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HIGHLIGHTS

e Multi-year time series of H, and
06D(H,) were measured at a regional
tall tower site.

e The dataset contains the first
measured 0D height profiles in the
boundary layer.

e The features of the time series are
consistent with large anthropogenic
influences.

e The apparent 6D source signature is
much lower than fossil fuel combus-
tion estimates.

e Both source signature and profiles
suggest microbial H; production
around the tower.
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ABSTRACT

Measurements of the stable isotopic composition (6D(Hz) or éD) of atmospheric molecular hydrogen (Hz)
are a useful addition to mixing ratio (y(H;)) measurements for understanding the atmospheric H, cycle.
6D datasets published so far consist mostly of observations at background locations. We complement
these with observations from the Cabauw tall tower at the CESAR site, situated in a densely populated
region of the Netherlands. Our measurements show a large anthropogenic influence on the local H; cycle,
with frequently occurring pollution events that are characterized by y(Hz) values that reach up to
=~1 ppm and low ¢D values. An isotopic source signature analysis yields an apparent source signature
below —400%, which is much more D-depleted than the fossil fuel combustion source signature
commonly used in H budget studies. Two diurnal cycles that were sampled at a suburban site near
London also show a more D-depleted source signature (= —340%o), though not as extremely depleted as
at Cabauw. The source signature of the Northwest European vehicle fleet may have shifted to somewhat
lower values due to changes in vehicle technology and driving conditions. Even so, the surprisingly
depleted apparent source signature at Cabauw requires additional explanation; microbial H, production
seems the most likely cause. The Cabauw tower site also allowed us to sample vertical profiles. We found
no decrease in x(H) at lower sampling levels (20 and 60 m) with respect to higher sampling levels (120

* Corresponding author. Particle Chemistry Department, Max Planck Institute for Chemistry/Johannes Gutenberg University of Mainz, Mainz, Germany.
E-mail address: annekebatenburg@gmail.com (A.M. Batenburg).

1 Now at: Particle Chemistry Department, Max Planck Institute for Chemistry/Johannes Gutenberg University of Mainz, Mainz, Germany.

2 Now at: Integrated Carbon Observation System European Research Infrastructure Consortium (ICOS ERIC), Carbon Portal, Lund, Sweden.

http://dx.doi.org/10.1016/j.atmosenv.2016.09.058

1352-2310/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


mailto:annekebatenburg@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.atmosenv.2016.09.058&domain=pdf
www.sciencedirect.com/science/journal/13522310
http://www.elsevier.com/locate/atmosenv
http://dx.doi.org/10.1016/j.atmosenv.2016.09.058
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.atmosenv.2016.09.058
http://dx.doi.org/10.1016/j.atmosenv.2016.09.058

A.M. Batenburg et al. / Atmospheric Environment 147 (2016) 98—108 99

and 200 m). There was a significant shift to lower median 6D values at the lower levels. This confirms the
limited role of soil uptake around Cabauw, and again points to microbial H, production during an
extended growing season, as well as to possible differences in average fossil fuel combustion source
signature between the different footprint areas of the sampling levels. So, although knowledge of the
background cycle of H, has improved over the last decade, surprising features come to light when a non-
background location is studied, revealing remaining gaps in our understanding.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

With typical background mixing ratios above 500 ppb (nmole/
mole), atmospheric molecular hydrogen (H;) is the second most
abundant reduced trace gas in the atmosphere after methane (CHy).
It is formed by the oxidation of hydrocarbons, by combustion
processes and by a wide range of microbial processes in soils and in
the ocean, including fermentation and nitrogen fixation. Globally,
uptake by soils removes roughly three quarters of this H», leaving a
quarter to be oxidized by hydroxyl radicals (OH). Despite increasing
methane levels and increased combustion of fossil fuels, there is no
evidence for a long-term trend in Hy mixing ratios (x(H)) (Ehhalt
and Rohrer, 2009; Grant et al., 2010b). This may change when Hp
comes into wider use as an energy carrier and leaks into the at-
mosphere at an increased rate during transport and storage (Bond
et al,, 2011). The resulting rise in H; levels may have consequences
for stratospheric ozone chemistry and an indirect climate effect
through a decrease in the oxidative capacity of the atmosphere
(Schultz et al., 2003; Warwick et al., 2004; Tromp et al., 2003; Feck
et al., 2008). Because of this impending disturbance of the Hy cycle,
the global H, budget has received growing attention in recent
years, with several new budget estimates and simulations of future
scenarios published recently by Bousquet et al. (2011); Yashiro et al.
(2011); Yver et al. (2011a); Pieterse et al. (2011, 2013); Wang et al.
(2013) and Popa et al. (2015), but considerable uncertainties
remain.

Investigation of the stable isotopic composition of H, can pro-
vide additional information about the sources and sinks of Hj
(Gerst and Quay, 2001; Rahn et al., 2002b) and put extra constraints
on models that describe the H; cycle (Price et al., 2007; Pieterse
et al,, 2009, 2011, 2013). The stable isotopic composition of Hj is
generally expressed in isotopic “¢” notation:

R
4D = D(Hy) = (ﬂ -

1) -1000%o (M
Rysmow

where Rsample is the atomic ratio of deuterium (D) to “light”
hydrogen atoms (H) in the H; of the sample, and Rysmow is the
atomic ratio in the international VSMOW (Vienna Standard Mean
Ocean Water) standard.

The different production and destruction processes of H, have
very different effects on the 6D value of the Hy reservoir. Photo-
chemical oxidation of methane and other hydrocarbons yields H;
that has a positive ¢D value, i.e., is enriched in D with respect to
VSMOW (Gerst and Quay, 2001; Rahn et al.,, 2003; Rhee et al.,
20064, 2008; Feilberg et al., 2007; Rockmann et al., 2003, 2010b;
Pieterse et al., 2009). This 6D value, with estimates ranging
from +116%o (Pieterse et al., 2011) to +190 + 50%o (CH4 only (Rhee
et al., 2006a)), is relatively similar to the 6D value of the ambient H;
reservoir, with average oD values of +117 to +150%o, depending on
latitude (Batenburg et al., 2011). For this reason, photochemical H;
production has generally little influence on ambient ¢D variability,
despite being the largest global source of H, (Pieterse et al., 2011).

