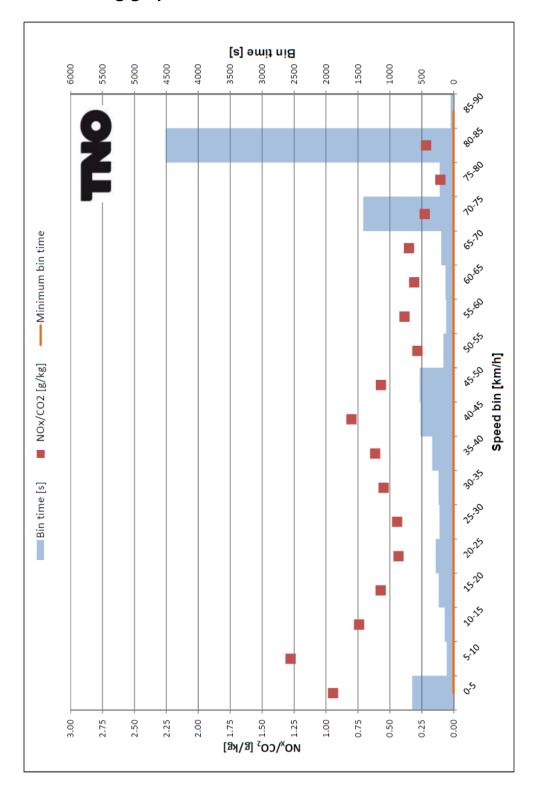

D.5 Parameter CO2-based report

Test ID Test Date Test Start Test End Driver Comment	: 157 : 2018/10/24 : 11:27:11 : 14:41:07 : Ricardo	Vehicle Vehicle Name Vehicle Type Fuel Type Description	: 77-BLB-4 : N3 : CNG : L731_Volvo_	Device Cell Name : OBS-ONE Cell Description :	
Window Me	thod Parameter				
Reference	Quantity		Ambient Condition	ons	
CO2	[9]	18300.00	Atmospheri	ic Press. [kPa]	O
Max.	Power [kW]	315.00			82.
Criteria		Custom	Ambient Te	emp. [degC]	O
Judgemen	t of Acceptance	(EU) 2016/1718			_
Threshold	Limit		Cold Start		
Uppe	r Limit [%]	20	Until Coola	nt Temp. for the first time [degC]	O
Lowe	r Limit [%]	15			7
Uppe	r Duration [s]	1909	After Engin	e Start [min]	O
Lowe	r Duration [s]	2545			1
All Window	v Valid Ratio [%]	50	Engine Star	rt Threshold [rpm]	O
CF Limit					5
CO		1.5	Coolant Ter	mperature Stabilization	O
THC		1.5	Stabilization	n Time [min]	
NMH	C	1.5	Stabilization	n Temp. [degC]	
CH4		1.5	Base Channel		
NOx		1.5	CO2 Mass		
Emission L	imit Setting			MASS_1/CO2_MA	SS_
Selec	ted Emission Limit	Custom-WHTC	Work		
CO [n	ng/kWh]	4000		Work_1/Work	_Zer
	[mg/kWh]	500	Power		
	C [mg/kWh]			Power_1/FrictionTorque	_Zer
	[mg/kWh]		Vehicle Spe		
	[mg/kWh]	460		MeasData_1Hz/GPS_VehicleS	Spee
_	ng/kWh]	10			
PN [#	/kWh]	6.0E11			
NOx [PM [n	[mg/kWh]	460	Vehicle Spa		ehicle\$

D.6 Parameter work-based report


D.7 Driving report


D.8 Fuel rate correlation


D.9 Ambient pressure validation

D.10 Torque curve correlation

D.11 Binning graph

D.12 Binning results

General		
Filename		L731_11
Test #		3
Trip		N3
Payload	[%]	48

Trip data]	
Time	[s]	10027
Distance	[km]	172.29
Average Speed	[km/h]	61.9

Results 1				
Totals	[g/km]	[g/tonkm]	[g/kWh]	g/kgCO2
CO2	644	20.2	519	1000
со	3.03	0.10	2.44	4.71
NOx	0.22	0.01	0.18	0.34
HC	0.44	0.01	0.35	0.68
NO2	0.14	0.00	0.11	0.21

Results 2	[km/h]	0<50	>=50<75	>=75
PEMS bins				
Avg speed in bin	[km/h]	26.8	68.5	82.9
CO2	[g/km]	1291	655	498
со	[g/km]	6.4	2.3	2.5
NOx	[g/km]	0.81	0.17	0.10
HC	[g/km]	0.8	0.5	0.3
NO2	[g/km]	0.6	0.1	0.0
Time	[s]	3245	2006	4776
Time relative	[%]	32%	20%	48%
NOx/CO2	[g/kg]	0.63	0.27	0.21

Bins	[km/h]	Total	9-0	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55	25-60	9-09	65-70	70-75	75-80	80-85	85-90
Bin time	[5]	10027	648	108	138	232	280	220	237	334	517	531	160	115	125	192	1414	217	4511	48
Bin time share	[%]	100%	%9	1%	1%	7%	3%	2%	2%	3%	2%	2%	2%	1%	1%	2%	14%	7%	45%	%0
Distance	[km]	172.29	0.09	0.23	0.49	1.13	1.76	1.70	2.13	3.51	6.11	7.00	2.30	1.85	2.18	3.61	28.23	4.74	104.09	1.15
Work	[kWh]	213.81	1.15	1.72	2.93	4.35	6.52	6.62	7.24	8.91	11.12	8.74	4.31	4.50	4.72	6.15	28.28	4.97	101.54	0.04
Power	[kw]	76.76	6.40	57.46	76.32	67.45	83.87	108.32	110.03	96.05	77.44	59.23	88.96	141.00	135.82	115.28	71.99	82.52	81.03	2.77
Speed	[km/h]	61.9	0.5	9.7	12.7	17.5	22.6	27.8	32.3	37.8	42.6	47.5	51.8	57.8	62.7	8.79	71.9	78.7	83.1	85.9
Exhaust temp	X	544.0	536.6	539.5	540.1	540.6	542.4	543.4	543.8	545.2	537.7	545.5	539.6	546.0	541.5	541.7	547.7	535.3	545.7	531.0
Coolant temp	[K]	353.4	354.0	353.9	353.9	353.5	353.2	353.6	353.6	353.6	352.6	353.7	354.0	354.1	354.0	354.1	353.4	353.2	353.3	352.9
NOx/CO2	[g/kg]	0.34	0.94	1.28	0.74	0.57	0.43	0.44	0.55	0.61	08.0	0.57	0.28	0.38	0.31	0.35	0.23	0.10	0.22	-0.01
CO2	[s/8]	11.06	1.81	7.52	8.60	11.76	10.56	15.17	15.08	13.82	11.00	62.6	13.26	18.68	18.19	15.25	10.99	11.77	11.56	0.88
00	[s/s]	0.05	0.04	0.19	0.14	80.0	0.03	0.04	0.04	0.04	0.03	0.03	0.04	0.05	0.04	0.05	0.04	0.03	90.0	0.02
NOx	[s/8]	0.00	0.00	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.00	0.00	00.00	00:00
HC	[s/8]	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	00.00
NO2	[g/s]	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO2	[g/km]	644	13106	3566	2430	2422	1679	1962	1678	1315	930	727	922	1164	1045	810	250	539	501	37
00	[g/km]	3.03	254.36	91.54	38.78	16.45	5.05	5.19	3.98	3.51	2.94	2.56	2.88	3.21	2.48	2.70	2.18	1.42	2.60	0.91
NOx	[g/km]	0.22	12.37	4.55	1.80	1.38	0.73	0.87	0.92	0.81	0.74	0.41	0.26	0.45	0.32	0.28	0.12	90.0	0.11	00:00
HC	[g/km]	0.44	29.00	3.40	1.81	1.42	0.97	0.87	0.68	0.58	0.55	0.53	0.49	0.53	0.35	0.41	0.50	0.30	0.34	0.08
NO2	[g/km]	0.14	6.46	1.48	0.72	0.81	0.59	0.72	0.79	0.70	0.68	0.37	0.18	0.31	0.21	0.20	0.07	0.02	0.04	0.00
C02	[g/kWh]	519	1019	471	405	627	453	504	493	518	511	583	493	477	482	476	549	513	514	1149
03	[g/kWh]	2.44	19.78	12.09	6.47	4.26	1.36	1.33	1.17	1.38	1.62	2.05	1.54	1.32	1.14	1.59	2.17	1.35	5.66	28.40
NOx	[g/kWh]	0.18	96.0	09.0	0:30	0.36	0.20	0.22	0.27	0.32	0.41	0.33	0.14	0.18	0.15	0.17	0.12	0.05	0.11	-0.01
HC	[g/kWh]	0.35	2.25	0.45	0.30	0.37	0.26	0.22	0.20	0.23	0:30	0.43	0.26	0.22	0.16	0.24	0.50	0.29	0.35	2.58
NO2	[g/kWh]	0.11	0.50	0.19	0.12	0.21	0.16	0.19	0.23	0.28	0.37	0.29	0.10	0.13	0.10	0.12	0.07	0.02	0.04	-0.03

