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Abstract—The growth of demand response programs and renew-
able generation is changing the economics of transmission. Plan-
ners and regulators require tools to address the implications of
possible technology, policy, and economic developments for the op-
timal configuration of transmission grids. We propose a model for
economic evaluation and optimization of inter-regional transmis-
sion expansion, as well as the optimal response of generators' in-
vestments to locational incentives, that accounts for Kirchhoff’s
laws and three important nonlinearities. The first is consumer re-
sponse to energy prices, modeled using elastic demand functions.
The second is resistance losses. The third is the product of line sus-
ceptance and flows in the linearized DC load flow model. We de-
velop a practical method combining Successive Linear Program-
ming with Gauss-Seidel iteration to co-optimize AC and DC trans-
mission and generation capacities in a linearized DC network while
considering hundreds of hourly realizations of renewable supply
and load. We test our approach for a European electricity market
model including 33 countries. The examples indicate that demand
response can be a valuable resource that can significantly affect the
economics, location, and amounts of transmission and generation
investments. Further, representing losses and Kirchhoff’s laws is
also important in transmission policy analyses.

Index Terms—Demand response, nonlinear optimization, suc-
cessive linear programming, transmission planning.

NOMENCLATURE
Sets and Indices:
H Set of hours, indexed h, each represents a different
combination of load and renewable output.
I Set of buses, indexed ¢, j.
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N Set of generation firms, indexed 7.

K Set of generation technologies, indexed &.

L Set of AC corridors, indexed .

U Set of DC corridors, indexed u.
Parameters:

Ain, Bin, Inverse demand function parameters
(Aih > 0,B;n < 0).

CX; Annualized capital cost of AC link [€/year].

CYix Annualized capital cost of generator [C/MW/year].

cz, Annualized capital cost of HVDC link [€/year].

Dy, Fixed demand under no demand response [MW].

jai Initial capacity of AC line [MW].

M5, Marginal cost of generator [€/MWh].

NH, Number of hours per year.

P,,R; Percentage of active power losses of DC line u and
AC line ! loaded at maximum capacity.

Si Susceptance of AC line [p.u.].

T, Initial capacity of DC line [MW].

Wikn Maximum capacity factor of generator.

Yo, Initial installed generation of firm n [MW].

d, Node-line incidence matrix of AC lines.

Ziu Node-line incidence matrix of DC lines.

Variables:

QAin Net injection [MW].

din Forecast demand [MW].

Fins Lh Power flows on AC line [MW].

Gnikh Generation dispatch level [MW].

D, Locational marginal price [€/MWh].

tuh,t,, Power flowson DC line [MW].

x; Expansion, as percent of increase, on AC corridor.

Ynik Generation capacity addition [MW].

Zy Expansion, normalized such that 1 is the existing
capacity, on HVDC corridor.

b:n Phase angle.

Dih Curtailed demand [MW].

0885-8950 © 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



OZDEMIR et al.: ECONOMIC ANALYSIS OF TRANSMISSION EXPANSION PLANNING

I. INTRODUCTION

HIS paper addresses the inclusion of demand response

(via real-time prices and demand functions), quadratic
transmission losses, and Kirchhoff's laws into a long-run policy
model of transmission and generation expansion, and a prac-
tical method for solving that model using successive linear
programming. These features have not been previously brought
together in policy models.

The first feature we include, which is demand response that
reacts to real-time or spot prices of electricity, was first pro-
posed in the 1970s by Schweppe [1]. His spot pricing proposal
was originally foreseen as a mechanism to balance supply and
demand in an energy marketplace. Since then, most electricity
markets around the world have implemented some form of spot
pricing. However, many of those markets (especially in Eu-
rope) have not implemented a nodal version of Schweppe's spot
pricing, preferring zonal or even copper plate constructs. Fur-
ther, all these markets are largely or entirely one-sided, empha-
sizing generation scheduling and prices that reflect the marginal
costs of generating power, with relatively little participation by
the demand-side. Contrary to Schweppe's vision of supply and
demand being equal partners, consumers tend to be treated as
fixed loads, rather than equal parties who can modify their loads
and who can submit bids that can affect prices and reflect the
value of consumption. This reflects the reality that short-term
demand remains price-insensitive because of retail rate regula-
tion or absence of smart meters [2].

Even though Schweppe's original idea remains only par-
tially implemented in current market designs, there has been a
growing interest in increasing the flexibility of demand. Some
benefits of demand response are load shifting from peak to
off-peak hours, reducing the need for peaking generation ca-
pacity [3]; improved system reliability due to higher flexibility;
and market power mitigation due to increased demand elasticity
[4]. Furthermore, demand response can help operators cope
with the variability of large amounts of variable renewable
resources [5], [6]. Thus, power system planning and policy
analysis need to account for how demand response and other
smart grid technologies can help reduce the need for costly
infrastructure investments [7].

However, transmission planning approaches used today
usually take into consideration only two types of demand
resources: narrowly focussed interruptible loads and energy
efficiency measures [8], rather than loads that can respond to
spot prices at any time. We attempt to correct this deficiency
by introducing one type of demand response program into a
transmission planning model, namely elastic demand functions.

Another way in which present transmission planning
approaches are simplified is that they usually assume an ex-
ogenous pattern of generation capacity that is not affected by
the costs or location of transmission. That is, a scenario of the
locations, fuel-types, and amounts of generation capacity is
assumed, and then the cost-minimizing transmission config-
uration needed to deliver that generation is defined [8]-[10].
However, transmission expansion not only can lower dispatch
costs, it can also decrease the need for building generation by
improved siting, generation mixes, and exploitation of load/re-
source diversity to lower reserve margin requirements. To
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rigorously consider those benefits, transmission and generation
expansion, along with demand response, should be consid-
ered simultaneously in co-optimization models [11]-[14].
For example, one co-optimization study found that up to half
of transmission's benefits could be in the form of reduced
generation investment [15]. In a vertically-integrated utility
environment, co-optimization can be interpreted as a type of
integrated resource planning; in an unbundled environment, it
is instead a type of anticipatory planning, in which the trans-
mission grid owner projects how the grid configuration might
affect the response of generation investment and operations.