H, produced in combustion processes has a negative 6D value,

i.e, it's depleted in D with respect to VSMOW. Estimates of the
source signature (6D) of biomass burning range between —290%o
(Gerst and Quay, 2001) and —90%o (Rhee et al., 2006b); more recent
studies indicate that the more negative of these estimates is more
likely realistic (Rockmann et al., 2010a; Haumann et al., 2013).
Emissions from vehicles constitute =60% of the total fossil fuel
source, which in turn is =14% of the sum of all Hy sources (Ehhalt
and Rohrer, 2009). Gerst and Quay (2001) reported a source
signature of —196%ofor fossil fuel combustion based on samples
collected in environments with different degrees of pollution, the
most polluted being a parking garage. Rahn et al. (2002b) reported
a source signature of —270%o based on samples from different lo-
cations within the Los Angeles Basin and found good agreement
with direct samples of car exhaust. More recent test bench work by
Vollmer et al. (2010) shows that the 6D in engine exhaust depends
on engine operating conditions and decreases for engines equipped
with modern catalytic converters, with a lowest found 6D
of —370%o. Preliminary results from a highway tunnel campaign in
Switzerland, where the traffic was mostly fluent, seem to indicate a
source signature close to the one found by Rahn et al. (2002b) (M. E.
Popa, personal communication).

The contribution of microbial production to the global H, pro-
duction is small (Conrad and Seiler, 1980), but it may have a strong
isotopic effect on local scales due to its extremely depleted source
signature. Walter et al. (2012) found a source signature of
(=741 + 20)%o for H, produced by different fermentation processes,
which seems in agreement with earlier fermentation results by
Rahn et al. (2002b). However, a first field study of H, emitted from
soils, conducted at the same site as discussed here (Cabauw),
yielded a less depleted estimate of (—530 + 40)%o (Chen et al.,
2015). A possible cause for this difference might be that the Hj
produced in the clover-rich grassland around Cabauw is a by-
product of Nj fixation rather than fermentation.

Both destruction processes of Hj, uptake by soil and photo-
chemical oxidation by the hydroxyl (OH) radical, are associated
with isotopic fractionation, as the “light” form of H, (HH) is
destroyed faster than the deuterated form (HD). The strength of the
fractionation is often expressed as fractionation factor «, which is
the ratio of the removal rate of HD to the removal rate of HH. The Hy
isotope fractionation is much stronger for the photochemical
removal (« = 0.57 at 298.15 K (Talukdar et al., 1996)) than for the
uptake by soils (¢« = 0.943 (Gerst and Quay, 2001; Rahn et al,
2002a; Rice et al., 2011; Chen et al., 2015)).

The first environmental observations of ¢D in the troposphere
were already made in the 1950s (see (Kaye, 1987) for an overview),
but difficult and time-consuming measurements limited the
application until new techniques became available at the start of
this century (Rahn et al., 2002b; Rhee et al., 2004). Especially in the
last decade, many more tropospheric observations were published
(Rhee et al., 2006b; Rice et al., 2011; Batenburg et al., 2011, 2012;
Walter et al., 2013, 2016). These recent observations were mostly
done at “background” locations, either from ships, from aircraft in
the upper troposphere or at predominantly remote surface stations.
This paper presents 6D results from the Cabauw tall tower station in
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the Netherlands. This tower is located in an agricultural area in the
centre of the Netherlands, but within 20—50 km from the four
largest Dutch cities. One of the reasons to do these measurements
was to complement the existing dataset of mostly background
observations with data from a more anthropogenically polluted
site. To assess the representativeness of our results, we also
measured two diurnal cycles (or “diets”) of 6D and x(H) that were
sampled at a suburban site near London (Royal Holloway).

Very few 6D data from polluted regions exist, but an increasing
number of observations of x(H;) were made at such places in recent
years. Semicontinuous measurements were performed at suburban
sites near Ziirich (Diibendorf: Steinbacher et al., 2007), Paris (Gif-
sur-Yvette: Yver et al., 2009), Heidelberg (Hammer et al., 2009), and
London (Royal Holloway: Fowler et al., 2011), as well as at an urban
site in Bristol (Grant et al., 2010a), and also at the Cabauw tall tower
(Popa et al,, 2011). A common feature in the published time series
from these stations is that y(Hy) is very variable and shows large
excursions to high values superposed on a seasonally changing
baseline. During these H; peaks, x(H;) can increase to two or, in the
case of Diibendorf and Bristol, even three times its background
value.

An additional advantage of sampling from the Cabauw tower is
that air can be sampled from different sampling heights. Mea-
surements of x(H,) have been performed at different heights at the
Cabauw tower (Popa et al.,, 2011) and at the Trainou television
tower near Orléans (Yver et al., 2011b). The measurement of vertical
gradients is useful in the study of H, uptake by soil. Also, by
measuring at different heights, it is possible to probe different
“footprint” areas, i.e. differently weighted combinations of local
and more remote sources and sinks (Vermeulen et al., 2011). To our
knowledge, this paper presents the first vertical profiles of 6D(H;)
in the boundary layer.