Calibration reports OBS One

E.1 Pitot flow module PG7RUL35

CERTIFICATE OF CALIBRATION

SSUED BY HORIBA UK LIMITED

DATE OF ISSUE 25 January 2018 CERTIFICATE NUMBER C10468

HORIBA UK LTD

Kyoto Close Moulton Park Northampton NN3 6FL

Telephone: 01604 - 542500 Telefax: 01604 - 542699

Page 1 of 4 pages Approved Signatory

T.Lowe

Signature

This is an electronically controlled document

TNO PTC Customer:

Automotiv Campus 25, 5708 JZ Helmond, Netherlands Address:

PF Channel 1 Customer Ref: 4510611024 System Model: HUK16080009 Serial Number: HORIBA Site: Calibration Engineer: A.Cernych HGS PG7RUL35 System: 23 January 2018 Calibration Date: Software Version: 2.0.6

The K Type Thermocouple Channel was calibrated against a Laboratory Reference Standard which is traceable to national standards. The instrument was calibrated by simulating a temperature to the channel and recording the displayed reading. The Thermocouple calibrator was placed in close proximity to the channel and allowed to acclimatise. Readings were taken at a number of set points across the channels range. The Results are referenced to IEC584-1:2013

The pressure instrument provides a digital indication and an electrical output corresponding to the applied pressure. The instrument was calibrated using the comparison method against a Druck DPI 605 Pressure Calibrator whose calibration is traceable to national standards. The reference device was connected to the system and the pressure was reduced to its lower limit. The pressure was increased to the upper limit and stepped down at regular settings across the instruments range. The displayed instrument readings and reference readings were recorded.

The differential pressure instrument provides a digital indication and an electrical output corresponding to the applied vacuum pressure. A set of readings was taken as received and a set of readings was taken as left. The instrument was calibrated using the comparison method against a Furness FCO560 Micro-manometer whose calibration is traceable to national standards. The reference device was placed in close proximity to runess recode micro-manufact whose canneauri is disclosure to naturial standards. The reference device was placed in development the instrument. A vacuum pump was used, and the system was depressurised to its lower limit and stepped up at regular settings across the instruments rance. The instruments displayed value and the reference readings were recorded.

Equipment Used

Calibration Date Certificate Number Serial Number Equipment 25 September 2017 Druck DPI 605 06 October 2017 Furness FCO560 1504102 15206 06 March 2017 U84963-16 Druck Unimat TRX II 2662 L2240759 U87178-17 07 July 2017 Temperature & Humidity

Uncertainties

associated with the measurement of the applied pressures are:- 0 to 3 kPa (0.3 % + 0.00087 kPa), 3 to 12 kPa (0.3 % + 0.001 kPa), 80 kPa to 120 kPa Absolute (0.05 % + 0.187 kPa)

The uncertainty of measurement for Thermocouples are [1.0°C + instrument resolution.]

The recorded uncertainty refers to the measurements and is not intended to indicate the specification, or repeatability of the instrument.

1 Pa = 0.0002953 inHg @ 0°C, 1 Pa = 0.00750062 mmHg @ 0°C, 1 Pa = 0.00401474 inH2O @ 4°C, 1 Pa = 0.000145038 psi

GOOD Leak Check

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to recognised national standards, and to units of measurement realised at the National Physical Laboratory or other recognised national standards laboratories. This certificate may not be produced other than in full, except with the prior written approval of the issuing laboratory.

CERTIFICATE OF CALIBRATION

UKAS Accredited Calibration Laboratory No. 0767

Certificate Number C10468

Page 2 of 4 pages

Environmental Conditions

Barometer kPa	Temperature °C	Liveridity 0/
00.04 + 0.40		Humidity %
99.61 ± 0.40	21.7 ± 2.0	28.7 ± 20.0 % rh

		al DP 1 Pressi	ure		
Make	First Sensor AG	Model	1 -/-	+ 0.25	KPA 3.3V
S/N	74-8C-31-EE	Range		0.3	kPa (G
Ori	entation		In S	itu	1-
As Found	Coefficients	A0 -2.1837E	-03	A1 1.	0025E+00
A2 7.	51120E-03	A3 -1.3347E	-02	A4 -3	.0792E-02
Point	Reference	Device		Error	% Error
	kPa (G)	kPa (G)	(F	Rdg)	(F,S)
1	-0.300	-0.304		.35	-1.35
2	0.000	-0.004			-1.38
3	0.300	0.296		1.45	-1.45
C	coefficient Adju	sted. Stability:	± 0.0	001 kF	а
As Left	Coefficients				0034E+00
	30982E-03				9688E-03
Point	Reference	Device	%1	Error	% Error
	kPa (G)	kPa (G)	(F	Rdg)	(F.S)
1	-0.300	-0.300	0	.02	-0.02
2	-0.250	-0.250	0	.00	0.00
3	-0.200	-0.200	0	.06	-0.04
4	-0.150	-0.150	0	.03	-0.02
5	-0.100	-0.100	-0	.04	0.01
6	-0.050	-0.050	0.	.00	0.00
7	0.000	0.000			0.04
8	0.050	0.050	0.	18	0.03
9	0.100	0.100	-0	.02	-0.01
10	0.150	0.150	-0	.06	-0.03
11	0.200	0.200	0.	08	0.05
12	0.250	0.250	0.	06	0.05
13	0.300	0.300	-0	.01	-0.01

		DP 2 Pressure	9	
Make	First Sensor AG	Model	-/+ 1.25k	KPA 3.3V
S/N	35-9B-32-26	Range	1.5	kPa (G
Or	ientation		n Situ	(0
As Found	Coefficients	A0 1.7305E-03		.9301E-01
A2 1.	98192E-03	A3 5.0768E-03		.3490E-04
Point	Reference	Device	% Error	% Error
	kPa (G)	kPa (G)	(Rdg)	(F.S)
1	-1.250	-1.180	-5.60	4.67
2	0.000	0.068		4.54
3	1.500	1.571	4.76	4.76
(Coefficient Adju	sted. Stability ±	0.0002 kF	a
As Left	Coefficients	A0 -6.6214E-02	2 A1 9.	9181E-01
A2 -2.	25244E-04	A3 5.4399E-03		5451E-04
Point	Reference	Device	% Error	% Error
	kPa (G)	kPa (G)	(Rdg)	(F.S)
1	-1.250	-1.250	-0.02	0.02
2	-1.000	-1.000	-0.04	0.03
3	-0.750	-0.750	-0.03	0.01
4	-0.500	-0.500	-0.04	0.01
5	-0.300	-0.300	-0.09	0.02
6	-0.200	-0.200	-0.19	0.03
7	-0.100	-0.100	-0.38	0.03
8	0.000	0.000		0.01
9	0.100	0.101	0.60	0.04
10	0.200	0.200	0.08	0.01
11	0.300	0.300	-0.11	-0.02
12	0.500	0.500	-0.07	-0.02
13	0.750	0.750	-0.06	-0.03
14	1.000	1.000	0.00	0.00
15	1.250	1.250	0.01	0.01
16	1.500	1.500	-0.01	-0.01