In this paper, we propose a model for co-optimizing invest-
ments in electricity transmission and generation capacity, taking
into account demand response, Kirchhoff's laws, generation in-
termittency, and quadratic resistance losses. Using a linearized
DC power flow to approximate the effect of Kirchhoff's voltage
on flows through AC lines, we assume that both transmission
and generation investments can take place in small increments.
This is of course a simplification, since in reality line and gener-
ator capacities come in discrete sizes. However, this simplifica-
tion allows us to avoid the use of integer variables, which per-
mits much larger models to be solved; furthermore, such a sim-
plification is not an unreasonable approximation when consid-
ering broad patterns of transmission and generation many years
or even decades in the future. However, since line susceptances
are proportional to line capacities (given the assumed voltage
and conductor type), enforcing Kirchhoff's voltage law (KVL)
results in nonlinear model constraints. This nonlinearity can be
avoided by assuming fixed PTDFs (as in [14]) or by using a
transportation model and thereby ignore Kirchhoff's voltage law
altogether, but the resulting flows and interacting economics of
transmission, demand response, and generation could be greatly
distorted [16]. Another nonlinearity in our model constraints re-
sults from incorporating quadratic losses [17]. Thus, assuming
continuous capacity variables still results in a nonlinear model
that is difficult to solve.

The large scale of real-world networks and the need to model
the nonlinearities resulting from Kirchhoff's laws and quadratic
losses, together with the inability of nonlinear solvers to solve
large nonconvex problems reliably is a challenge that we
attempt to overcome by using successive linear programming
(SLP) [18]. Successive linear programming has been widely
used in other disciplines to find optimal or high-quality solu-
tions to large-scale industrial problems [19], including ones in
the field of power, as discussed in our literature survey below.

In general, an SLP solution strategy consists of solving a
sequence of linear programs in which the nonlinear objective
function terms and constraints of the original nonlinear model
are replaced with first-order approximations around the most re-
cent solution, and then the resulting LP is solved to generate a
new solution. The process is iterated until convergence, which
can be guaranteed under restrictive conditions that are unfortu-
nately not satisfied by our model. However, as we explain below,
rapid convergence is achieved for our model when we com-
bine iterative linearization of the transmission constraints with
Gauss-Seidel iterations on load (in which, like the Project In-
dependence Evaluation System (PIES) algorithm [20], the most
recent energy balance duals are used as prices and are inserted
into demand functions to update the values of load used in the
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LP). The main advantage of our approach is the possibility of
using out-of-the-box algorithms that can efficiently solve very
large linear programs.

We test our approach on a European Electricity Market Model
(a version of COMPETES [21]) for the year 2050 including
flow-based market coupling of 33 countries, demand response,
and intermittency in generation (based on the large-scale renew-
able penetration assumptions of IRENE-40 [22], [23]). From
our examples, we observe, first, that disregarding Kirchhoff's
Voltage Law and/or quadratic losses in policy models can distort
the recommended transmission and generation additions, and,
second, that demand response can be a valuable resource that
can significantly affect the economics, location, and amounts of
transmission investments.

This paper is organized as follows. In Section II we sum-
marize the existing literature on transmission planning and de-
mand response integration. Section III describes the formula-
tion of our transmission-generation-demand response co-opti-
mization model. The formulation is first introduced as a market
equilibrium between independent but interacting transmission,
generation, and consumer entities; then an equivalent single op-
timization model for computing that equilibrium is presented,
followed by the combined SLP/Gauss-Seidel computational ap-
proach in Section I'V. In Section V, we describe our test-case and
summarize the results. Conclusion are presented in Section VI.
Appendices present first-order (KKT) conditions for the indi-
vidual market participant's optimization problems, and a multi-
year version of our optimization model.

II. LITERATURE REVIEW: APPROACHES TO MODELING
NONLINEARITIES IN NETWORK OPTIMIZATION

There exist a variety of optimization approaches to transmis-
sion planning [24]. For computational reasons, AC power flows
are often modeled using linearized DC approximations that dis-
regard reactive power and ohmic losses [1]. Network optimiza-
tion approaches that disregard Kirchhoff's Voltage Laws can be
purely linear (e.g., [25]), but this assumption could grossly dis-
tort transmission recommendations in networked transmission
systems [26], [27]. Mixed-integer formulations improve upon
this assumption by including Kirchhoff's Voltage Laws as linear
disjunctive constraints [28]; however, this approach presents
numerical difficulties when optimizing large-scale transmission
networks with multiple investment alternatives. Sophisticated
solution algorithms for large-scale planning problems are in
Munoz et al. [29] and in Munoz and Watson [30]. We use a DC
approximation of the application of Kirchhoff's voltage law to
AC lines (thus ignoring reactive power flows and voltage con-
straints), and we represent high voltage DC lines as having con-
trollable flows.

The lossless DC power flow model, which is commonly used
in transmission planning models, has been improved by mod-
eling losses assuming they are either proportional to line flow, a
piecewise linear function of flow, or a quadratic function of flow
[17]. Some models with losses optimize transmission additions
using an objective function that minimizes the cost of invest-
ments and losses (e.g., [31]-[33]). However, those approaches
assume an exogenous cost of losses, ignoring how the gener-
ation system is operated and the resulting marginal sources of
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generation in different hours. Other approaches seek to mini-
mize the cost of transmission investments and operating costs
by modeling power losses and generation dispatch explicitly in
the system's constraints. Linear approximations (e.g., [34]) ig-
nore the dependence of losses on line loading conditions, an as-
sumption that can be improved using piecewise linear approxi-
mations in mixed-integer programming formulations (e.g., [35],
[36]). None of those models consider demand response, and thus
they disregard the potential cost savings from the implementa-
tion of demand programs that can take advantage of short-term
price signals. Hence, our model improves on these approaches
by combining the quadratic loss formulation (as in [1, Appendix
A] or [17]) with elastic demand functions.

