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Abstract. The mixing height (MH) is a crucial parameter 5-45 % (day) and 60—90 % (night). This indicates that a large
in commonly used transport models that proportionally af- part of the found C@ model-data mismatch was indeed due
fects air concentrations of trace gases with sources/sinks nean MH errors. Other causes for G@ismatch are discussed.
the ground and on diurnal scales. Past synthetic data expeApplicability of our method is discussed in the context of
iments indicated the possibility to improve tracer transportCO; inversions at regional scales.

by minimizing errors of simulated MHSs. In this paper we

evaluate a method to constrain the Lagrangian particle dis-

persion model STILT (Stochastic Time-Inverted Lagrangian

Transport) with MH diagnosed from radiosonde profiles us-1  Introduction

ing a bulk Richardson method. The same method was used to

obtain hourly MHs for the period September/October 2009Atmospheric tracer transport models are a crucial tool to
from the Weather Research and Forecasting (WRF) modelPredict air quality and atmospheric composition. This infor-
which covers the European continent at 10 km horizontal resmation is needed for environmental authorities and politi-
olution. Kriging with external drift (KED) was applied to es- cal decision makers. In addition, such models are regarded
timate optimized MHs from observed and modelled MHs, @ an important tool to verify budgets of greenhouse gases
which were used as input for STILT to assess the impact orfnd most importantly C&XNisbet and Weis2010. Within

CO, transport. Special care has been taken to account for urthe top-down approach dispersion models are used to close
certainty in MH retrieval in this estimation process. MHs and the scale gap between global models and point observations
CO, concentrations were compared to vertical profiles frombPY simulating regional greenhouse gas transpDulrfian
aircraftin situ data. We put an emphasis on testing the consiset al, 2009 Gerbig et al. 2009. Such models are needed
tency of estimated MHSs to observed vertical mixing of CO 0 extract source and sink information in g@ignals, of-
Modelled CQ was also compared with continuous measure-ten obtained by observations performed within the planetary
ments made at Cabauw and Heidelberg stations. WRF MH&oundary layer (PBL), that show large variability near the
were significantly biased by10-20 % during day ane40— omni-present source/sink processes targeted by the inversion
60 % during night. Optimized MHs reduced this bias#6%  estimatesl(in et al, 2003 Gerbig et al. 2003a b, 2006.

with additional slight improvements in random errors. The This signal variability is not only a consequence of variations
KED MHs were generally more consistent with observed of the terrestrial fluxes, but also of vertical mixing by atmo-
CO, mixing. The use of optimized MHs had in general a spheric turbulence, which is hoped to be resolved adequately