CERTIFICATE OF CALIBRATION

UKAS Accredited Calibration Laboratory No. 0767

Certificate Number C10468

Page 3 of 4 pages

		al DP 3 Pressure		
Make	First Sensor AG	1110001		PA 3.3V
S/N	55-F6-32-B4	Range 5		kPa (C
Orientation			n Situ	
As Found	Coefficients	A0 -8.6848E-0		
A2 1.	.94517E-04	A3 -1.1681E-0	14 A4 -1	.0885E-05
Point	Reference	Device	% Error	% Error
	kPa (G)	kPa (G)	(Rdg)	(F.S)
1	0.000	-0.009		-0.18
2	2.500	2.493	-0.29	-0.15
3	5.000	4.994	-0.12	-0.12
	Coefficient Adju	sted. Stability ±	0.0004 kF	Pa
As Left Coefficients		A0 -8.0581E-0	05 A1 1.	0027E+00
A2 2	.46788E-06	A3 6.1734E-0	A3 6.1734E-05 A4 -3	
Point	Reference	Device	% Error	% Error
	kPa (G)	kPa (G)	(Rdg)	(F.S)
1	0.000	0.001		0.02
2	0.100	0.101	1.42	0.03
3	0.200	0.200	0.03	0.00
4	0.300	0.300	0.10	0.01
5	0.500	0.501	0.23	0.02
6	1.000	1.002	0.19	0.04
7	1.500	1.499	-0.04	-0.01
8	2.000	2.000	0.02	0.01
9	2.500	2.499	-0.03	-0.02
10	3.000	3.001	0.02	0.01
11	3.500	3.501	0.01	0.01
12	4.000	4.001 0.01		0.01
13	4.500	4.498	-0.04	-0.03
14	5.000	5.001	0.01	0.01

		al DP 4 Pressure		
Make	First Sensor AG	111000	-/+ 0-7.5KPA 3.3	
S/N	70-5C-FF-2F	Range 7.5		kPa (G
	rientation		n Situ	
	d Coefficients	A0 7.2174E-0		0029E+00
A2 1	.29413E-03	A3 -6.0782E-0		8089E-05
Point	Reference		% Error	% Error
	kPa (G)	kPa (G)	(Rdg)	(F.S)
1	0.000	-0.008		-0.10
2	3.500	3.483	-0.50	-0.23
3	7.500	7.474	-0.35	-0.35
1.		usted. Stability ±	0.001 kP	a
As Left		A0 1.6126E-0		0083E+00
A2 -	5.02082E-05	A3 -3.5648E-0		1927E-05
Point	1101010100	Device	% Error	% Error
	kPa (G)	kPa (G)	(Rdg)	(F.S)
1	0.000	-0.002		-0.03
2	0.100	0.099	-1.24	-0.02
3	0.200	0.200	-0.04	0.00
4	0.300	0.299	-0.35	-0.01
5	0.500	0.500	-0.06	0.00
6	1.000	1.000	0.04	0.01
7	1.500	1.500	0.00	0.00
8	2.000	2.000	-0.01	0.00
9	2.500	2.499	-0.03	-0.01
10	3.000	2.999	-0.03	-0.01
11	3.500	3.499	-0.03	-0.01
12	4.000	4.000	0.00	0.00
13	4.500	4.500	0.01	0.00
14	5.000	5.000	0.00	0.00
15	5.500	5.500	0.00	0.00
16	6.000	6.001	0.01	0.01
17	6.500	6.498	-0.03	-0.03
18	7.000	6.998	-0.03	-0.03
19	7.500	7.501	0.01	0.01
				_

CERTIFICATE OF CALIBRATION

UKAS Accredited Calibration Laboratory No. 0767

Certificate Number C10468

Page 4 of 4 pages

	Exhaust Press	sure Transduc	er		
Make	First Sensor AG	Model	800-1100	MBAR 3.3V	
S/N	73-FC-3A-AE	Range	110	kPa(A)	
C	rientation	In Situ			
As Four	d Coefficients	A0 2.3888E	+02 A1 -8	.6319E+00	
A2 '	1.45418E-01	A3 -9.7402E	E-04 A4 2	4421E-06	
Point	Reference	Device	% Error	% Error	
	kPa(A)	kPa(A)	(Rdg)	(F,S)	
1	90.02	90.03	0.01	0.01	
2	100.01	100.00	-0.01	-0.01	
3	110.00	110.00	0.01	0.01	
	No Adjustm	ent. Stability ±	0.04 kPa		
As Left	Coefficients	A0 2.3888E	+02 A1 -8.	6319E+00	
A2 1.45418E-01		A3 -9.7402E	-04 A4 2.	4421E-06	
Point	Reference	Device	% Error	% Error	
	kPa(A)	kPa(A)	(Rdg)	(F.S)	
1	90.01	90.01	0.00	0.00	
2	95.00	95.00	0.00	0.00	
3	97.50	97.51	0.02	0.02	
4	99.99	99.99	0.00	0.00	
5	102.48	102.52	0.04	0.03	
6	104.98	104.97	-0.01	-0.01	
7	109.98	109.98	0.00	0.00	

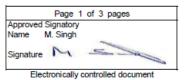
	Exaust Te	emp Temperatu	re	
Make	HUK			К Туре
S/N	EXT	Range 1400 °C		
Orientation		-	In Situ	
As Found Coefficients		A0 -1.6445E+	00 A1	1.0129E+00
A2 3.59721E-05		A3 -1.9436E-	07 A4	1.4546E-10
Point	Reference	Device	% Erro	r % Error
	°C	°C	(Rdg)	(F.S)
1	0	-1.3		-0.09
2	200	198.5	-0.76	-0.11
3	600	599.4	599.4 -0.10	
	Coefficient A	djusted. Stabilit	y ±0.05	°C
As Left	Coefficients	A0 -4.1702E-	01 A1	1.0128E+00
A2 3.59905E-05		A3 -1.9547E-	07 A4	1.4667E-10
Point	Reference	Device	% Erro	r % Error
	°C	°C	(Rdg)	(F.S)
1	0.0	0.2		0.01
2	20.0	19.4	-2.87	-0.04
3	100.0	100.7	0.72	0.05
4	200.0	199.8	-0.08	-0.01
5	400.0	399.4	0.00	
6	600.0	600.7		
7	800.0	799.6		
8	1000.0	1000.1 0.01		0.01

End of UKAS Certificate

E.2 Pitot flow tube 150502F

CERTIFICATE OF CALIBRATION

ISSUED BY HORIBA UK LIMITED


DATE OF ISSUE 21 August 2018 CERTIFICATE NUMBER C11254

HORIBA UK LTD

Kyoto Close Moulton Park Northampton NN3 6FL Telephone: 01604 - 542500

Telephone: 01604 - 542500 Telefax: 01604 - 542699

Customer: TNO, Department: Powertrains, Attn Jan Willem de Koning,

Address: PTC Building D, Automotive Campus 25, 5708 JZ HELMOND, THE NETHERLAND:

Customer Ref: 4510736236 Item Calibrated: F Tube Site: HORIBA Offsite Item Serial Number: 150502F PF Module Item Range: 0 to 30000 System: I/min System Model: 13 August 2018 Calibration Date: Version 2

Serial Number: HGS GV9FLXSF Software Version: 2.0.6

Method

The flow tube was acclimatised to the laboratory environment (20 ± 2°C) overnight. The flow tube was connected to a series of Smooth Approach Orifli of traceable calibration history. The flow tube was then calibrated over its given flow range. This data was then recorded and entered into the coefficient calculation software. The new calibration coefficients were entered into the PTFM software. An As Left Accuracy check was carried out and the data recorded. The specified accuracy of the device is ± 2.0 % of point or ± 0.5% of full scale which ever is the greater. The recorded values were an average of 30 readings, with an interval of 1 Hz.

Equipment Used

quipment oocu			
Equipment	Serial Number	Certificate Number	Calibration Date
Barometer	4347299	C10045	14 September 2017
Furness FCO510	9411150	15060	04 September 2017
PRT	1501047	C10044	12 September 2017
Temperature & Humidity	10960380	U90432-17	17 January 2018
Pitot Calibration Coefficient	K =	12778.18	
	A0 =	0.000000E+00	
	A1 =	1.027608E+00	
	A2 =	-2.598689E-06	
	A3 =	1.680517E-10	
	A4 =	-4.208331E-15	
mbient Conditions			

Ambient Conditions

Barometer kPa	Temperature °C	Humidity %
99.35	21.30	50.7

Uncertainties

The uncertainties of calibration is the uncertainty of the applied pressure + 1 digit and instrument readability. The estimated uncertainties associated with the measurement of the applied pressures are: 0 to 2 kPa (0.4 % + 0.9 Pa), 2 to 20 kPa (0.4 % + 6.8 Pa), Absolute Pressure (0.04 % + 187 Pa)

The uncertainty of measurement for temperature is [0.17°C + instrument resolution and instrument readability.]

b. Linearity - Intercept ([Xmin(a1-1)+a0]): Within 1.0 % full scale. Slope (a1): 0.98 to 1.02. SEE(Standard Estimated Error): Within 2.0 % of full scale. r² (Coefficient of determination): 0.990 or more

The recorded uncertainty refers to the measurements and is not intended to indicate the specification, or repeatability of the instrument.

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

This certificate is issued in accordance with the laboratory accreditation requirements and certifies that all devices used have traceability of measurement to recognised national standards, and to units of measurement realised at the National Physical Laboratories. This certificate may not be produced other than in full, except with the prior written approval of the issuing laboratory.