As illustrated in [6], the availability of short-term demand
response can shift some electric loads from peak to off-peak
hours, thereby reducing the need for investments in peaking
generation. The benefits of demand response programs in trans-
mission planning have been analyzed treating demand response
exogenously, considering various load profile scenarios (e.g.,
[37]). However, in reality, shifts in electricity consumption
would result from the interaction between demand elasticity
and spot prices which, in general, can be location specific
(locational marginal prices, LMPs). To the authors' knowledge,
the only transmission planning models with endogenous con-
sumers' response are [38], for price-responsive demand, and
[39], where load-curtailment programs are considered. How-
ever, those studies disregard transmission losses. In general,
the state of the art in modeling demand response in problems
as diverse as generation planning, transmission economics,
and unit commitment is to model the load as responding to
the spot price using a demand curve [40] and, in one case,
using cross-price elasticities to represent the shift in load from
one period to another [6]. An important research topic is to
incorporate more realistic representations of demand response.
These could account, for instance, for required lead time (hours
of notice), effects on load in earlier or later periods (sometimes
called “rebound”, which can occur because of pre-cooling
behavior in air conditioned homes or consumer operation
of thermal storage), and discretionary recharging of electric
vehicles.

We assume a perfectly competitive electricity market and
exclude market power in our model. This allows us to solve
the transmission and generation planning problems as one
optimization model. Real markets, of course, may depart from
perfect competition: for instance, generators might behave
oligopolistically [41]. Also, they might expand their capacity
anticipating how market prices would respond while the
network planner might expand transmission capacity antici-
pating how siting decisions by generators might change. Such
interaction would result in multilevel imperfectly competi-
tive Stackelberg models [42]-[44]. However, such multilevel
models are computationally very difficult to solve in prac-
tical situations. For real life systems, model size increases
exponentially with the geographical scope and the number of
options for investments decisions. Another difficulty is that
market power can be exercised and modeled in many different
ways (see [41]), for instance as Nash-Cournot or Nash-supply
function equilibrium games, conjectural variation games, or



OZDEMIR et al.: ECONOMIC ANALYSIS OF TRANSMISSION EXPANSION PLANNING

tacit collusion games. Choosing any single type of market
power game is necessarily arbitrary, and, by introducing more
uncertainty and modeler judgment in the results, makes them
more difficult to defend in regulatory or business settings.

Although real generation markets may indeed depart from
perfect competition, perfect competition models provide an
essential benchmark for imperfect competition models. Real
markets may also suffer from inefficiencies as a result of
regulatory intervention or market design. Utilizing perfect
competition models still allows policy makers to gain insights
into the social implications of a market design or a policy
target (e.g., such as the policy models IPM used by USEPA and
NEMS used by USDOE/EIA). Furthermore, the experience of
reformed markets in the U.S. and Europe indeed shows that
market power mitigation instruments are effective and that
properly designed reformed markets function competitively
[45]-[47]. Thus, our model, which assumes perfect competi-
tion, is a reasonable starting point for policy analysis.

Our model is a large-scale nonlinear program. The objec-
tive function is nonlinear, involving the maximization of total
market surplus, which equals the sum of the (nonlinear) inte-
grals of the demand curves minus the sum of (linear) trans-
mission and generation costs. The constraint set is also non-
linear. Since it includes nonlinear equality constraints, the fea-
sible region is nonconvex, which complicates computation and
also means that a local optimum may not be globally optimal.
Large-scale nonlinear programs such as this are much more dif-
ficult to solve than linear programs, which leads us to consider
SLP. In the field of power systems, SLP has often been applied
to solve AC optimal power flow problems [48], [49] and reac-
tive power planning problems [50]. However, it has not, to our
knowledge, been used for transmission planning in which trans-
mission capacity is a decision variable, much less for transmis-
sion-generation-demand response co-optimization. Under cer-
tain conditions that our model does not satisfy, the algorithm
has been proven to have superlinear convergence [51], and is
guaranteed to converge.

III. MODEL DESCRIPTION

We describe our modeling approach in three steps. First
we pose a market equilibrium problem for a single year that
assumes perfect competition (price-taking behavior) among
all market parties, including the transmission owner, genera-
tors, and consumers. Second, we state a single optimization
problem that is equivalent to the market equilibrium problem
in which the sum of consumer, transmission, and producer
surpluses (market surplus) is maximized. Third, we describe
the combined SLP-Gauss-Seidel algorithm we use to solve that
optimization model.

A. Market Equilibrium Problem

A market equilibrium has two characteristics. First, each
market party pursues its own objective (its surplus), and be-
lieves that it cannot increase its surplus by deviating from
the equilibrium solution. This is modeled by formulating the
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maximization problem for each party (profit maximization for
generators, consumer surplus maximization for consumers,
and transmission surplus maximization for the grid operator),
and then deriving each problem's first-order (KKT) conditions.
The second characteristic is that the market clears: supply
equals demand for energy at each node in the network. The
concatenation of KKT conditions for all market parties with
market clearing equalities yields what is known as a com-
plementarity problem, an increasingly common formulation
of energy market equilibrium problems [41]. The comple-
mentarity model of this section can be viewed as a variant of
short-run electricity market models in the literature (e.g., [17])
that include quadratic losses and capacity expansion, while
assuming competitive rather than oligopolistic behavior.

Complementarity problems can be solved either by special-
ized algorithms or, in special cases, by instead formulating and
solving an equivalent single optimization model. Real-world
problems lead to large-scale complementary models that are
computationally more complex to solve than an optimization
problem. We adopt the single optimization problem approach
(Section III-B), solving the problem by SLP, which reduces
computational times significantly and allows us to address
large-scale problems. However, before presenting the single
optimization model for the entire market, we first present the
optimization problem for each of the market players, in order
to make clear the assumptions of the model. The models below
and in Section III-B represent costs and revenues for a single
year. In Appendix B, we generalize the static representation (at
the expense of having a larger model) to a multiyear represen-
tation in which the timing of investments is also a decision.