favourable impact on Cftransport, with bias reductions of Py the transport modeDenning et al(1995 demonstrated
the impact of PBL parameterizations used within transport
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models on the distribution of atmospheric £€due to the co-  model. Output from WRF and KED MHs were then used to
variance of photosynthesis/respiration and the mixing heightdrive the Lagrangian particle dispersion model STILT to sim-
(MH), both being a function of incoming solar radiation, at ulate turbulent transport of GOIn a synthetic data experi-
seasonal and diurnal scales. The MH is usually defined asentKretschmer et al2013 demonstrated the effectiveness
the height up to which tracers emitted from surface get wellof this method to largely reduce bias and random errors in
mixed within about an hourSeibert et a.1998. On these  simulated CQtime series caused by MHs errors. The exper-
short timescales the MH proportionally affects tracer con-iment assumed that the true MH was known in a European
centrations in the PBL. For instance, the footprint of a,CO network of about 60 MH observations two times a day, com-
measurement, i.e. the spatially integrated surface influencearable to existing radiosonde observations. Note that radio
on the measured signal, drops to 30% after one day; thusounding networks have relatively good data coverage and
the footprint very close 450-150km) to the observation are often used as benchmark for novel approaches for MH
site is most important and there the footprint simply scalesdetection Seibert et al.2000.
with 1/MH (Gerbig et al, 2003h 2008. As a consequence In this paper we follow the approach Kfetschmer et al.
the MH is one of the most important parameters in air pol- (2013, using MHs derived from radio soundings in the Inte-
lution and greenhouse gas transport modelling at regionagirated Global Radiosonde Archive (IGRA)(rre and Yin
scales and at the same time considered to be one of the maj@008. Tracer transport simulated using STILT and driven by
sources of uncertainty in CQransport modelling$tephens  WRF meteorology is compared to observations made during
and Keeling 200Q Gerbig et al.2009. For instance, previ- the IMECC (Infrastructure for Measurements of the Euro-
ous model-model and model-data comparisons of mesoscafgean Carbon Cycl aircraft campaign and continuous mea-
models found differences in simulated MH5-30 % during  surements made at Cabauw (CBW) and Heidelberg (HEI).
daytime over landSarrat et al.2007a b; Gerbig et al.2008 We selected these two sites as they are known for their com-
Hu et al, 201Q Kretschmer et al2012. Gerbig et al(2008 plexity — here an accurate model approximation of the MH is
showed that MH discrepancies of this size lead to uncertainmost relevant. At both sites high-quality, continuous observa-
ties of 3 ppm in CQ, which corresponds to about 30% un- tions exist for several decades. CBW has the further advan-
certainty in regional fluxes, simulated in summertime overtage of providing co-located meteorological measurements
a domain covering most of Europe. During stable conditionsup to 200 m (a.g.l.), allowing MH detection in stable bound-
mixing is sporadic and weak such that a clear definition ofary layers. The use of real observations introduces two fur-
a MH is difficult (Seibert et al.2000. Nevertheless, wind ther complications in comparison to a synthetic data experi-
shear caused by surface friction can very well lead to the dement: (1) the true MH is not known exactly due to measure-
velopment of a mixing layer, and thus a MH can be diagnosednent errors, data limitations and methodological uncertainty
(Stull, 1988 Vogelezang and Holtslad 996 Seibert et al.  (Seidel et al.2012 and (2) a verification of the method by
2000. As a consequence, model errors in MH at night arecomparing simulated and observed £&bundances is ren-
at least a factor two larger and are substantially biaGmi-(  dered difficult as the observed signal is a result of both sur-
big et al, 2008, which has been shown to cause biases inface fluxes and transport. The first is the very same quan-
simulated CQ concentrationsiretschmer et al2012, and tity that we have limited knowledge about and that an atmo-
which in turn leads to potentially serious systematic errors inspheric inversion tries to solve for (or optimize). The latter is
the retrieved fluxes. For daytime data such biases of the transffected by other uncertainties besides those in \Bdrpig
port model are usually neglected in inversions, while night-et al, 2009, e.g. deep convection, or horizontal advection.
time data obtained within the PBL are not used, to avoid bi- We tried to cope with complication (1) by objectively es-
ases in the inferred surface fluxes (Bgoquet et al.2017). timating the uncertainty for each individual MH estimate
Because night-time data also contain useful information tobased on an analysis of high-resolution radiosonde profiles,
constrain respiration fluxes and other emission sources, likavhich are part of the UK Meteorological Office (UKMO)
anthropogenic fossil fuel COfluxes, this can be regarded database. This MH uncertainty was propagated through the
as a major deficit of current COnversions Dolman et al, KED estimation and evaluated with observed meteorology
2009. and CGQ measurements obtained during the IMECC cam-
Previous studies have shown in synthetic data experimentpaign in September/October 2009, to assure the consistency
the possibility to improve the simulated G@ansport by  of the estimated MH to effective GOmixing in the atmo-
considering observed MHK¢etschmer et aJ.2012 2013. sphere, something we henceforth call the “effective MH”. In
Kretschmer et al2013 interpolated MHs from point obser- addition we performed a cross-validation of the KED MHs
vations in space—time to a domain covering most of Europeusing the IGRA MHs and compare to independent UKMO
using KED (kriging with external drift), which uses simu- radiosondes not part of IGRA.
lated MHs as a covariate to add physical constraints to the
interpolation. This geostatistical approach yields optimized
MH fields at the resolution of the meteorological driver fields
produced by the Weather Research and Forecasting (WRF) lwebsiteimecc.ipsl.jussieu.fr
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Figure 1. Maps of the simulation domain. The left map shows flight tracks of the IMECC campaign. Coloured lines indicated individual
flights. Black squares mark locations of profiles from start/landing of the aircraft or spiral flights. Heidelberg (HEI) and Cabauw (CBW)
ground measurement stations are also shown (red diamonds). The right map shows the positions of radiosonde launch sites (coloured circles
Circle colours indicate the number of radio soundings available in the period 24 August 2009 to 10 October 2009. Station abbreviations
are shown for the additional sites: Baden-Baden (BAD), Bremen (BRE), Garmisch-Partenkirchen (GAR)k @daN), Jena (JEN),
Oberpfaffenhofen (OHO), PozhgPOS), Trainou (TRA).