CERTIFICATE OF CALIBRATION

ISSUED BY HORIBA UK LIMITED

Certificate Number C11254 Page 2 of 3 pages

a. Performance test

Lir	nearity	ity SAO flow		Pi	Pitot flow			Status
	SAO		_			En	ror	
	NO	[m3/min]	[l/min]	[m3/min]	[l/min]	[%RD]	[%FS]	
1	1	0.000	0.000	0.000	0.326		0.00	PASS
2	1	3.038	3038.148	3.040	3039.944	0.06	0.01	PASS
3	1	6.001	6000.575	6.027	6027.088	0.44	0.09	PASS
4	1	9.022	9021.510	9.059	9058.863	0.41	0.12	PASS
5	1	12.082	12081.890	12.073	12073.049	-0.07	-0.03	PASS
6	1	14.876	14876.197	14.936	14935.885	0.40	0.20	PASS
7	1	17.981	17980.646	17.882	17881.536	-0.55	-0.33	PASS
8	1	21.127	21126.894	21.110	21110.056	-0.08	-0.06	PASS
9	1	23.973	23973.208	23.992	23991.535	0.08	0.06	PASS
10	1	27.051	27051.390	26.943	26943.325	-0.40	-0.36	PASS
11	1	30.102	30102.355	29.970	29969.750	-0.44	-0.44	PASS
		·	·					

b. Linearity [a0](FS%) = 0.13 a1 = 0.9960 SEE (FS%) = 0.24

 $r^2 = 1.0000$

c. Noise (2.0	STATUS			
Con	omponent Test Result		lesult	
Exh. Flow	ZERO	0.02	%FS	PASS
EXII. Flow	SPAN	0.33 %FS		PASS

١	d. Repeatability (2.0% of reading scale or less) STATUS						
	Compo	nent	Test				
	Exh. Flow	SPAN	1.71	%RS	PASS		

Test Data		Averag	ge Data	Standard deviation data		
		ZERO	SPAN	ZERO	SPAN	
		[m3/min]	[m3/min]	[m3/min]	[m3/min]	
1		-0.003	9.784	0.004	0.141	
2		-0.004	9.931	0.005	0.125	
3		-0.004	9.746	0.004	0.134	
4		-0.010	9.890	0.007	0.096	
5		-0.006	9.843	0.005	0.107	
6		-0.008	9.836	0.007	0.124	
7		-0.008	9.758	0.007	0.123	
8		-0.007	9.783	0.005	0.093	
9		-0.006	9.723	0.006	0.092	
10		-0.008	9.760	0.007	0.088	

CERTIFICATE OF CALIBRATION

ISSUED BY HORIBA UK LIMITED

Certi	fica	C11254			
Page	3	of	3	pages	

Calibration Data

SAO	Flow	Pitot dP	Pitot T.	Pitot P.	Pitot	Flow.	
[m3/min]	[l/min]	[kPa]	[degC]	[kPa]	[m3/min]	[l/min]	[K-1000]
0.0000	0.0	0.000	21.09	99.26	0.0000	0.0	0.00000
3.0381	3038.1	0.067	20.77	99.22	2.9865	2986.5	0.23315
6.0006	6000.6	0.264	20.71	99.22	5.9399	5939.9	0.46372
9.0215	9021.5	0.600	20.66	99.20	8.9526	8952.6	0.69891
12.0819	12081.9	1.068	20.55	99.15	11.9426	11942.6	0.93234
14.8762	14876.2	1.638	20.52	99.09	14.7907	14790.7	1.15468
17.9806	17980.6	2.360	20.49	98.93	17.7374	17737.4	1.38473
21.1269	21126.9	3.305	20.36	98.88	20.9911	20991.1	1.63874
23.9732	23973.2	4.301	20.28	98.80	23.9384	23938.4	1.86883
27.0514	27051.4	5.515	20.22	98.62	27.0853	27085.3	2.11450
30.1024	30102.4	6.983	20.04	98.49	30.4679	30467.9	2.37858

SAO Calibration Data

No. 1

S/N	HII017		HII017		HII017		HII017		a0	a0 9.4140252E-01		7.3399193E-18
Throat	3.442		a1	6.0983919E-07	a4	-5.9595008E-24						
Inlet	1000	-	a2	-3.2375236E-12	a5	0.0000000E+00						

E.3 Checks performed on the different analysers

E.3.1 CO Linearize check

HORIBA Automotive Test Systems

Analyzer Linearize Check

HGS No.: 63JNMN52	Start Time: 2018/08/16 15:05:42
Device : GA	End Time: 2018/08/16 15:50:32
Line : Tailpipe	Test Status : Pass

Analyzer		Test Result
Component : C	:0	Linearize Check: Pass
Range :	10.0 vol%	Drift Check:
Check Gas		Top Gas Check:
Top Gas Supply Port: S	pan	Mid Span Check:
Top Gas Concentration :	9.48 vol%	

Checker

Control Type: GDC-ONE

Curve Setting	Curve Criteria
Poly Order: 4th	Preset Name: Standard
Fitting Type: Weights	Judge Type: Use Larger Limit
Adjust 0% 100%: Active	Criteria 1: 2.0 % of Point (PT)
	Criteria 2: 0.3 % of Full Scale (FS)

Measurement Value

Curve :			
Reference Pressure :	101.4	kPa	
Reference Temperature :	26.13	deg C	
Reference Humidity :	51.23	%	_

Reference Temperature :	20 12 don C	A0	-9.874196E+00
Reference temperature .	26.13 deg C	A1	1.325990E-01
Reference Humidity:	51.23 %	A2	5.047525E-06
Ref. Temp. (Humidity) :	26.13 deg C	A3	2.145788E-11
Ref. Temp. (Humidity) :	20.13 deg C	A4	-1.422080E-16

Curve Coefficient

Z/S Coefficient						
Α	1.000797E+00					
В	3.737542E+02					

	Current Data Set			Current Curve		
Point #	Cut [%]	Gen. Conc. [vol%]	Z/S Adj. Counts	Measured Conc. [vol%]	Error [%]	Status
1	100.0	9.480	120573	9.480	0.00(PT)	Pass
2	90.0	8.532	113226	8.558	0.31(PT)	Pass
3	80.0	7.584	105694	7.628	0.58(PT)	Pass
4	70.0	6.636	97826	6.685	0.73(PT)	Pass
5	60.0	5.688	89570	5.736	0.84(PT)	Pass
6	50.0	4.740	80671	4.772	0.68(PT)	Pass
7	40.0	3.792	70992	3.807	0.40(PT)	Pass
8	36.0	3.413	66848	3.423	0.29(PT)	Pass
9	32.0	3.034	62469	3.037	0.12(PT)	Pass
10	30.0	2.844	60219	2.847	0.12(PT)	Pass
11	28.0	2.654	57884	2.656	0.08(PT)	Pass
12	24.0	2.275	52985	2.276	0.06(PT)	Pass
13	20.0	1.896	47632	1.894	-0.11(PT)	Pass
14	18.0	1.706	44755	1.702	-0.23(PT)	Pass
15	16.0	1.517	41727	1.512	-0.32(PT)	Pass
16	14.0	1.327	38508	1.322	-0.06(FS)	Pass

Test No. 176 1/2 AIA-03H-X0C64RX2

Current Data Set			Current Curve			
Point #	Cut	Gen. Conc.	Z/S Adj. Counts	Measured Conc.	Error	Status
	[%]	[vol%]		[vol%]	[%]	
17	12.0	1.138	35095	1.134	-0.04(FS)	Pass
18	10.0	0.948	31413	0.947	-0.01(FS)	Pass
19	9.0	0.853	29490	0.856	0.03(FS)	Pass
20	8.0	0.758	27384	0.762	0.03(FS)	Pass
21	7.0	0.664	25141	0.667	0.03(FS)	Pass
22	6.0	0.569	22742	0.572	0.03(FS)	Pass
23	5.0	0.474	20143	0.477	0.03(FS)	Pass
24	4.0	0.379	17271	0.382	0.03(FS)	Pass
25	3.6	0.341	16022	0.343	0.02(FS)	Pass
26	3.2	0.303	14708	0.305	0.01(FS)	Pass
27	3.0	0.284	14022	0.285	0.01(FS)	Pass
28	2.8	0.265	13323	0.266	0.00(FS)	Pass
29	2.4	0.228	11823	0.226	-0.01(FS)	Pass
30	2.0	0.190	10240	0.188	-0.02(FS)	Pass
31	1.8	0.171	9426	0.169	-0.02(FS)	Pass
32	1.6	0.152	8563	0.149	-0.02(FS)	Pass
33	1.4	0.133	7649	0.130	-0.03(FS)	Pass
34	1.2	0.114	6706	0.111	-0.03(FS)	Pass
35	1.0	0.095	5721	0.092	-0.03(FS)	Pass
36	0.8	0.076	4680	0.073	-0.03(FS)	Pass
37	0.6	0.057	3585	0.054	-0.03(FS)	Pass
38	0.4	0.038	2429	0.035	-0.03(FS)	Pass
39	0.2	0.019	1227	0.018	-0.01(FS)	Pass
40	0.0	0.000	-76	0.000	0.00(FS)	Pass