Under perfect competition assumption, each market player is
a price taker. Price taking behavior can be modeled by formu-
lating price (which is signalled by an asterisk *) as an exogenous
parameter in each market player's problem. First, we consider
the generator's problem. Each firm chooses its generation pro-
duction and capacity in order to maximize its annualized profits.
For each firmn € N

Max Y~ NHy(pfi, = MCit)gnikn — »_, CYirtnir (1)

Y9 e ik
St gnieh < Wien (Yo + Ynin) (fnikn) Vi, k, B )
Gnikhs Ynik Z 0 Vl) k7 h (3)

where constraints (2) and (3) correspond to maximum genera-
tion limits and variable non-negativity, respectively. To account
for variability of renewable output, Wiy, is a coefficient less
than or equal to one that varies depending on the hour A, tech-
nology k, and location of generator . This model can readily
be generalized to include nonlinear production cost functions,
ramp limitations, and other more realistic considerations, with
the exception of unit commitment constraints that require binary
variables.

Meanwhile, consumers at each location ¢ choose demand
levels d;;, in each hour by maximizing their net surplus,
given by the difference between their valuation of the con-
sumption (which is the integral of their demand curve
Pin(din) = Aip + Bindin, summed across hours) and what they
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pay for electricity (the electricity price p};, times consumption).
For consumers in region ¢ € I

2
s.t. dih Z 0Vh. (5)

1 *
ML?X; NH, [dih <Aih + _Bihdih> - pihdih} “4)

Here we assume that cross-price elasticities are zero, thereby
accounting only for own-price elasticities. More general formu-
lations can consider cross-price elasticities across hours [6] or
pricing rules that average over zones or otherwise deviate from
the pure LMP model [52]. Estimating the coefficients of the
demand curves requires estimation of demand elasticities, for
which there are some relevant econometric studies [53], [54].
We disregard the possibility of loss of load (unserved demand).

The grid planner and operator is modeled as a pool operator: it
buys power directly from generators and sells it to consumers.!
The planner and operator is assumed to be a single entity, al-
though in reality there are multiple operators (leading to seams
issues) who can also be separate from grid owners. The oper-
ator's objective is to choose optimal investment in transmission
capacity maximizing the value of its transmission services (i.e.,
revenues obtained from this arbitrage) minus the cost of losses
and annualized expense of transmission investment subject to
feasibility of flows:

f,t%l,i%z,a ;Nthfhaihf ;(‘Xﬂd + ;CZuZu (6)
s.t. 7
_ P,
Z‘I%‘l |:<flh = ri(@) < . l) flh>
1
1—;
B <ilh -n (:Ll) < 2 l) £l2h>:|
+ Z S |:< uh — 0u(~u) (1_'—2&) Zih)
1-E;,

- (tuh — 0u(%u) (T) tih)]

— Qip = 0 (Xﬂih) Vi, /’L (7)
> ain =0 (yn) Vh (8)
fun— £y, — Sl a) Z Qb =0 (Nn) VLA (9

icl
Fin — Fi(l+a) <0(&;,) Vih (10)
fo,—F(l+a1) <0(&,) ViLh (1)
tun — Tuzu <0 (Bh) Vu,h (12)
tuh - T_u/-fu S 0 (B ) V’LL h (13)

whs buns Fins £y 520 200 Vlu, (14)

Constraints (7) and (9) are Kirchhoff's Current and Voltage
Laws, respectively. (10)—(11) are maximum and minimum flow

o~

IThe alternative to pool market is a market mechanism based on bilateral
transactions between producers and consumers. Competitive generators pur-
chase transmission services for these transactions from the system operator who
prices scarce transmission capacity to ration it efficiently. Most electricity mar-
kets can be classified as of being pool, bilateral or its variants. Under perfect
competition assumption, both markets yield the same equilibria [55].
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limits for AC lines, (12)—(13) are maximum and minimum flows
limits for DC lines,? and (14) is the non-negativity constraint.

Since the transmission operator is a price taker, maximization
of the value of its transmission services efficiently allocates the
transmission capacity. There also exists an alternative formula-
tion of the operator's problem where its objective is to distribute
the power among consumers to maximize social welfare, given
firm's generation decisions [52]. Under perfect competition as-
sumption, both formulations yield the same equilibrium [55],
[56], which is also the market surplus maximization in the per-
fect competition case.

Note that we only consider AC upgrades in existing corridors
and ignore the option of building new AC links that would create
new parallel flows in the system. The advantage of this assump-
tion is the continuity of the nonlinear optimization problem,
which in our experience increases the likelihood of convergence
of the successive linear programming approach of the following
section to a KKT point. A system with new AC corridors that
create new loops in the system presents a physical discontinuity
for extremely small line upgrades, since constraint (9) should
not restrict the angle difference in the absence of transmission
investments. As a result, the derivative of the constraint with re-
spect to capacity does not exist when AC line capacity is zero,
although this derivative is required by the SLP algorithm.

Just for illustration purposes, we assume in our application
that the quadratic loss coefficients are inversely proportional to
the line capacities, approximated as 7;(z;) = (R;)/(Fi(1+ 1))
for AC lines, and as o0,,(2,) = (P,)/(6 + T,z,) for DC lines.
The factors R; and P, correspond to the fraction of active power
losses when the lines are loaded at their maximum capacity (e.g.,
5%) and depend on line lengths and characteristics. The term 4§
> 0 in the denominator of the definition of o,,(z,) is used to
avoid 0,(z,) — oo if z,, — 0, since we are considering invest-
ment alternatives for new DC corridors. This correction term &
results in a slight underestimation of the losses for Tz, < 1.
Note that our definitions of the quadratic loss coefficients for
both AC and DC lines imply that doubling the capacity will cut
transmission losses in half for a given MW flow over the line.
It also implies that all AC line additions have the same voltage
and conductor characteristics (per MW of capacity) as the ex-
isting line(s) in its corridor.