2. Methods
2.1. Tower location and continuous on-site measurements

The Cabauw tall tower is a 213 m steel construction dedicated to
atmospheric research (Popa et al., 2011; Vermeulen et al., 2011). It is
located at the CESAR site (51° 58'N, 4° 55’E, 2 m a.s.l., GAW ID: CES,
also often referred to as CBW), which is in the so-called “Green
Heart” of the Netherlands, a relatively rural region surrounded by
the “Randstad” conurbation. The area directly surrounding the
tower is relatively sparsely populated and mainly used for agri-
culture (mostly grassland), but population and road density in-
crease steeply further away from the tower. The distance from the
tower to the city of Utrecht is =20 km, to Rotterdam =30 km, to
the Hague =40 km and to Amsterdam =45 km; an estimated
seven million people inhabit the Randstad conurbation that con-
sists of these four big cities and their many neighbouring
settlements.

The “footprint” or “influence region” of a measurement site can
be described as the area from which the trace gas fluxes have a
detectable influence on the measured concentrations. For Cabauw,
this has previously been evaluated for CO, by calculating backward
trajectories with the COMET transport model while assuming a
constant CO, emission per unit area. A footprint area of roughly
500 x 700 km was then found to cause about 50% of the concen-
tration signal at the top of the Cabauw tower. This footprint is quite
large compared to other sites, due to the often high wind speeds in
the region and the large variability in wind direction. The footprint
of the lower sampling levels is much smaller (Henne et al., 2010;
Vermeulen et al., 2011).

The soil in the surrounding area is a combination of peat and

clay layers with a high water table. These soil characteristics may be
one of the reasons that Popa et al. (2011) found low H, deposition
velocities at this location.

The tower is equipped with a tubing system to sample air at 20,
60, 120, and 200 m for greenhouse gas analysis (Vermeulen et al.,
2011). During the time that the samples described here were
collected, air was continuously drawn from the different heights
and lead through Decabon® tubing to the laboratory in the base of
the tower. There, 400 ml min~! air streams were separated from
the bulk air flow (which was flushed outside), dried in cryogenic
water traps to a dew point of =-50 °C, divided and analyzed on
either a CO; analyser (=150 ml min~!) or on a GC system for other
GHGs (=80 ml min~!). A reduction gas analyser (RGA-3) for the
measurement of Hy and CO mixing ratios was added in series after
the GC system and measured a vertical profile every half hour (Popa
etal,, 2011). The x(H2) measurements of the RGA-3 were calibrated
to the recently defined WMO scale (Jordan and Steinberg, 2011).
These continuous y(H,) measurements were used to assess the
quality of the flask sample data presented in this work until they
were stopped at the end of 2011.

2.2. Collection of Cabauw flask samples

We used Normag borosilicate 3.3 glass flasks with Kel-F (PCTFE)
O-ring sealed stopcocks for the sampling at Cabauw. Rothe et al.
(2004) found that this Normag flask type provides good stability
for a set of six trace gases, which included H,. Only a few outliers
occurred in their Hy tests [A. Jordan, personal communication]. Most
samples were collected in 1 L flasks; a minority was collected in 2 L
flasks of the same type. All flasks were covered with a black shrink
hose and stored in closed boxes to avoid photochemical alteration.
Flask samples were stored between 1 and 20 months before anal-
ysis because of delays in the automation of the isotope measure-
ment system.

The air for the flask samples was drawn in through the same
tubing system as was used for the greenhouse gas and semi-
continuous Hy and CO measurements described in Subsection 2.1.
Every half hour, the in-situ measurement equipment switches to
measuring the working or standard tank gases that are used to
calibrate and check the (semi-)continuous measurements as
described by Vermeulen et al. (2011) and Popa et al. (2011). During
this time, the air that is drawn through the sample lines is vented.
For the flask sampling, this venting flow was led through the
sampling flasks, and the filling of the flasks was always done during
the venting period. The flasks were filled up to = 1.5 bar of absolute
pressure.

During the sampling period, from July 2008 to July 2012, 119
individual samples were taken from the 200 m level around
midday, resulting in more than two samples per month that are
representative of the daytime conditions in Cabauw. In the same
period, 29 complete vertical profiles were sampled additionally, as
well as 8 incomplete profiles with at least two heights sampled. 99
individual 200 m samples, 16 complete and 16 incomplete profiles
remained after quality control of the data (see Section 2.6, several
complete profiles became incomplete as flasks were rejected by the
procedure). The vertical profiles were mostly sampled under (very)
stable atmospheric conditions, when the real-time raw data from
the RGA showed a positive or negative vertical gradient in x(Hpy).
The vertical profiles are therefore biased towards stable conditions,
and not fully representative of the H; climatology at Cabauw.

2.3. Collection of Royal Holloway flask samples

The Royal Holloway diurnal cycle samples were collected on the
Royal Holloway campus of the University of London in Egham,
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located =30 km WSW of central London (Lowry et al.,, 2001;
Hernandez-Paniagua et al., 2015). One set of eight samples was
collected in July 2008, another set of 12 was collected in January
2009. Both were collected under conditions where the Royal Hol-
loway site received urban air masses from the Greater London area
and an overnight y(Hy) variation of more than 100 ppb was
observed in the continuous measurements at the site.

The sample air was dried, collected in 3 L stainless steel tanks
and subsequently analyzed on a Peak Performer 1 (Peak Labora-
tories) for x(H2) and x(CO). The tanks were stored for 1-2 months
before isotopic analysis. Production of H, can occur in some steel
vessels (Gerst and Quay, 2000); therefore, we compared the GC-
IRMS x(H3) results to the continuous measurements and the re-
sults of the Peak Performer 1. We concluded that the isotopic
analysis of two of the 20 tanks yielded unreliable results. These
were left out of all further analysis.

24. x(H>) and 6D(H3) analysis of the flask samples

The analysis of the flasks was performed with an online Gas
Chromatography - Isotope Ratio Mass Spectrometry (GC-IRMS)
setup as developed by Rhee et al. (2004), with adaptations
described by Rockmann et al. (2010b). This setup isolates the Hy
from the air matrix and analyzes it for x(H) and D in four steps:

1 Cryogenic removal of the main components from an =0.5 L
aliquot of air by condensation onto a cold head kept at =40 K.
Only the most volatile components (H, He, Ne and traces of N3)
are retained in the gas phase.