Drift Check (Zero):

Step	Gas Conc. [vol%]	Measured Conc. [vol%]	Criteria [%]	Error [%]	Status
Zero				_	

Drift Check (Span):

Step	Gas Conc. [vol%]	Measured Conc. [vol%]	Criteria [%]	Error [%]	Status
Span				-	

C	omment		
-			

Test No. 176 2/2 AIA-03H-X0C64RX2

E.3.2 CO₂ Linearize check

Analyzer Linearize Check

HGS No.: 63JNMN52	Start Time: 2018/08/16 14:17:09
Device : GA	End Time: 2018/08/16 15:02:05
Line: Tailpipe	Test Status: Pass

 Analyzer
 Test Result

 Component: CO2
 Linearize Check: Pass

 Range: 20.0 vol%
 Drift Check: --

 Check Gas
 Top Gas Check: --

 Top Gas Supply Port: Span
 Mid Span Check: --

Top Gas Concentration : 15.16 vol%

Checker

Control Type: GDC-ONE

 Curve Setting
 Curve Criteria

 Poly Order: 4th
 Preset Name: Standard

 Fitting Type: Weights
 Judge Type: Use Larger Limit

 Adjust 0% 100%: Active
 Criteria 1: 2.0 % of Point (PT)

 Criteria 2: 0.3 % of Full Scale (FS)

Measurement Value

Curve :

Reference Pressure :	101.4 kPa	Curve C	Coefficient	Z/S Co	efficient
Reference Temperature :	os oa dan C	A0	-5.216313E+01	Α	1.006618E+00
Reference Temperature :	25.84 deg C	- A1	2.787561E-01	В	9.380610E+02
Reference Humidity:	52.38 %	A2	1.631171E-06		
Def Terre (Ularright)	25.04	A3	-1.665571E-12	•	
Ref. Temp. (Humidity) :	25.84 deg C	- A4	1.714194E-18		

Current Data Set				Current Curve		
Point#	Cut [%]	Gen. Conc. [vol%]	Z/S Adj. Counts	Measured Conc. [vol%]	Error [%]	Status
1	100.0	15.16	252189	15.16	0.00(PT)	Pass
2	90.0	13.64	234674	13.65	0.06(PT)	Pass
3	80.0	12.13	216231	12.13	0.03(PT)	Pass
4	70.0	10.61	197219	10.64	0.23(PT)	Pass
5	60.0	9.096	177081	9.133	0.41(PT)	Pass
6	50.0	7.580	155662	7.628	0.64(PT)	Pass
7	40.0	6.064	132468	6.111	0.77(PT)	Pass
8	36.0	5.458	122663	5.506	0.88(PT)	Pass
9	32.0	4.851	112378	4.895	0.90(PT)	Pass
10	30.0	4.548	107172	4.595	1.04(PT)	Pass
11	28.0	4.245	101768	4.291	1.08(PT)	Pass
12	24.0	3.638	90421	3.675	1.00(PT)	Pass
13	20.0	3.032	78417	3.058	0.86(PT)	Pass
14	18.0	2.729	72082	2.748	0.09(FS)	Pass
15	16.0	2.426	65521	2.437	0.06(FS)	Pass
16	14.0	2.122	58776	2.129	0.03(FS)	Pass

Test No. 175 1/2 AIA-03H-X0C64RX2

Current Data Set			Currer	nt Curve		
Point #	Cut [%]	Gen. Conc. [vol%]	Z/S Adj. Counts	Measured Conc. [vol%]	Error [%]	Status
17	12.0	1.819	51689	1.819	0.00(FS)	Pass
18	10.0	1.516	44446	1.517	0.00(FS)	Pass
19	9.0	1.364	40594	1.362	-0.01(FS)	Pass
20	8.0	1.213	36805	1.214	0.01(FS)	Pass
21	7.0	1.061	32801	1.062	0.00(FS)	Pass
22	6.0	0.910	28645	0.909	0.00(FS)	Pass
23	5.0	0.758	24537	0.763	0.02(FS)	Pass
24	4.0	0.606	20145	0.612	0.03(FS)	Pass
25	3.6	0.546	18281	0.549	0.02(FS)	Pass
26	3.2	0.485	16490	0.491	0.03(FS)	Pass
27	3.0	0.455	15639	0.463	0.04(FS)	Pass
28	2.8	0.424	14709	0.433	0.04(FS)	Pass
29	2.4	0.364	12796	0.373	0.04(FS)	Pass
30	2.0	0.303	10795	0.310	0.04(FS)	Pass
31	1.8	0.273	9857	0.281	0.04(FS)	Pass
32	1.6	0.243	8841	0.251	0.04(FS)	Pass
33	1.4	0.212	7836	0.220	0.04(FS)	Pass
34	1.2	0.182	6795	0.190	0.04(FS)	Pass
35	1.0	0.152	5685	0.157	0.03(FS)	Pass
36	0.8	0.121	4648	0.127	0.03(FS)	Pass
37	0.6	0.091	3620	0.097	0.03(FS)	Pass
38	0.4	0.061	2556	0.067	0.03(FS)	Pass
39	0.2	0.030	1300	0.032	0.01(FS)	Pass
40	0.0	0.000	147	0.000	0.00(FS)	Pass

Drift Check (Zero):

Step	Gas Conc. [vol%]	Measured Conc. [vol%]	Criteria [%]	Error [%]	Status
Zero			-		

Drift Check (Span):

Step	Gas Conc. [vol%]	Measured Conc. [vol%]	Criteria [%]	Error [%]	Status
Span				_	

Comment	-			

Test No. 175 2/2 AIA-03H-X0C64RX2

E.3.3 NO Linearize check

Analyzer Linearize Check

 HGS No.:
 63JNMN52
 Start Time:
 2018/08/21
 8:05:18

 Device:
 GA
 End Time:
 2018/08/21
 8:48:57

 Line:
 Tailpipe
 Test Status:
 Pass

 Analyzer
 Test Result

 Component:
 NO
 Linearize Check:
 Pass

 Range:
 3000 ppm
 Drift Check:
 --

 Check Gas
 Top Gas Check:
 --

 Top Gas Supply Port:
 Span
 Mid Span Check:
 --

Top Gas Concentration : 2510 ppm

Checker

Control Type: GDC-ONE

 Curve Setting
 Curve Criteria

 Poly Order: 2nd
 Preset Name: Standard

 Fitting Type: Weights
 Judge Type: Use Larger Limit

 Adjust 0% 100%: Active
 Criteria 1: 2.0 % of Point (PT)

 Criteria 2: 0.3 % of Full Scale (FS)

Measurement Value

Curve :

Reference Pressure : 101.9 kPa Curve Coefficient Z/S Coefficient -1.175100E+00 A 1.018714E+00 3.507678E-03 B -3.696425E+02 A0 -1.175100E+00 Reference Temperature : 32.41 deg C A1 Reference Humidity: 57.21 % A2 4.711025E-11 0.000000E+00 Ref. Temp. (Humidity): 25.89 deg C A4 0.000000E+00

		Current Data Set	Currer	nt Curve		
Point #	Cut [%]	Gen. Conc. [ppm]	Z/S Adj. Counts	Measured Conc. [ppm]	Error [%]	Status
1	100.0	2510	669213	2510	0.00(PT)	Pass
2	90.0	2259	604147	2260	0.06(PT)	Pass
3	80.0	2008	537720	2011	0.14(PT)	Pass
4	70.0	1757	471598	1760	0.18(PT)	Pass
5	60.0	1506	404896	1509	0.20(PT)	Pass
6	50.0	1255	337936	1258	0.24(PT)	Pass
7	40.0	1004	270828	1007	0.26(PT)	Pass
8	36.0	903.6	243828	905.9	0.25(PT)	Pass
9	32.0	803.2	216758	804.9	0.21(PT)	Pass
10	30.0	753.0	203283	754.6	0.21(PT)	Pass
11	28.0	702.8	189771	703.8	0.14(PT)	Pass
12	24.0	602.4	162905	603.3	0.15(PT)	Pass
13	20.0	502.0	135690	501.6	-0.07(PT)	Pass
14	18.0	451.8	122030	451.1	-0.17(PT)	Pass
15	16.0	401.6	108354	399.7	-0.06(FS)	Pass
16	14.0	351.4	94664	349.1	-0.08(FS)	Pass