To complete the equilibrium model we need to define the
KKT conditions for the above surplus maximization problems,
and then add market clearing conditions. The KKT conditions
(21)—(39) are given in Appendix A for the generators, con-
sumers, and the grid planner and operator.

Finally, the market clearing conditions (15) in the equilibrium
model correspond to the balance between transmission imports/
exports, transmission losses, generation, and demand for each
bus at every hour:

aip + Z Z Gnikh = din (Pj,) Vi, h

neN keK;

(15)

2To keep the model compact, we write the maximum flow constraints for DC
lines as if the initial installed capacity was zero. If there is an existing DC line
(i.e., z, = 1 already), this can be modeled by setting the associated investment
cost to zero without the need to reformulate the model.



OZDEMIR et al.: ECONOMIC ANALYSIS OF TRANSMISSION EXPANSION PLANNING

The market prices are endogenous to the whole system where
the Lagrange multipliers of these conditions (p},,) correspond
to the market's hours weighted LMPs. At equilibrium, the
generation, demand, and prices are in balance, satisfying all the
KKT and market clearing conditions. Prices adjust to clear the
markets, reflecting for instance the effects of demand response,
transmission additions, and generation operation on prices.
However, a key point about the competitive market model
is that individual market players do not recognize that their
actions affect the price; price is viewed as exogenous by each
player, but endogenous to the market as a whole.

The KKT and market clearing conditions together define a
square system of nonlinear complementarity and/or equality
conditions, in which the number of conditions equals the
number of variables [41]. This system could be solved for
the market equilibrium by using commercial complementarity
solvers such as PATH [57]. However, nonlinear complementary
problems for large-scale systems are computationally chal-
lenging, being limited to thousands or tens of thousands of
variables in practice. Thus we take another approach to reduce
computational complexity, described next, based on successive
linear programming, which can be solved for problems with
millions of variables.

B. Equivalent Nonlinear Optimization Problem

We obtain the equilibrium by formulating and solving a single
nonlinear optimization problem (NLP) whose KKT conditions
are equivalent to the equilibrium problem of Section III-A (de-
fined by the KKT conditions of all the market agents plus market
clearing conditions in Appendix A). Formulation of an NLP
may not be possible for general complementarity problems, but
it is often feasible for problems formulated under an assumption
of perfect competition (see, e.g., [41], [58]).

Because the optimal solution of the below model must sat-
isfy the model's KKT conditions, therefore the solution is also
a market equilibrium; the reverse also applies, in that a solution
satisfying the market equilibrium conditions above maximizes
social welfare (assuming that second order conditions are satis-
fied). The model is as follows:

1
ZN'H;L {dih (Aih + 5Bihdih>

ih

Max
fit.0,z,2,0,y,9,d

- Z MCixgnikn
n,k

20X+ ) CZuzu + Y OV | (16)
1 u

n,t.k

s.t. (2), (3)¥n, (5)¥i, (T) — (14),

a;n + Z Z Gnikh = din, Vi, h.

neEN kcK;

an

The objective can be interpreted as total market surplus. This is
the sum of the objectives for generators, consumers, and the grid
operator; note that all revenue terms (involving energy price
p;,) from the objective functions of the individual player prob-
lems cancel, leaving only the integral of the demand functions
minus all transmission and generation costs.
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IV. SLP/GAUSS-SIEDEL SOLUTION APPROACH

A. Decomposition Into Supply and Demand Models

SLP can be applied directly to the above nonlinear program.
However, we instead have had more success in achieving rapid
convergence by using the PIES [20] approach of dividing
the overall supply-demand equilibrium problem into separate
supply and demand models, and iterating between the two. In
the PIES approach, the supply model is a linear program that,
given a tentative set of energy demands, determines 1) how
those demands are to be met from the available supply as well
as 2) a set of prices equal to the marginal costs (duals) from
the supply-demand balances in the model. The demand model
in PIES is simply a statistically estimated (or, in our case,
assumed) set of demand functions that, given prices from the
supply function, calculates a new set of quantities demanded
(loads) to be used in the next iteration of the supply model.
In our application, the supply model is a transmission and
generation cost minimization model, subject to fixed demands
D;;, that can be curtailed at cost VOLL:

Z CXpxp + ZCZuZu + Z CYirYnik
l U

n,i,k

Min
fit.0.x.z,0,y.9.p

+ Y NH.MCgpgnixn+ Y  NH,VOLLpi,  (18)
n,t,k,h i,h
S't'(2)7 (S)VTL/ (7) - (14)7
ain + Z Z nikh + pin — Din =0 Vi, h (19)
neN kcK;
pin >0 Vi, h (20)

where p;p, is the curtailed load, which we include to ensure that
there is a feasible solution of the overall model. For fixed de-
mand levels D, the first order optimality conditions of this
problem are equivalent to the KKT conditions of the gener-
ator's and grid operator's problems given in Appendix A, and
the market clearing conditions (19) for inelastic demand. Thus,
a solution of the above NLP can be taken as a perfectly compet-
itive market equilibrium subject to the assumed fixed loads. The
duals for the energy balance (19) for each ¢ and h can then be
inserted in the demand functions to calculate new D;;, for use
in the next iteration of the supply model. In this way, we can
iterate between this NLP and the demand functions, and if the
procedure converges, it is an equilibrium.