The second complication is more difficult to tackle, with a summary of the WRF-STILT modelling system and
because uncertainties in prior fluxes were shown toflux inventories. In the first part of the results section we
have substantial impact on simulated £€oncentrations present comparisons of WRF MHs to IGRA data and eval-
(Peylin et al, 2011). To isolate the effect of transport errors uation of KED optimized MHs as a prerequisite for tracer
on the CQ concentrations we prescribed the same,CO transport with STILT. The second part shows the compar-
fluxes for all simulations — more specifically we compare ison of CQ mixing ratios from our four simulations (two
results of two model setups with different PBL parameter- PBL schemes, henceforth called STILT/MYJ, STILT/YSU
izations, the Yonsei University Scheme (YSU, K-diffusion, and each with and without using optimized MHs from KED)
Hong et al, 200§ and the Mellor-Yamada—-Janjic scheme with aircraft and ground-based in situ measurements. We
(MYJ, Turbulent Kinetic EnergyJanjic 2002, prescribing  then discuss our results with respect to flux and transport un-
the same vegetation and anthropogenic,GlOxes. In ad-  certainties, followed by a discussion of the potential of the
dition, we utilize the independent auxiliary tracer CO, to as-method for regional C@inversions and an outlook on fur-
sess the model performance in simulating trace gas transporther research.

These two schemes are regarded as appropriate for the pur-

pose of our study, because, firstly, they differ conceptually —

the YSU scheme is based on K-diffusion and MYJ is solving2 Data and methods

for the budget of turbulent kinetic energy (TKE), and, sec-

ondly, it is known that MYJ produces weaker vertical mixing 2.1 Tracer observations and radio soundings

compared to YSU and other schemeki (et al, 2010); thus

a significant divergence in simulated transport of,@@n be ~ Figure 1 gives an overview on the simulation domain and
expected. location of available data sources, which are presented in the

The objectives of our paper are to clarify the following following.
questions: (1) What is the mismatch in g@ansport and _
can we improve C@transport by reducing errors in MHs? 2:1.1 IMECC campaign

(2) What is the model-data mismatch in MH of high reso- The IMECC . he first E ircraf
lution WRF simulations? (3) Can we adequately predict the € campaign was the first European aircraft cam-

MH from a limited set of data samples affected by measurepaign to calibra_te six ground-based Fourier trar_\sform spec-
ment uncertainties for the whole European simulation do-rometer (FTS) instruments that are used to retrieve column-
main? (4) Is the KED predicted MH consistent with the ef- averaged C@for comparison to satellite measurements, e.g.
fective MH? from GOSAT. During the campaign from 28 September to
The content of the paper is structured in the following Way.9 October 2009 eight flights were conducted. In 20 flight