Test No. 178 1/2 CLA-02HSV-XOC64RX2

		Current Data Set		Curre	nt Curve	
Point#	Cut [%]	Gen. Conc. [ppm]	Z/S Adj. Counts	Measured Conc. [ppm]	Error [%]	Status
17	12.0	301.2	81009	298.5	-0.09(FS)	Pass
18	10.0	251.0	67457	248.2	-0.09(FS)	Pass
19	9.0	225.9	60762	223.3	-0.09(FS)	Pass
20	8.0	200.8	54071	198.5	-0.08(FS)	Pass
21	7.0	175.7	47210	173.0	-0.09(FS)	Pass
22	6.0	150.6	40475	148.1	-0.08(FS)	Pass
23	5.0	125.5	33727	123.3	-0.07(FS)	Pass
24	4.0	100.4	26993	98.34	-0.07(FS)	Pass
25	3.6	90.36	24339	88.49	-0.06(FS)	Pass
26	3.2	80.32	21646	78.58	-0.06(FS)	Pass
27	3.0	75.30	20318	73.73	-0.05(FS)	Pass
28	2.8	70.28	18936	68.61	-0.06(FS)	Pass
29	2.4	60.24	16269	58.75	-0.05(FS)	Pass
30	2.0	50.20	13592	48.91	-0.04(FS)	Pass
31	1.8	45.18	12254	43.97	-0.04(FS)	Pass
32	1.6	40.16	10924	39.05	-0.04(FS)	Pass
33	1.4	35.14	9592	34.10	-0.03(FS)	Pass
34	1.2	30.12	8255	29.19	-0.03(FS)	Pass
35	1.0	25.10	6882	24.13	-0.03(FS)	Pass
36	0.8	20.08	5562	19.26	-0.03(FS)	Pass
37	0.6	15.06	4264	14.47	-0.02(FS)	Pass
38	0.4	10.04	2948	9.616	-0.01(FS)	Pass
39	0.2	5.020	1636	4.791	-0.01(FS)	Pass
40	0.0	0.000	335	0.000	0.00(FS)	Pass

Drift Check (Zero):

Step	Gas Conc. [ppm]	Measured Conc. [ppm]	Criteria [%]	Error [%]	Status
Zero					

Drift Check (Span):

Step	Gas Conc. [ppm]	Measured Conc. [ppm]	Criteria [%]	Error [%]	Status
Span			_		_

_

Test No. 178 2/2 CLA-02HSV-XOC64RX2

E.3.4 NOx Linearize check

Analyzer Linearize Check

 HGS No.: 63JNMN52
 Start Time: 2018/08/21 8:58:09

 Device: GA
 End Time: 2018/08/21 10:29:03

 Line: Tailpipe
 Test Status: Pass

 Analyzer
 Test Result

 Component:
 NOx
 Linearize Check:
 Pass

 Range:
 3000 ppm
 Drift Check:
 --

 Check Gas
 Top Gas Check:
 --

 Top Gas Supply Port:
 Span
 Mid Span Check:
 --

 Top Gas Concentration:
 2510 ppm
 2510 ppm

Checker

Control Type: GDC-ONE

 Curve Setting
 Curve Criteria

 Poly Order: 2nd
 Preset Name: Standard

 Fitting Type: Weights
 Judge Type: Use Larger Limit

 Adjust 0% 100%: Active
 Criteria 1: 2.0 % of Point (PT)

 Criteria 2: 0.3 % of Full Scale (FS)

Measurement Value

Curve

Reference Pressure : 102.0 kPa Curve Coefficient Z/S Coefficient 3.833296E-01 A 9.786935E-01 A0 Reference Temperature : 32.96 deg C 3.595957E-03 В -1.065683E+03 A1 Reference Humidity: 57.28 % -4.843976E-11 A2 A3 0.000000E+00 Ref. Temp. (Humidity): 25.86 deg C A4 0.000000E+00

		Current Data Set		Currer	nt Curve	
Point #	Cut [%]	Gen. Conc. [ppm]	Z/S Adj. Counts	Measured Conc. [ppm]	Error [%]	Status
1	100.0	2510	676042	2510	0.00(PT)	Pass
2	90.0	2259	609724	2267	0.35(PT)	Pass
3	80.0	2008	542430	2018	0.52(PT)	Pass
4	70.0	1757	475288	1771	0.79(PT)	Pass
5	60.0	1506	407698	1520	0.93(PT)	Pass
6	50.0	1255	339900	1269	1.13(PT)	Pass
7	40.0	1004	271917	1018	1.37(PT)	Pass
8	36.0	903.6	244723	916.4	1.42(PT)	Pass
9	32.0	803.2	217622	814.4	1.40(PT)	Pass
10	30.0	753.0	204222	764.5	1.52(PT)	Pass
11	28.0	702.8	190495	713.1	1.46(PT)	Pass
12	24.0	602.4	163331	611.6	1.53(PT)	Pass
13	20.0	502.0	135732	508.5	1.30(PT)	Pass
14	18.0	451.8	121953	456.8	1.12(PT)	Pass
15	16.0	401.6	108071	405.0	0.11(FS)	Pass
16	14.0	351.4	94121	353.2	0.06(FS)	Pass

Test No. 179 1/2 CLA-02HSV-XOC84RX2

		Current Data Set		Curre	nt Curve	
Point #	Cut	Gen. Conc.	Z/S Adj. Counts	Measured Conc.	Error	Status
	[%]	[ppm]		[ppm]	[%]	
17	12.0	301.2	80392	302.0	0.03(FS)	Pass
18	10.0	251.0	66887	251.3	0.01(FS)	Pass
19	9.0	225.9	60272	226.3	0.01(FS)	Pass
20	8.0	200.8	53494	200.8	0.00(FS)	Pass
21	7.0	175.7	46744	175.5	-0.01(FS)	Pass
22	6.0	150.6	39976	150.2	-0.01(FS)	Pass
23	5.0	125.5	33257	125.0	-0.02(FS)	Pass
24	4.0	100.4	26542	99.76	-0.02(FS)	Pass
25	3.6	90.36	23852	89.76	-0.02(FS)	Pass
26	3.2	80.32	21165	79.72	-0.02(FS)	Pass
27	3.0	75.30	19816	74.69	-0.02(FS)	Pass
28	2.8	70.28	18476	69.74	-0.02(FS)	Pass
29	2.4	60.24	15821	59.78	-0.02(FS)	Pass
30	2.0	50.20	13143	49.69	-0.02(FS)	Pass
31	1.8	45.18	11806	44.62	-0.02(FS)	Pass
32	1.6	40.16	10471	39.63	-0.02(FS)	Pass
33	1.4	35.14	9147	34.64	-0.02(FS)	Pass
34	1.2	30.12	7815	29.67	-0.01(FS)	Pass
35	1.0	25.10	6446	24.55	-0.02(FS)	Pass
36	0.8	20.08	5118	19.58	-0.02(FS)	Pass
37	0.6	15.06	3818	14.71	-0.01(FS)	Pass
38	0.4	10.04	2527	9.872	-0.01(FS)	Pass
39	0.2	5.020	1201	4.904	0.00(FS)	Pass
40	0.0	0.000	-107	0.000	0.00(FS)	Pass

Drift Check (Zero):

Step	Gas Conc. [ppm]	Measured Conc. Criteria [ppm] [%]		Error [%]	Status
Zero					

Drift Check (Span):

Step	Gas Conc. [ppm]	Measured Conc. [ppm]	Criteria [%]	Error [%]	Status
Span					

Comment	_	

Test No. 179 2/2 CLA-02HSV-XOC64RX2

E.3.5 NO_x Converter efficiency check

NOx Converter Efficiency Check

HGS No.: 63JNMN52 Start Time: 2018/08/21 10:43:10 End Time: 2018/08/21 11:10:51 Device: GA Test Status : Pass Line : Tailpipe

Checker Analyzer Component: NOx Control Type: GDC-ONE Range: 3000 ppm Ozone Initial Counts: Check Gas Ozone Step Counts: 20 Ozone Final Counts : Gas Supply Port: Span 240 Concentration: 190 ppm

Sequence

Condition in 'a' & 'b' : (a) Approx. 90%, 10% < (b) < 20%

Data Collecting Time: 10 s

Measurement Value

Zero Cal. Concentration: 0 ppm Span Cal. Concentration: 190 ppm

Number of Retry Step-3(b): 0

Step	Time [s]	O2 Flow	OGU	Mode		Target Conc. [ppm]		Measured Conc. [ppm]
Step-1(A)	90	OFF	OFF	NO				136.9
Step-2(a)	90	ON	OFF	NO		Approx.	123	135.3
Step-3(b)	300	ON	ON	NO	14	< Conc. <	27	19.56
Step-4(c)	300	ON	ON	NOx				132.7
Step-5(d)	90	ON	OFF	NOx				135.7
Step-6(B)	90	OFF	OFF	NOx				137.0