B. Successive Linear Programming

Large-scale nonlinear optimization problems, like the above
supply NLP, are difficult to solve. To overcome this, we describe
here an approach using successive linear programming (SLP).
In SLP, we solve the NLP via a sequence of linear programs
where all the nonlinear functions are linearized by using their
first-order Taylor series approximations. Abusing notation, if
F(z) = 0 corresponds to the nonlinear constraints (i.e., (7)
and (9)) in the NLP, the corresponding linear approximations
at vicinity of a point 2* can be expressed as

F(z®) + VF(a®)Az = 0, where Ax = x — .
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We impose a fixed step size |Az| < ~, similar to Method 11
of [59], which converges quickly for our problem. We include
demand response by combining the SLP for the supply model
with Gauss-Seidel iteration using the inverse demand function.
The SLP algorithm combined with Gauss-Siedel proceeds as
follows:
Step 0: Provide a starting point z° to initialize the algo-
rithm. In our case, we generate the starting point by first
solving the planning problem ignoring demand response
and losses and only enforcing KVLs for the existing AC
transmission lines.
Step 1: For given %! and D*~1, solve the linear opti-
mization problem subject to F(z* 1) + VF(ak 1)(z* —
a® 1) = 0, yielding the primal solution z* and dual solu-
tion p* (i.e., electricity prices).
Step 2: Update demand D¥ = P~ 1(p*) where P 1() is
the “vector-valued” inverse demand function.
Step 3: Check convergence of the demand and objective
function value of NLP (18) using tolerance ¢. If conver-
gence is achieved, accept the solution (z*,p*, D¥), else
set k = k + 1 and go to Step 1.

The superlinear convergence of SLP is guaranteed under cer-
tain conditions [39] that, unfortunately, our nonconvex NLP
(16) does not satisfy. However, the approach has worked well
in our application and converged to a solution. When the al-
gorithm converges to a solution, convergence to a KKT point
is guaranteed.3 Since our NLP is nonconvex, a point satisfying
the KKT conditions is not sufficient for global optimality. Con-
vergence to a local optimum is guaranteed if the second order
conditions are satisfied for some e-neighborhood of that point
[18]. Global solution is however not guaranteed since it is a non-
convex problem.

V. CASE STUDY: 2050 EU RENEWABLES DEVELOPMENT

A. Assumptions

We apply the approach of Section IV-B to the European
market model COMPETES [21] which includes 33 countries.4
COMPETES assumes an integrated EU market where the
trade flows between countries are constrained by Net Transfer
Capacities (NTC). Network parameters are based upon [23].
The model also includes wind and solar intermittency. Hourly
wind data are estimated from 2004 profiles given by [60] and
hourly solar data are estimated from the profiles given by
[61]. Pre-calculated hourly intermittent variable renewable and
hydro generation is taken as must-run in the model.

As initial capacities, we use the existing generation capacities
from the WEPPS 2010 database [62] and the ten-year network
development plan of ENTSO-E [63]. For 2050, we consider
the Renewables Scenario (RES) of IRENE-40 [22], [23]. In the

3At convergence, Az /2 0 is optimal and 2* solves the linear approximation
of the NLP problem. By [18, Theorem 4.3.7], z* is a KKT point of the NLP
problem (18) (i.e., generators' and TSO's problem). In addition, the convergence
of D satisfies the KKT conditions of the consumers' problem and NLP (16).

4COMPETES includes 26 EU members (excluding Malta) and 7 non-EU
countries (i.e., Norway, Switzerland, and Balkan countries). Every country is
represented by a single node, except Luxembourg which is included in Ger-
many, and Denmark, which split in two nodes due to its participation in two
nonsynchronous networks.
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TABLE 1
ANNUALIZED COSTS WITH AND WITHOUT DEMAND RESPONSE (DR)

Case Costs [Billion €/yr]
Operations New New New Total
Gen AC DC
No DR  104.49 13.21 1.18 272 121.59
DR 92.63 10.62 1.20 271 107.16

RES scenario, the installed capacities of renewables and nuclear
are taken as exogenous since investments/decommissioning for
these technologies are assumed to be policy driven. Ambitious
GHG targets and strong policy support are assumed to drive
the deployment of renewable technologies. This includes large
clustered offshore and onshore wind farms in the northwest,
solar and wind in the south, and hydropower and biomass in
central and northern Europe. Installed nuclear power capacity
decreases to 115 GWe in 2050. In the inelastic demand case,
electricity generation from various renewable energy sources
amounts to 80% of total electricity generation in 2050, consis-
tent with ECF's 80% renewable scenario [64]. We assume that
only existing conventional power plants commissioned in/after
2010 are refurbished and operate in 2050, whereas older power
plants are all decommissioned. Annual investment costs are esti-
mated based on capital costs and economic lifetime assumptions
in [21] for generation technologies and in [23], [65] for trans-
mission technologies. For demand response, we assume that the
price elasticity of demand is —0.05.

We use a sample of 50 representative hours selected using
k-means clustering of loads and variable renewable generation
[66]. The COMPETES model is solved using CPLEX 12.5 in
AIMMS. Solutions are iterated up to 500 times to ensure con-
vergence. The algorithm stops early if the moving average of
the objective of the previous ten solutions falls within 0.001% of
the current solution. Solutions are obtained within four hours on
an Intel 15-2450M processor. The two primary cases considered
below are the system with and without demand response. In ad-
dition, we have also considered the impact of omitting quadratic
losses and Kirchhoff's voltage law as sensitivity analyses.

B. Costs Savings With Demand Response

In both cases the total annualized cost is dominated by the
plant operations (85% of cost), with 10% of the costs made up
by generation capacity and the remainder consisting of trans-
mission capacity costs (see Table I).

In Table I, total cost is reduced by 11.9% with the addition
of demand response. A € 14.4 B cost reduction is derived from
generation savings; 82% of this reduction is from savings on op-
erations, while the remaining 18% is from generation capacity
reductions. The reduction in operations cost is mainly a result
of shifting demand from peak hours. Net total electricity energy
consumed decreases only by 0.15%. Transmission costs remain
effectively constant between cases with a small net increase in
costs resulting from a reduction in DC transmission of € 6.9 M
combined with an increase in AC transmission of €27.8 M. De-
mand response changes LMPs, as expected, with the increased
prices during periods of low wind causing a shift of demand to
times of more wind and lower loads.
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TABLE II

METRICS OF CAPACITY SHIFTS IN INVESTMENT DECISIONS

Metric Generation AC DC
Capacity Transmission  Transmission

Normalized Absolute
Sum of Differences 26.10% 10.32% 3.88%
Normalized A
Total Additions -26.20% 3.81% -1.45%

C. Changes in Investment Decisions With Demand Response

The differences between investment decisions made with and
without demand response are measured by two metrics (see
Table II). The first metric, which is the normalized absolute
sum of differences, captures changes on a line-by-line basis,
while the second metric, the normalized change in total addi-
tions, measures how the decisions change in the aggregate. If
the magnitude of the two metrics is the same, it indicates that
the general pattern of siting of investments remains constant
but the magnitude of investment at those sites changes, which
is the case with generation capacity. Each metric is normalized
by the total additions in the solution without demand response.
In the case of AC transmission decisions, the magnitudes of the
two metrics differ significantly, indicating that there are signifi-
cant shifts in the siting of lines. DC transmission decisions shift
but not as much as AC decisions. However, there is no spatial
shifting of generation capacity, with demand response simply
reducing the amount of generation investment everywhere.