2 Pre-concentration of the H; in a stainless steel trap filled with 5 A
molecular sieve cooled to =63 K (the triple point of N»).

3 Cryo-focussing of the Hy on a steel-jacketed 5 A molecular sieve
gas chromatography column submerged in liquid nitrogen, fol-
lowed by gas chromatographic purification on a 5 A molsieve gas
chromatography column kept at 323 K.

4 [njection of the purified H; into the IRMS (ThermoFinnigan Delta
plus XL) through an open split interface for analysis. During
acquisition of the final chromatogram, an “internal” IRMS Hj
working gas standard is injected four to seven times before the
injection of the sample Hy, and one or two times after.

2.5. Data processing, calibration and drift correction

At the start of this research project, the GC-IRMS system was
semi-automated to enable automated measurement of one aliquot
of air. In the summer of 2011, the system was automated further to
enable the fully automated measurement of up to 25 aliquots in one
measurement sequence. Part of the increased measurement ca-
pacity after the automation was used to improve data quality by
including more laboratory reference air measurements into the
daily measurement routine. Thus, the sample calibration proced-
ures differ somewhat for the two measurement periods.

Before the full automation, one blank measurement and two
measurements of air from laboratory reference air cylinders were
typically performed every measurement day. A cylinder containing
compressed whole air with x(Hy) = (545.0 + 0.5) ppb (measured by
MPI-BGC Jena) and 6D = (+73.0 + 1.8)%o was used until the spring
of 2010, at which time it was almost empty. It was replaced with
two cylinders made of pickled and passivated stainless steel (Gra-
even Metall-Technik GmbH). The two new cylinders contained
mixtures of pure H; with synthetic air, one with
x(Hz2) = (580.78 + 0.03) ppb and 6D = (+207.0 + 0.3), and one with
x(Hz2) = (244.3 + 0.8) ppb and 6D = (+198.2 + 0.5)%o (error bars

indicate standard errors, x(Hz) measured by MPI-BGC). We used 5-
day moving average values obtained from these laboratory refer-
ence cylinders to calculate the x(Hz) for each flask sample and to
correct the measured 6D values for instrument drift. We subtracted
a 9.5%o offset from the ¢D values for samples measured between
June 2010 and the full automation in the summer of 2011, to correct
for an empirically observed bias. This procedure is described in
more detail in (Batenburg et al., 2011, 2012).

After the full automation, two new laboratory reference air cyl-
inders were added to the set of reference cylinders and were
measured regularly. One cylinder was of the same type as the two
stainless steel cylinders already in use, and contained a similar
mixture of hydrogen and synthetic air with x(H2) (858.9 + 1.8) ppb
and 6D (—206.3 + 0.6)%o, as was determined by using the original
two reference air cylinders. The other cylinder was made of
aluminium, had a larger volume, and contained whole ambient air.
Because of its larger volume, it was measured more often during
the measurement days, with the goal of using these frequent
measurements for regular data evaluation. After measuring the
new cylinders for some time, it became apparent that the three
similar stainless steel cylinders with synthetic mixtures were stable
with respect to each other. However, the large aluminium cylinder
drifted with respect to the three stainless steel cylinders, at a rate of
about +4.8 ppb and —3.5%0 per month from the initial values of
=770 ppb and =-110%., which suggested significant H, produc-
tion in the cylinder.

In order to use this slowly drifting cylinder for sample correc-
tion, we had to allow for the assigned values for x(H,) and 6D in the
cylinder to vary in time. We used the measurements of the mix-
tures in the three stainless steel cylinders to calculate 5-day moving
average values of the three parameters that are needed to correct a
sample measurement for instrument drift and to calculate y(H,)>.
With these averaged parameters, we calculated an instrument-
drift-corrected y(H,) and 6D for each measurement of air from
the large, aluminium cylinder. Then, we used 29-day moving
average values of these as assigned y(H;) and 6D values to calculate
the y(Hz) and instrument-drift-correct the 6D of the flask samples
with the large cylinder values, following the standard procedure
with 5-day moving averages. Manual adjustments to the averaging
intervals were sometimes necessary where sudden visible shifts in
values occurred, e.g. due to changes in the mass spectrometer.
Finally, the previously mentioned empirical correction of —9.5%o
was also applied to these 6D results.

The estimated standard deviation for the 6D measurements was
4,5%0 (absolute) before the automation of the GC-IRMS, but it
increased to 6.9%o (absolute) after system automation, based on the
measurements of the additional stainless steel reference air cylin-
der. The estimated standard deviation in x(H;) did not change from
the value of 2.5% (relative) mentioned in (Batenburg et al., 2012).
Error bars displayed in this article are estimates of measurement
uncertainty alone.

2.6. Quality control of the Cabauw data by comparison to
continuous measurements

Where available, we used the continuous measurements of
x(Hz) at the Cabauw tower (Popa et al., 2011; and continued, un-
published measurements) for quality assessment of the flask
sample measurements, as follows. We calculated 6-h averages and
standard deviations of the continuous data around each flask

3 These are: average reference air dD, average deviation of the measured refer-
ence air dD from the assigned value, and a multiplication factor needed to calculate
% (Hz) from the blank-corrected peak area and sample amount of the sample.
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sampling time, both for the data collected at all heights and for the
data collected at the actual flask sampling height. If the x(H>)
measured by GC-IRMS in the flask was more than four standard
deviations different from both the all-height and the same-height
average, we labeled the flask measurement as “bad”. If it was more
than four standard deviations removed from only one of the av-
erages, we labeled it as “suspect”. We labeled flasks that could not
be assessed because of a lack of continuous data (less than 4
datapoints) as “no control available”, with the exception of one
sample collected on 11 May 2011 that had an extremely large x(H>)
and a large effect on the outcome of our fit routines; we labeled
this “suspect”. We labeled all others “good”. Of all 259 flask mea-
surements, we labeled 165 as “good” after comparison, 28 as
“suspect”, 20 as “bad”, and 46 as “no control available”. The
number of “no control available” flasks was unfortunately quite
large, as there were large gaps in the continuous data and no
quality controlled continuous data were available after 2011. The
“no control available” data are treated as “good” data in the rest of
this paper.