Test Result

ltem	Criteria [%]	Result [%]	Status
NOx Converter Efficiency = $\left(1 - \frac{NO(d) - NO(c)}{NO(a) - NO(b)}\right) \times 100$	95.0 - 100.0	97.44	Pass
Percent NO2 in NO = $\frac{NO(B) - NO(A)}{NO(A)} \times 100$	-1.0 - 5.0	0.09	Pass

Comment			

1/1 Test No. 180 CLA-02HSV-XOC84RX2

1.098253E+00

E.3.6 THC Linearize check

Analyzer Linearize Check

HGS No.: 63JNMN52 Start Time: 2018/08/16 15:55:56 End Time: 2018/08/16 16:20:28 Device : GA Test Status: Pass Line : Tailpipe

Test Result Analyzer Component: THC Linearize Check: Pass Range: 10000 ppmC Drift Check: ---Check Gas Top Gas Check: ---Top Gas Supply Port: Span Mid Span Check: ---

Top Gas Concentration : 938 ppmC

Checker

Control Type: GDC-ONE

Curve Setting Curve Criteria Poly Order: 2nd Preset Name: Standard Fitting Type: Weights Judge Type: Use Larger Limit Adjust 0% 100%: Active Criteria 1: 2.0 % of Point (PT) Criteria 2: 0.3 % of Full Scale (FS)

Measurement Value

Reference Pressure : 101.3 kPa **Curve Coefficient** Z/S Coefficient A0 -7.852548E-01 A Reference Temperature : 26.15 deg C 1.071870E-02 B 3.648264E+01 A1 51.25 % 4.981597E-10 Reference Humidity: A2 A3 0.000000E+00 Ref. Temp. (Humidity): 26.15 deg C A4 0.000000E+00

		Current Data Set	Curre	nt Curve		
Point #	Cut [%]	Gen. Conc. [ppmC]	Z/S Adj. Counts	Measured Conc. [ppmC]	Error [%]	Status
1	100.0	938.0	88565	938.0	0.00(FS)	Pass
2	90.0	844.2	79676	843.4	-0.01(FS)	Pass
3	80.0	750.4	70957	750.7	0.00(FS)	Pass
4	70.0	656.6	62344	659.2	0.03(FS)	Pass
5	60.0	562.8	53632	566.8	0.04(FS)	Pass
6	50.0	469.0	44839	473.5	0.05(FS)	Pass
7	45.0	422.1	40326	425.7	0.04(FS)	Pass
8	40.0	375.2	36009	380.0	0.05(FS)	Pass
9	35.0	328.3	31536	332.6	0.04(FS)	Pass
10	30.0	281.4	27059	285.2	0.04(FS)	Pass
11	25.0	234.5	22682	238.9	0.04(FS)	Pass
12	20.0	187.6	18189	191.4	0.04(FS)	Pass
13	15.0	140.7	13607	142.9	0.02(FS)	Pass
14	10.0	93.80	9073	95.00	0.01(FS)	Pass
15	5.0	46.90	4558	47.30	0.00(FS)	Pass
16	0.0	0.000	79	0.000	0.00(FS)	Pass

1/2 Test No. 177 FIA-01HDSV-RMYLEWK4

	f01	Measured Conc.	Criteria	Error	Stat
-	[ppmC]	[ppmC]	[%]	[%]	
Zero					
heck (Span):					
Step	Gas Conc.	Measured Conc.	Criteria	Error	State
	[ppmC]	[ppmC]	[%]	[%]	
Span					

Test No. 177 2/2 FIA-01HDSV-RMYLEWK4

E.3.7 THC Hang-up check

HORIBA Automotive Test Systems

Hang-up Check

HGS No.: 63JNMN52	Start Time: 2018/08/22 10:00:53
Device : GA	End Time: 2018/08/22 10:07:15
Line : Tailpipe	Test Status : Pass

Analyzer

Component: THC

Range: 10000 ppmC

Check Gas

Gas Supply Port: Leak Checker

Sequence

Measurement Value

,	Zero CAL Concentration :	0 ppmC	Span CAL Concentration :	938 ppmC
	Step	Time	Meas	sured Conc.
	Overflow Zero	60 s		0.00 ppmC

Test Result

Item		Criteria	Result	Status
Hang-up	≦	2.0 ppmC	0.00 ppmC	Pass

E.3.8 V-leak check (Span Gas)

HORIBA Automotive Test Systems	VLe	eak Check (Spar	n Gas)
HGS No.: 63JNMN52		Start Time: 2018	V10/10 22:42:00
Device : GA		End Time: 2018/10/10 22:50:59	
Line : Tailpipe		Test Status : Pass	
Analyzer			
-	t Sample	Cold Sample	
Component : C		cold sample	
Range:	20.0 vol%		
Concentration :	15.94 vol%		
Gas Supply Port : Lo Gequence Zero/Span Calibration : A		_	
	t Sample	Cold Sample	
Overflow Zero Time :	60 s	cold Sample	
	60 s		
Data Collecting Time :	10 s		
Overflow Purge Time :	60 s	_	
Purge Time :	30 s		
Measurement Value			
Ho	t Sample	Cold Sample	
Zero Cal. Concentration :	0.00 vol%		
Span Cal. Concentration :	15.94 vol%		
Hang-up Concentration :			
Step	Time		Measured Conc.
Overflow Span (Hot)	60 s		15.87 vol%
Overflow Span (Cold)			

Test Result

	Item		Criteria	Result	Status
1/1 -	ak = Span - (Overflow Span - Hang - up) ×100	VLeak (Hot) ≦	1.0 %	0.43%	Pass
VLE	ak = Span	$ VLeak (Cold) \le$			

E.4 Checks performed on PN analyser

TRE00544A(1/3) TEST REPORT Customer: HE Stock Model: On-board Emissions Measurement System HORIBA, Ltd. Type: OBS-ONE-PN
WBS No.: S2100508840000090
HGS No.: P8UC6BRA Date tested: 28, Nov., 2017 Date of Calibration: 2017/11/13 1. Specification 1) Power Source Main unit: DC24V 2. Test Data 2) Leak Test · · · · Good 3) Performance Tests Good Parameters Calibration Coefficients 1.0814 -0.0215 0.0015 CPC S/N: OBS ONE PN 174102 b. CPC Linearity Check · · · · Good Reference Conc. CPC Conc. Error (±10.0%RS) (#/cm³) (#/cm3) 0.0 0.0% 0.0 1471.1 1380.8 -6.1% -5.2% -5.0% 3001.4 2846.6 4473.2 4251.2 -5.5% -6.1% 7300.1 6898.8 10672.6 10026.5 27163.0 a1(0.90~1.10) 25712.0 -5.3% 0.95 Ixmin(a1-1)+a0l(≦5.0%FS) 0.3 $R^2 (\ge 0.970)$ 1.000 SEE(≦10.0%FS) 3.09 Good Reference Conc. CPC Conc. Ratio (#/cm3) (#/cm3) (Reference / CPC) 6901.9 5849.1 1.18 16931.5 1.12 26388.5 23017.8 1.1382 *Sample line length:6.0m OBS-ONE-PN 1/3 S2100508840000090

TNO PUBLIC

TRE00544A(2/3) d. System Efficiency (Monodisperse soot) · · · · · Good Particle Size Reference Conc. CPC Conc. Criteria Efficiency (#/cm3) (nm) 15 23 5886.5 422.4 5481 5 2294.2 20-60% 41.9 30 50 6354.9 4037.6 30-100% 63.5 87.6 5414.7 4741.1 60-110% 70 5425.4 70-110% 6541.9 6297.6 90-110% 96.3 6941.1 7266.9 90-110% 104.7 *Sample line length:6.0m (#/cm3 (#/cm3) 3241.9 512619.8 Temp. Range 30.0°C±0.2°C Item Saturator Condenser Optics 21.0°C±0.2°C 20.8°C~29.0°C Catalytic Stripper 350°C±10°C Heated Line ≥20°C g. Noise check (≦1000#/cm3 / 120sec) · · · · · Good Item Value Unit Criteria System Zero Sample line length:6.0m 0.0 #/cm ≦100 i. Warm-up and ZERO Drift Check (CPC Conc.: ≦100#/cm³) · · · · · Good HEPA air at Sample Inlet Unit After 0.5(h) #/cm After 4(h) #/cm³ Good Item Reference Value Unit Criteria Error CPC Sample flowrate 0.102 0.100 ±5.0% L/min Bypass flowrate
1st Diluter ±16.0% -0.1% 0.597 0.596 L/min Dilution flowrate 6.317 6.299 ±3.0% -0.3% L/min 2nd Diluter 0.072 ±20.0% -0.4% Sample flowrate L/min