D. Spatial Changes in Transmission Investments

The shifts noted in transmission siting are portrayed in
Figs. 1 and 2. With demand response, while the costs remain
relatively constant, there is a net increase in transmission
capacity, with AC capacity increasing while DC capacity
decreases. Looking only at the locations of increased capacity
relative to the no demand response case (Fig. 1), 32.5 GW
of AC capacity and 5.5 GW of DC capacity are added. Most
of the increased line capacity is located in Northern Europe.
Fig. 2 shows corridors in which transmission investment is
lower in the demand response case, with reductions of 15 GW
of AC and 12.1 GW of DC capacity. The corridors with the
most reductions are connected to buses where generation ca-
pacities are also reduced. The differences of greatest magnitude
are reductions between Italy and Switzerland and additions be-
tween Belgium and the Netherlands. However, those corridors
are heavily invested in within both cases. The largest corridor
to be developed only in one case is a 400-MW addition between
Albania and Serbia under demand response.

E. Effect of Modeling Simplifications

The impact of not including losses or KVLs is explored by
starting with a base version of the COMPETES model without
resistance losses or KVLs, and then adding those features and
examining how the costs change (see Table III). In terms of
percentages in each category of cost, transmission investments
are affected far more than generation investments and operating
costs. For some cost categories, losses have a bigger impact,
while for others KVL is more important. The direction of
impacts even differs. For instance, even though adding losses
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Fig. 1. Increases in investments in AC lines (solid) and DC lines (dashed) in
COMPETES network as a result of adding demand response to model.
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Fig. 2. Reductions in investments in AC lines (solid), DC lines (dashed), and
generation capacity (circles) in COMPETES network as a result of introducing
demand response.

TABLE III
ANNUALIZED INCREASE IN COSTS FROM INCLUDING
LOsSES AND KVLS IN THE MODEL

Gen Gen AC DC
Case Comparison Operating | Capital | Capital | Capital
Adding Losses | AME | 177951 | 69384 | 55704 | 3237
A% | 192% | 6.54% | 46.30% | 1.20%
A AME | 21436 | 479 | 15843 | 347.40
DR | Adding KVL o ——53% 1 0.05% | 13.17% | 12.85%
Adding KVL | AME | 1973.05 | 586.64 | 337.44 | 496.01
and Losses | A% | 2.13% | 5.53% | 28.05% | 1831%
Adding Losses | AM€ | 166963 | 27454 | 58168 | 211
A% | 1.60% | 2.08% | 49.50% | 0.08%
A AME | 9428 135 | 19095 | 325.43
No DR |- Adding KVL = o555 1 0.01% | 16.25% | 11.98%
Adding KVL | AME | 165371 | 277.28 | 339.73 | 562.49
and Losses A% 1.58% 2.10% | 2891% | 20.71%

Note: Percentages relative to cost category in base case (either DR or no DR).

increases generation expenses, adding KVLs surprisingly
decreases those costs (although the transmission cost increase
more than makes up for that decrease).

Also, it turns out that losses and KVLs interact, with cost
increases from adding both differing from the sum of their
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Fig. 3. Change in the objective as the model iterates for three cases: (a) with

KVLs, no losses, and no demand response, (b) with KVLs, losses, and no de-
mand response, and (c¢) with KVLs, losses and demand response.

individual impacts when added separately to the base case.
For instance, adding losses makes more of a difference in DC
line investment costs in a model with KVL than in a model
without; and adding KVL makes more of a difference in a lossy
model than a lossless one. Further, DC investments increase
while AC investments decrease when adding both because
enforcing KVLs results in power traveling further on AC lines,
magnifying their losses, thereby putting new AC investments
at a disadvantage compared to DC lines.

F. Convergence

As we mention in Section IV, convergence is not guaranteed
for our nonconvex NLP. Nonetheless, the approach has worked
well and converged to a solution numerically. Fig. 3 illustrates
the convergence of the objective for three cases: 1) with KVLs,
no losses, and no demand response, 2) with KVLs, losses, and
no demand response, and 3) with KVLs, losses and demand re-
sponse. The algorithm for each case stops if the current solution
is within 0.001% of the average of the 10 previous solutions.
The solution of the case with no losses and no demand response
is used as the starting point of the case with losses and no de-
mand response, whose solution is then utilized as the starting
point of the case with losses and demand response.

The case with KVLs, no losses, and no demand response as
well as the case with KVLs, losses, and no demand response
converge stably to a solution. The case with demand response
converges to a solution quite quickly but with slight oscillations.
The final 50 iterations have a standard deviation of 0.032%.

VI. CONCLUSION

The inclusion of demand response, losses, generation co-op-
timization, and Kirchhoff's voltage law helps transmission
policy and planning models to more realistically model the
economics of investment. Due to the complexity and com-
putational burden that those features add, they are frequently
excluded from models, potentially distorting cost estimates and
investment recommendations. We develop a practical method
combining Successive Linear Programming with Gauss-Seidel
iteration to co-optimize AC and DC transmission and genera-
tion capacities while considering demand response and system
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nonlinearities such as KVLs and resistance losses. We test our
approach for an electricity market model COMPETES which
represents transmission among 33 European countries. The re-
sults indicate that demand response can be a valuable resource
that can significantly reduce generation operating and invest-
ment costs. Although the cost of transmission investments is
affected only slightly, the siting of transmission investment
decisions changes significantly. Thus, the potential benefits of
demand response should be taken into account in long-term
transmission planning.