3. Results and discussion
3.1. Time series

Fig. 1 shows all the x(H3) (a) and 6D (b) flask data for the Cabauw
tower as a function of sampling time. Flask data that were collected
from the EUROHYDROS station Mace Head in a similar fashion are
shown for comparison, as well as an extrapolated harmonic func-
tion that was fit to the Mace Head data (Batenburg et al., 2011).
Mace Head is located on the west coast of Ireland (53° 20’N, 9°
54'W) and is considered a clean background station. Because of its
location and the dominant westerly winds in this latitude band, the
measurements performed there can be used as a background for
continental Europe (Grant et al., 2010b).

It can be seen in Fig. 1(a) that the Mace Head x(H») data form the
lower bound for the Cabauw x(H;) data. In Cabauw, very large
excursions occur above this baseline, especially during winter.
During these excursions, x(Hy) is often highest at the lower sam-
pling heights. It seems that due to these excursions, the seasonal

800
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Fig. 1. Time series of x(Hz) (a) and 6D (b) measured in samples from the Cabauw tower. Data from the background station Mace Head and a sine fit to the Mace Head data
(Batenburg et al., 2011) are plotted for comparison. Open symbols indicate Cabauw measurements that were deemed “bad” (grey edge) or “suspect” (edge in faded color) in the data
quality assessment. Some samples fall outside the scale limits of this plot. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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cycle at Cabauw is shifted with respect to Mace Head; whereas in
Mace Head the maximum in y(H;) is observed in April/May, in
Cabauw the 2009, 2010, and 2011 baseline maxima appear shifted
towards the earlier winter. For the 2012 maximum, this is not so
clear. The general behavior of the x(H;) time series is in good
agreement with the results of Popa et al. (2011) at Cabauw. They
found a pronounced y(Hj) variability, with particularly large peaks
in winter, and as a result, a seasonal cycle with a maximum in
winter, as for our data. This maximum was slightly earlier and
higher for the lower sampling heights. The occurrence of these
large winter excursions was attributed to the decrease in atmo-
spheric mixing in winter, which leads to large accumulations of
pollution in a more shallow and stable boundary layer. Similar
features were also seen in the results of Steinbacher et al. (2007)
from the Diibendorf site.

The oD time series (Fig. 1(b)) looks like a vertically flipped image
of the y(Hy) time series. Here, the Mace Head data form the higher
bound of the Cabauw data. It can be seen that the y(H») peaks are
accompanied by 6D dips, and that during these dips, the lower
sampling heights often have lower 6D values than the higher
sampling heights. The 6D cycle also seems shifted with respect to
Mace Head; the April/May Mace Head minimum is shifted to the
earlier winter in 2009, 2010, and 2011 at Cabauw. From the

"Keeling" plot

opposite behavior of the Cabauw x(H3) and 6D time series and from
the D-depletion in Cabauw with respect to Mace Head, it can
already be concluded that the H, that makes up the large, mostly
wintertime, peaks originates from sources with a D-depleted
source signature. Because of the location and frequent pollution
events observed at the Cabauw site, H, from fossil fuel combustion
is a very likely explanation for these excursions. In the warmer
seasons, microbial Hy production can also contribute. In the next
section, the isotopic composition of the source mix that affects
Cabauw is investigated in detail.

3.2. Source signature studies

¢ values are linear with regard to mixing of different reservoirs,
and therefore the effect of mixing a background reservoir of a gas
with mixing ratio ypg and isotopic composition dpg with a “polluted”
airmass with mixing ratio ys and ds is described by a simple mass
balance equation:
OobsXobs = 6ngbg + 0sXs (2)

where the “obs” superscript indicates observed values. This can be
rewritten to
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“Keeling” plot (6D plotted against 1/x(H>)) of all Cabauw samples. The y-intercept of the linear fit indicates the isotopic source signature. (b): Histogram of the resulting
intercepts after applying the Keeling fits to 10.000 random samples of the “good” data in a bootstrap routine. (c): “Miller-Tans” plot, i.e. 6Dy, X(Hz)ops — 0Dy, X(
of the Cabauw (obs=CBW) observations, in which the isotopic signature is obtained from the slope of the fit. Background values are ﬁased on previous mea-
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surements at Mace Head (bg=MHD). (d): Histogram of the resulting slopes after applying the same bootstrap routine as before, but with the Miller-Tans fits. Samples labeled “bad”
or “suspect” are indicated with open symbols and are only taken into account in the fits plotted with a dotted line. The stated errors are one standard error (1 SEM). The error
estimates for individual datapoints were calculated by error propagation. 0.09% of the Miller-Tans fit slopes fell outside of the histogram range shown here.
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_ Xbg (5 _
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This relation is the basis of the use of the traditional “Keeling”
plot, where observed ¢ values are plotted against the inverse
observed mixing ratios and the y-axis intercept returns the isotopic
signature of the source(s) d;. Fig. 2(a) shows a Keeling plot of all
Cabauw H; data. The linear fits to this Keeling plot were made with
the bivariate, error-weighted Williamson-York fit algorithm
described by Cantrell (2008). The fit to all the data that were labeled
“good” in the data quality assessment, indicated with a solid line,
yielded a source signature estimate of (=515 + 26)%o (error in-
dicates one standard error, 1 SEM). Another fit, indicated by a
dotted line, was made to all the data, including the “suspect” and
“bad” ones. This fit yielded a source signature that was much less
depleted, namely (—323 + 12). Clearly, we affected the outcome of
this fit considerably by selecting and removing suspicious data
from our dataset.