2/3

	TRE00544
	TEST REPORT
Customer	r : HE Stock
Type	: On-board Emissions Measurement System
Model	: OBS-ONE-PN
WBS No.	: S2100508840000090
HGS No.	: P8UC6BRA
Specification Power son	n urce: 24VDC
2. Test results	
	e, dimension and construction Go
2) Function •	
3) Performand	ce of sensors ···· <u>Go</u>
a. Accurac	y of pressure sensor for ambient air Within ±0.2kPa
b. Linearity	of pressure sensor for ambient air
	$\begin{array}{ll} \text{Intercept}(X_{\text{min}}(a_1\text{-}1)\text{+}a_0) & : \text{ Within 1.0\% of full scale} \\ \text{Slope}(a_1) & : 0.99 \text{ to 1.01} \end{array}$
	SEE(Standard Estimated Error): Within 1.0% of full scale
	r ² (Coefficient of determination) : 0.998 or more
c. Accurac	y of temperature sensor for ambient air Within ±0.5degC
d. Linearity	of temperature sensor for ambient air
	Intercept($ X_{min}(a_1-1)+a_0 $) : Within 1.0% of full scale
	Slope(a ₁) : 0.99 to 1.01
	SEE(Standard Estimated Error): Within 1.0% of full scale r^2 (Coefficient of determination): 0.998 or more
e. Accurac	y of humidity sensor for ambient air Within ±1.5% as relative humidity
f. Accurac	y of power input voltage
	Within ±1.0% of reading scale
3. Overall insp	pection ····· Pass
Date: 28 Nov.2	2017 June 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Date: 28 Nov.2	2017 Inspector: Achiik, Approver: A. Mortyan, OBS-O

TRE00544A(2/2)

Detail of test results

3) Performance of sensors

a. Accuracy of pressure sensor for ambient air Range: 70~115kPa

Component	Reference value	Actual value	Error	Max Error
115 kPa	115.00 kPa	114.90 kPa	-0.10 kPa	-0.10 kPa
110 kPa	110.00 kPa	110.00 kPa	0.00 kPa	
105 kPa	105.00 kPa	105.00 kPa	0.00 kPa	
100 kPa	100.00 kPa	100.00 kPa	0.00 kPa	
95 kPa	95.00 kPa	95.00 kPa	0.00 kPa	
90 kPa	90.00 kPa	90.00 kPa	0.00 kPa	
85 kPa	85.00 kPa	85.00 kPa	0.00 kPa	
80 kPa	80.00 kPa	80.00 kPa	0.00 kPa	
75 kPa	75.00 kPa	75.00 kPa	0.00 kPa	
70 kPa	70.00 kPa	70.00 kPa	0.00 kPa	

b. Linearity of pressure sensor for ambient air

Intercept(X _{min} (a ₁ -1)+a ₀)	0.0	%FS
Slope(a ₁)	1,0	0
SEE(Standard Estimated Error)	0.0	%FS
r ² (Coefficient of determination)	1.00	00

c. Accuracy of temperature sensor for ambient air

Reference value	Actual value	Error	Max Error
0.00 degC	0.00 degC	0.00 degC	0.00 degC
5.00 degC	5.00 degC	0.00 degC	
10.00 degC	10.00 degC	0.00 degC	
15.00 degC	15.00 degC	0.00 degC	
20.00 degC	20.00 degC	0.00 degC	
25.00 degC	25.00 degC	0.00 degC	
30.00 degC	30.00 degC	0.00 degC	
35.00 degC	35.00 degC	0.00 degC	
40.00 degC	40.00 degC	0.00 degC	
45.00 degC	45.00 degC	0.00 degC	
50.00 degC	50.00 degC	0.00 degC	

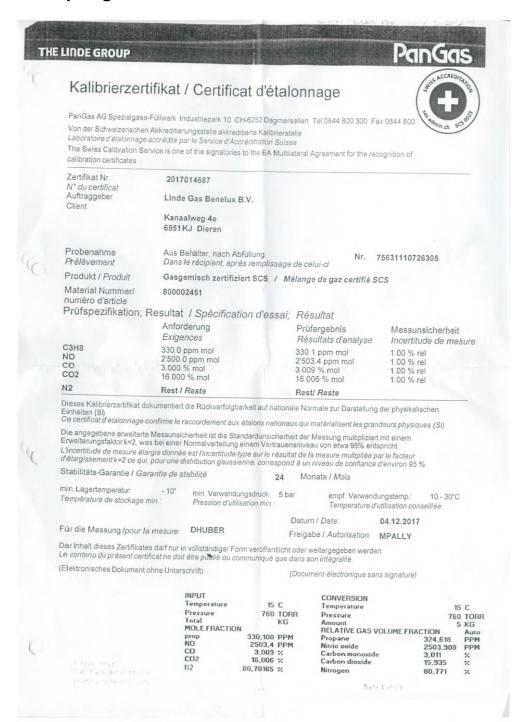
d. Linearity of temperature sensor for ambient air

Intercept(X _{min} (a ₁ -1)+a ₀)	0.0	%FS
Slope(a ₁)	1.0	0
SEE(Standard Estimated Error)	0.0	%FS
r ² (Coefficient of determination)	1.00	00

e. Accuracy of humidity sensor for ambient air Range:0~100%RH

Component	0 %RH	20 %RH	40 %RH	60 %RH	80 %RH	100 %RH	Max Error
Sensor	0.0 %RH	20.0 %RH	40.0 %RH	60.0 %RH	80.0 %RH	100.0 %RH	0.0 %RH

f Accuracy of power input voltage


Component	24.50 V	Test Result
Voltage	24.5 V	0.00 %RS

OBS-ONE-PN S2100508840000090

2/2

F Details of the gases used


F.1 Span gas

F.2 Hydrogen/helium

F.3 Synthetic air

	Synthetische tuft KW-frei 20 %	6 Sauerstoff, Rest Stickstoff	Z von
Filescond of Process			
Eigenschaften	verdichtetes Gasgemisch	22-1/10	
	Chemisches Zeichen:	O _E in N _E	
Anwendungen:	Betriebsgas für GC-Detektoren. Spül- und Nullgas für Probenal	: rmeeinrichtungen und Meßgeräte	
Ebenfalis verfugbar:	EURO 6 Synthetische Luft KW-frei Prüfgas 1 % Sauerstoff, Rest Stickstoff Prüfgas 10 % Sauerstoff, Rest Stickstoff Prüfgas 2 % Sauerstoff, Rest Stickstoff Prüfgas 4 % Sauerstoff, Rest Stickstoff Prüfgas 5 % Sauerstoff, Rest Stickstoff Prüfgas 8 % Sauerstoff, Rest Stickstoff Prüfgas 8 % Sauerstoff, Rest Stickstoff Prüfgas 9 % Sauerstoff, Rest Stickstoff Prüfgas in HiQ® MiNIFLAN-cbr/> 1 % Sauerstoff, Rest Stickstoff Synthetische Luft 20 % Sauerstoff, Rest Stickstoff Gasgemische und Prüfgase in kundenspezifischer Zusammensetzung auch in weiteren Gebindegrößen.		
Haftungsausschluss:	prüft und aktualisiert die Inforn Erganzungen der bereitgestellt inzwischen verändert haben. E Vollstandigkeit der zur Verlügu leder Anwender trägt selbst die Bestimmungen eingehalten we Einsatzzwecke geeignet sind. E	nblattes entsprechen dem gegenwärtigen vinationen ständig und behält sich das Recht ten informationen vorzunehmen. Trotz aller ine Haftung oder Gerantie für die Aktualität ing gestellten Informationen kann daher niche Verentwortung dafür, dass alle relevanter erden und dass die hier beschriebenen Produktdatenblattenschaften. Die Vervielfältigung von Informgen Zustimmung der Linde AG.	vor, Anderungen oder Sorgfalt können sich Daten I. Richtigkeit und Int übernommen werden In gesetzlichen lukte für seine sind keine vertraglichen

Linde AG
Linde Gases Division, Seitnerstr. 70, D-82049 Pullach
Telefon: 018 03.850 00-0", Telefox: 018 03.850 00-1", www.linde-gas.de
*0,09 Euro pro Minute aus dem dt. Festnetz | Mebifunk bis 0.42 Euro pro Minute. Zur Sicherstellung eines hohen Niveaus der Kunderbetreuung werden Daten unserer Kunden wie z.B. Telefonnunmern elektronisch gespeichen und verorbeitet.

Anderungen vorbehalten Stand 15.10.2012

G Vehicle mass receipt

Gebr. van Bussel Herselseweg 36 5715 PJ Lierop Tel: 0492-332110

Bonnr: 12919

Datum: 12.10.2018

Voertuig: TESTVOERTUIG

Testvoertuig

Klant: 28020

TNO

Postbus 96829 2509 JE DEN HAAG

28020 Transp.:

TNO

Postbus 96829 2509 JE DEN HAAG

Produkt :

Netto: 0 kg

*** Pfister Weegtechniek ***