APPENDIX A
KKT CONDITIONS

The KKT conditions for each generation firmn € N:

0 < Ynik 1 _Cifik + ZNHh,unikhWikh < 0 VQ, k (21)
h

0 < gnixn L pjp — MCit, — Mm’kh <O0Vi kb (22)
0 S Hnikh L Gnikh — ﬂ/zkh ( nik + ynzk) S 0 VQ: k7 h.
(23)
The KKT conditions for the consumers in region z € I:
0 § d,‘h 1 Aih + Bihdih — p:h S 0Vh. (24)
The KKT conditions for the transmission grid operator:
0< fip L — ZXih‘I)il [1 = ria) (1 4 @) £
— i — &), <OV, h (25)
<f,t ZXilz¢il [1 —riz)(1 - (I’il)ilh]
FAn — &, SOVLA (26)
0 S tuh 1 - ZXih:‘iu [1 - Ou(Zu)(l + Ezu)iuh}
— B <0vu,h (27)
0 S zuh 4 ZthEw [1 - Ou(zu)(l - Eiu)tuh]
Buh < O Vu h (28)
Oinfree LD NpSy(1 + 21)®y = 0Vi, h (29)
l
+ @1
thfree 1 Zq)ll (flh — Tl ll < 5 l> flh>
1l 2
“Sn (g0 (557 4)
l
+ Z (S T27) ( uh — Uu(zu) ( +2‘: ) E )
- 1-%,
- zu: Sy (Zuh - Uu(zu) ( 2 ) Zih)
—a;, =0Vi,h (30)
ainfree L ph, + xin — Y = 0, h (31)
(32)

i free L Zaih =0Vh
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Nnfree L fr, — £, = Si(1+31) Y ®abip =0V, h
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0<&h L fin—Fill+x) <OVL,h (34)
OgngJ—Lh*E(l"‘wl) <0Vih (35)
0 < Bn Ltun — Tuzu < 0Vu,h (36)
0< 8., Lty —Tuzy <0Vu,h (7)
0 < L *CX[
+ ZNHhXih‘l’url'(wz)
ik
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h
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145\ 2 1—E;,
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+ Z NHy, 85Ty + B,,T.] <0V
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These KKT conditions, together with market clearing condi-
tions in Section III-A, are the same as the KKT conditions for
the single nonlinear optimization model of Section I1I-B.

APPENDIX B
EQUIVALENT NLP FOR MULTIYEAR MODEL

For the multiyear problem, the notation of the parameters and
the variables is almost identical to the static representation ex-
cept we denote their dependency with respect to the model de-
cision stages v, v’ € vy, ..., vy. Each decision stage represents
all modeled hours in one or more years and has an equal length
of M > 1 years. At the beginning of each stage (e.g., vg), the
generators and the TSO make their investment decisions. The
additional capacity resulting from these investment decisions
becomes available at the beginning of the next stage (e.g., v1).
Next, we define the additional parameters and variables for the
multiyear problem.

Parameters:
CIX;, Investment cost of AC link at stage v[€]
ClY;, Investment cost of generator at stage v [E/MW)]
CIZ,, Investment cost of HVDC link at stage v[€]
o Yearly interest rate [1/yr]
Oy Discount factor at stage v, =

(D/((1 + )MEvol)]

LY,k Construction time of generator [stages]
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LX; Construction time of AC link [stages]
LZ, Construction time of HVDC link [stages]
Variables:
Ayniky Incremental expansion of generation capacity at
stage v [MW]
Az, Incremental expansion of AC line at stage v
Az Incremental expansion of HVDC line at stage v

In general, multistage models can lead to mathematical
problems with equilibrium constraints (MPEC) for each market
player if it exercises market power. But since we assume
a perfectly competitive electricity market with price-taking
generators and TSOs (as [34]), this allows us to solve the
multistage transmission and generation planning problems as
one optimization model. Let GC,,, T'C, W P; be the discounted
total investment and operational cost of generator n, discounted
total cost of transmission investments, and the discounted
willingness to pay of consumers at node ¢, respectively. Then
we can obtain the equilibrium by formulating and solving a
single nonlinear optimization problem:

M VP — -T
10,8070, Ay,g,d ZW ’ ZH:GO” ¢ @0

s.t. (2),(3) ¥n,Vv >y
(5) Vi,Vu > v

(7) — (14),(17) Yo > v
v—LY,5
Ynikv = Z Aynikv' vn7 i7 k7 v (41)
v'=vg
‘U*LXZ
2= Y, Az Viv (42)
vli=1g
—LZ,
Zuw = Y Azyy Vuuv (43)
v/=vg
where
v=vr_1
GCn = Z Oy Z CIYvikvAynik@
v=ug ik
v=vT M 1
+ Z Qy, Z 71 L N1 Z NHhAlCikvgnikhv-
(]_ + O-)m :
v=v1 m=1 i,h,k
v=vp_y
TC= > o (Z CIXp, Az + Y CIZUUAZM,> )
v=uwg 1 u
v=vy M 1
WP = 'y —— NH
3 o (3 rvapes) v
v=v1 m=

1
X |:dih'v (Aih’u + §Bihudihu>:| .

The problem includes investment accounting constraints
(41)—(42) that ensure that the capacity available in a given
stage equals the sum of capacity built in previous stages,
accounting for lag times in construction. SLP can be applied
directly to the above nonlinear program by utilizing linear
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approximations to the nonlinear function W P; in the objective
and to the nonlinear constraints (7) and (9) for each decision
stage v. However, the resulting linear optimization problem is
a computationally intensive large-scale model. We have solved
linearized multistage models that are similar to the above (e.g.,
[12], [34]).
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