An implicit assumption of this Keeling plot method is that the
background mixing ratio and ¢ value are constant. Fig. 1 shows that
this is not the case for Hy at Cabauw. For such cases, Miller and Tans
(2003) proposed an alternative approach of evaluating the mass
balance equation. The mass balance can be written as:

Oobs Xobs — 6ngbg = 0s (Xobs - ng) (4)

This equation shows that the slope of a plot of dopsXops — OpgXig
against xops — Xpg Can also be interpreted as the source signature.
Unlike the Keeling plot method, this method requires that mixing
ratio and isotopic composition of the background reservoir are
known. A plot following the Miller-Tans method for Cabauw is shown
in Fig. 2(c). The harmonic functions that were fit to the seasonal cy-
cles of x(Hy) and 6D at Mace Head (MHD) by Batenburg et al. (2011)
were used to calculate background values. Only Cabauw samples
with a x(Hy) above the calculated Mace Head value were included. A
linear Williamson-York fit to all “good” data (solid line) yields an
isotopic source signature estimate of (—625 + 38)%o. Again, a fit that
includes the data that did not pass the quality control procedure
yields a much less depleted source signature (dotted line).

In our data quality assessment, we chose a time interval length
for the averaging and a number of standard deviations as cutoff.
These choices are, to some degree, arbitrary. Assessing the effect of
our data selection was the motivation to make the fits to the
complete dataset, including the “suspect” and “bad” data, that are
shown as dotted lines in Fig. 2. The difference with the fit to the
“good” data is large, which indicates that the “strictness” of our
data selection algorithm may have an effect on the fit outcomes. To
estimate the uncertainty as a result of this, we applied a boot-
strapping routine where the fits were applied to 10.000 random
samples of the “good” data. The distribution of the resulting Keeling
intercepts are shown in Fig. 2(b), and the distribution of the
resulting Miller-Tans slopes is shown in Fig. 2(d). The Keeling fit
intercepts are distributed around a mean of —522%o with a standard
deviation of 50%o, and the Miller-Tans fit slopes are distributed
around a mean of —629%o with a standard deviation of 63%o. The
large standard deviations suggest that the selection of samples
introduces a larger uncertainty into the source signature estimate
than the uncertainty estimates in Fig. 2(a) and (c). It seems that in
this case, the error estimate obtained from our bivariate fit routine
is unrealistically small. Miller and Tans (2003) also noted a ten-
dency to underestimate the error of fit parameters in situations
where only measurement uncertainty is considered as a source of
scatter while clearly natural variability also contributes. We applied
the same bootstrapping procedure to the whole dataset, including

the “suspect” and “bad” data (not shown) and obtained a distri-
bution with multiple peaks, which indicates that at least some of
the “suspect” and “bad” datapoints are justly rejected by our data
quality assessment.

Both the Keeling and the Miller-Tans method yield very D-
depleted values (< —400) for the source signature estimate. They
are certainly more depleted than previous estimates of the total
isotopic source signature of fossil fuel combustion of (—196 + 10)%o
by Gerst and Quay (2001) and — 270%o by Rahn et al. (2002b).
Vollmer et al. (2010) found 6D values between —270%o and —370%o
for H, in the exhaust of a modern engine setup with a three-way
catalytic converter (TWC). The TWC and fuel-rich driving condi-
tions (with a low air-to-fuel ratio in the engine) were observed to
lower the 6D values. The Northwest European car fleet consists for a
large part of modern vehicles with catalytic converters (UNECE,
2012), and traffic conditions in the Netherlands are often con-
gested, leading to fuel-rich driving conditions. For these reasons,
the isotopic signatures of Northwest European traffic emissions
may well be more depleted than previously reported signatures.
However, that they would be below —400%o seems unlikely, so this
does not provide a full explanation for our extremely depleted
source signature estimates.

H, emitted by N»-fixing microbes in soil (in the root nodules of
legumes) likely contributes to the low apparent total source
signature. The isotopic signature of microbially produced Hy can be
depleted down to as much as (—741 + 20)%o (Walter et al., 2012), so
only a small quantity from this source can affect the local isotope
budget considerably and make the apparent isotopic signature of
the source mix more depleted. Some types of legumes, especially
types of clover, are common around the Cabauw tower and some
microbial production of Hy occurs there (Chen et al., 2015). This
production was, however, until recently expected to be limited to
the growing season. Conrad and Seiler (1980) reported that the
production peaked from April to June, and that very little produc-
tion occurred in the rest of the year. Flasks sampled in April, May or
June constitute less than a quarter of the data in Fig. 2. Omitting
these data from the set of “good” data and applying the boot-
strapping routine leads to source signature estimates that are only
slightly less D-depleted (more D-enriched) than for the whole
“good” dataset (Fig. S1 in Supplement). Omitting the data from an
even larger growing period (March—October) leads to multiple
peaks in the distributions of the bootstrapping results (not shown),
making it hard to draw conclusions from them. Based on these
results, it seems that either microbial H, production is not the main
cause of the low apparent source signatures in our Cabauw obser-
vations or microbial production of H; around Cabauw takes place
during a much longer part of the year than previously thought.
Chen et al. (2015) found production of Hy in July and August, which
supports the latter explanation.

It is interesting to note that when the Keeling and Miller-Tans
fits are applied separately to the samples taken in different sea-
sons, much more depleted apparent source signatures are found in
March—August than in September—February (see Fig. S2 in Sup-
plement). This would support the suspicion that microbial Hj
production takes place during a large part of the year, causing a very
low source signature. Only in autumn and winter, when microbial
production decreases and Hy from fossil fuels can accumulate in
inversion situations, less depleted source signatures occur. The less
depleted source signature that is found in these seasons, however,
hinges on only a few quite polluted samples that have high
“leverage” in the linear fits. Also, the error estimates of the fit pa-
rameters may be too low, as the results of the bootstrap algorithm
discussed above suggest. More sophisticated methods will be
needed to disentange the role of different sources in the complex
situation around the Cabauw tower.
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3.3. Diurnal cycles at the Royal Holloway site

For comparison to the Cabauw data, two diurnal series of ob-
servations at Royal Holloway are shown in Fig. 3(a) and (b). The
figure shows an anticorrelation between x(H,) and ¢D. The after-
noon rush hour peak, with elevated y(H,) values and a simulta-
neous decrease in 6D values, can be distinguished clearly around 7
p.m.

A Keeling plot of these data is shown in Fig. 3(c). Linear
Williamson-York fits were made to the separate diurnals and to the
combined set of data. All three fits indicate a source signature lower
than —260. This is on the lower side of, or lower than, what is
generally assumed for the fossil fuel combustion source of Hy, and
this may indicate that these generally assumed values are too high
for modern vehicle fleets. However, it is not quite as extremely D-
depleted as the Cabauw signature. A difference in fossil fuel com-
bustion source signature between the countries may exist, but it's
also very likely that microbial H, production in leguminous plants
plays a larger role in Cabauw. The Cabauw site is immediately
surrounded by clover-rich fields, whereas the Royal Holloway site is
not.

3.4. Height profiles

In Fig. 1, inspection by eye suggests that pollution signals are
often stronger at lower sampling heights than at the 200 m level.
This is, for example, the case for the profiles sampled on 8 January
2009, 5 March 2009, 20 November 2010 and 29 December 2010. To
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Fig. 3. (a)—(b): Diurnal cycles of x(H;) and 6D sampled at Royal Holloway. (c): Keeling
plot of these data, with Williamson-York fits to the separate diurnal cycles and to the
whole dataset.

investigate such differences between the sampling heights, the
data are plotted as a boxplot that indicates the median, quartile and
95th percentile values per height (Fig. 4). From this plot, it seems
that the median x(Hzy) value is slightly higher and the median 6D
value somewhat lower at the lower sampling heights than at the
higher sampling heights. As noted, the sampling of the vertical
profiles is biased towards (very) stable, and therefore polluted
conditions. Hence, it is not representative for the full year-round
variability in x(Hy) and ¢éD. However, one conclusion about the
role of soil uptake around Cabauw can already be drawn. At loca-
tions where uptake by soils dominates the H; cycle, the expected
vertical profile has lower y(Hz) values and higher 6D values at the
bottom than at the top, since the uptake of Hy by soils has a D-
enriching effect on the remaining Hy reservoir (Gerst and Quay,
2001; Rahn et al., 2002a; Rice et al., 2011). This is clearly not the
case for Cabauw; there is no x(H;) depletion observed at the bot-
tom, and 4D is lower there, not higher. This indicates that the soil
uptake does not play a large role in driving the Hy variability at
Cabauw. This is in agreement with the low uptake speeds found by
Popa et al. (2011).

To determine if the differences between sampling levels are
significant, pairwise Kruskal-Wallis H-tests were performed on the
data from the different heights. The resulting p-values are listed in
Table 1. A p-value below 0.05 indicates that the medians of the two
datasets are different with more than 95% confidence. For x(H>), a
significant difference was found only between the 20 m and 200 m
level. For 6D, significant differences were found for three of the
pairs, each combining one of the lower sampling altitudes (20 or
60 m) with one of the higher sampling levels (120 or 200 m). So we
can conclude that there is a shift in 6D between the 60 m and 120 m
level, with lower 6D values below, and higher ¢D values above.

Vermeulen et al. (2011) reported that the footprint area for the
200 m sampling level (covering the Benelux, the north of France,
the north and middle of Germany and the southeast of England) is
considerably larger than that of the 20 m level (covering the Ben-
elux and bits of northern France and western Germany). In addi-
tion, our height profiles were sampled under very stable conditions,
where the lower air masses can become completely decoupled
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Fig. 4. Box plots of x(Hy) (a) and 6D (b) values at the different sampling heights. All
profiles with “good” data from at least two heights are included in this figure. This
amounts to 16 complete and 16 incomplete profiles. In the boxes, the red lines indicate
medians, the box edges indicate lower and upper quartiles and the whiskers indicate
lower and upper 95th percentiles. Blue crosses indicate the datapoints that fall outside
the whisker range. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Table 1

Resulting p-values from pairwise comparisons of the datasets from different sam-
pling heights with the Kruskal-Wallis H-test, which tests the null hypothesis that the
medians of the datasets are equal. It is assumed that the datasets are independent,
and that the Kruskal-Wallis H-statistic has a x? distribution. A p value below 0.05
(bold font) indicates that the medians are different with 95% confidence. The used
data are the same as shown in Fig. 4, i.e. all data from profiles with “good” data from
at least two sampling heights. The numbers in brackets are the medians.

20 m 60 m 120 m 200 m
p values for pairwise Kruskal-Wallis tests of x(H,) data
20 m (580.5 ppb) - 0.9462 0.2783 0.0446
60 m (576.4 ppb) 0.9462 - 0.3861 0.0696
120 m (557.4 ppb) 0.2783 0.3861 - 0.4922
200 m (548.5 ppb) 0.0446 0.0696 0.4922 -
p values for pairwise Kruskal-Wallis tests of ¢D data
20 m (33.8%o) — 0.6734 0.0179 0.0003
60 m (34.4%o) 0.6734 - 0.0621 0.0047
120 m (76.9%0) 0.0179 0.0621 - 0.6938
200 m (85.2%0) 0.0003 0.0047 0.6938 -

from the higher ones. The temporary footprint of the lower levels
can then be as low as 50—100 km, while the higher levels receive
signals from hundreds of km away. Apparently, these non-
overlapping footprint areas cause the 20 and 60 m sampling
levels to experience a more D-depleted Hy source mix than the 120
and 200 m levels. There is a number of possible explanations for
why the airmasses that reach the lower sampling levels have, on
average, lower 6D values than the airmasses that reach the higher
levels under these conditions.

The first is that pollution from further away has travelled longer
before reaching the tower. In an aging polluted airmass, oxidation
processes can take place that both produce H; (from hydrocarbons)
and remove it. Both the production of H, from the oxidation of
hydrocarbons and the removal of H, by reaction with OH radicals
have a D-enriching effect on the Hy reservoir. Therefore, it is
possible that these processes cause 6D in polluted airmasses to
increase with average age, which then causes the higher median 6D
values at the 120 and 200 m sampling levels. But considering that
these processes are relatively slow compared to the transport
times, it does not seem likely that this is the main contributing
process to the 6D difference between the heights. Hy, for example,
has a lifetime of =8 years with respect to oxidation by OH. Only a
few VOC species undergo oxidation reactions on shorter timescales.
The Supplement contains a rough calculation to assess the potential
size of the effect, which shows that it is probably negligible.

Another explanation is the local production of extremely D-
depleted H; by N,-fixing microbes. As noted before, some microbial
Hy-production occurs in the vicinity of the tower (Chen et al., 2015),
and it is possible that the clover-rich grasslands of the Green Heart
are more prone to produce microbial Hy than farther-away areas.
Because of the different footprints, the 20 and 60 m levels are more
sensitive to local processes than the higher levels, explaining their
lower median 6D values. This effect should be strongest in the
April-June growing season, but only 6 of the 32 profiles were
sampled in this period. In these profiles, the 6D difference between
the sampling levels is less significant than during the rest of the
year (although that may be partly due to the smaller sample size).
Thus, microbial production does not seem a satisfactory explana-
tion to account for the overall difference between the median 6D
values for the different sampling levels, unless this production takes
place during a larger part of the year. The results of (Chen et al,,
2015) and the source signature fits for the different seasons
(Fig. S2 in Supplement) indicate that microbial production likely
does take place outside the April—June time interval.

A third and also likely explanation is that there is a difference in
the fossil fuel combustion source of H, between the different

footprint areas. While we expect the whole Northwest European
vehicle fleet to be very modern, subtle differences may exist be-
tween the fleets of the Netherlands, Belgium, France, Germany and
the United Kingdom. For example, the market share of diesel cars
differs per country and in time (UNECE, 2012). The driving condi-
tions may differ as well, as the Dutch road system is notorious for its
many congestions. The road networks of the Netherlands and the
UK have the largest percentage of main network links that exhibit
daily congestions in Northwestern Europe (Bovy and Salomon,
1999). These congestions might lead to more fuel-rich driving
conditions in the Netherlands than in most surrounding countries,
and according to the results of Vollmer et al. (2010), this may lead to
lower 6D values. Under the stable sampling conditions, the lower
sampling levels are mostly sensitive to emissions from the Rand-
stad, while the higher sampling levels may receive pollution from
over the country's borders. Thus, a relatively low source signature
of Dutch vehicles may affect the lower levels more than the higher
levels.

4. Conclusions and outlook

The set of x(Hz) and ¢D data presented here shows that the H;
cycle at Cabauw is under heavy anthropogenic influence. The time
series show that the excursions to high x(H;) values already
observed by Popa et al. (2011) are accompanied by low 6D values,
implying a large role for depleted H, sources such as fossil fuel
combustion. Further analysis shows that the apparent 6D source
signature is much lower than the signature generally assumed for
fossil fuel combustion. We attribute this to production of extremely
depleted H; by microbial sources in the soil during a large part of
the year. The modernization of the Northwest European vehicle
fleet and the often congested driving conditions in the Netherlands
might also contribute to the low apparent source signature. The
results of the Royal Holloway observations so far indicate that the
isotopic signature of the source mix there may be lower than the
previously assumed signature for fossil fuel combustion too, but not
as very low as in Cabauw, possibly because microbial H, production
does not occur in the immediate vicinity of the Royal Holloway
sampling site. More observations would be needed to obtain a year-
round picture in Royal Holloway.

In the vertical profiles measured at Cabauw under stable con-
ditions, there was a significant shift to lower median 6D values at
the lower sampling levels (20 and 60 m) with respect to the higher
levels (120 and 200 m). We hypothesize that the difference be-
tween the sometimes completely decoupled airmasses received at
the lower and higher levels is caused by local or regional microbial
H, production during an extended growing season that lasts until
August at least, possibly combined with differences in car fleets and
in driving conditions between the varying footprint areas of the
different sampling heights. Differences in the average age of the
pollution that reaches the different levels of the tower is not ex-
pected to contribute much to the effect.

These results show that the magnitude of the microbial H;
production term and the regional and seasonal variations therein
need further study. Conrad and Seiler (1980) estimated the global
magnitude of the microbial H, production term from a set of ob-
servations in Germany, but since then very little work has been
done to study possible regional differences and refine the estimate.
Microbial production may only constitute a small part of the global
Hy budget, but due to its extreme D-depletion (Rahn et al., 2002b;
Walter et al., 2012; Chen et al., 2015) its effect on the isotope budget
may be considerable, particularly on local scales. Also, the
assumption in global models of a uniform 6D source signature for
H, emissions from vehicles might be an oversimplification. It may
be more appropriate to allow for differences between regional
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vehicle fleets, with more D-depleted source signatures for the more
modern fleets that experience more congested situations.

Our observations presented here complement previous obser-
vations made at background locations or in the free troposphere,
and show that understanding the H; cycle at this site is consider-
ably more complex than in those relatively undisturbed places.
Ultimately, more information on the H; cycle in densely populated
areas such as the Netherlands can help in assessing the climate and
air quality impacts of future H, emissions in such regions with
regional models. Measurements at different sampling heights can
provide additional help in distinguishing local from long-range
influences.
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