We start by introducing the IMECC campaign and contin- hollilr.s ;2 000 km were ﬂQWfll Wit?’la specia}: empha;is on sFi-
uous measurement site data. Some effort is devoted to eX? dlgfts to rgtge\ieB \liertui:a_\ plrolll?ts ﬁua y covering an al-
plaining MH derivation from IGRA data and its uncertainty, titude from~0.3-13km (Fig.1, left). Measurements were

as well as the KED approach. The method section concludeillso madg during gtart and landing of the egrcraft, providing
some profiles starting from the surface, which allowed us to

www.atmos-chem-phys.net/14/7149/2014/ Atmos. Chem. Phys., 14, 71A%2 2014
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evaluate tracer concentrations in stable boundary layers. CQat standard pressure levels at 1000, 925, 850, 700, 500, 400,
and CO was measured at 0.5 Hz and 1 Hz with a precision 0800, 250, 200, 150, 100, 70, 50, 30, 20 and 10 hPa. In IGRA
0.1ppm and 2 ppb, respectively. From the measured meteadditional levels are included whenever significant devia-
rology and tracer profiles we selected five profiles for model-tions from linearity in the logarithm of pressure between
data comparison as further explained in S8&.1 The de-  two standard levels are observed. We use the derived data
tailed setup of the measurement equipment is described iset version 2 of IGRADurre and Yin 2008 maintained by
Geibel (2011). Height above ground information was es- the NOAA National Climatic Data Center availabletdtp:
timated from the aircraft altimeter and using output from //www1.ncdc.noaa.gov/pub/data/igra/derived-vitis spe-

a digital elevation model, i.e. the global 30 arc seconds to-cial version of IGRA is thoroughly quality controlled and
pography map (GTOPO30itp://www1.gsi.go.jp/geowww/ besides the standard meteorological variables provides de-

globalmap-gsi/gtopo30/gtopo30.himl rived quantities useful for studies of vertical structure, in-
cluding geopotential height, derived moisture variables, and
2.1.2 Ground observations: Cabauw and Heidelberg calculated vertical gradients of several variablearte and

Yin, 2008. On average, IGRA soundings had 16 data lev-
The Cabauw 213 m tall tower with inlets for G@nd CO  els (typically 13-19 levels) below a height of 500 hPa. Here
measurements at 20, 60, 120 and 200 m (a.g.l.), has been opre consider only soundings from which a MHO m using
erated by the ECN (Energy Research Centre of the Nethera bulk Richardson number method (see S2@) could be
lands) since 1992. CBW is located 25km southwest ofdetected and with non-zero surface wind-speed measurement
Utrecht, Netherlands (51.9W, 493 E, —0.7m a.s.l.)inan (see Eqgl). In the period 24 August to 9 October 2009 we
area of managed grassland. The area of 100 km around thésed 6722 (3417 daytime and 3305 night-time) soundings.
tower contains a population of more than 7 million people. In order to obtain estimates on typical uncertainties in
This local influence of significant contributions of sources MH retrieved from radio soundings we assessed instrument
and sinks makes the concentration footprint area of Cabauwoise from signal standard deviations in UKMO high reso-
one of the most intensive and complex source areas of greerdution radiosonde profiles as further explained in S2@&.1
house gases in the world, causing complex patterns in obThese we obtained from the British Atmospheric Data Cen-
served signalsMermeulen et a).2011). The sampling setup tre (BADC), the Natural Environment Research Council’s
is described irvermeulen et al(2011). Meteorological ob- (NERC) designated data centre for the atmospheric sci-
servations of standard parameters like wind speed, temperances lttp://badc.nerc.ac.uk/The UKMO soundings con-
ture and humidity are made at altitudes 2, 10, 20, 40, 80, 140tain 2 Hz data from UK stations and also from Gibraltar, St.
180, 200 m Ulden and Wieringal996. We use these mete- Helena and the Falklands. Two of the sounding stations were
orological measurements similarly Ygelezang and Holt- notincluded in the IGRA database, providing an opportunity
slag(1996 to obtain MH as is further explained in Se2t2 for validating the KED spatial interpolation of MHs derived

The second surface observation site is located in the subfrom the IGRA soundings (Se@.1.2.

urbs of Heidelberg (49.42N, 8.675 E, 116 m a.s.l.), within
the highly populated Upper Rhine valley in southwestern2.2 Diagnosing the mixing height
Germany. The inlet for C®and CO in situ measurements
is situated on the roof top of the Institut fir Umweltphysik, Itis known that methods to diagnose the MH from profiles of
University of Heidelberg~30m (a.g.l.).Levin et al.(2011) meteorological variables detect different features in a given
have shown the strong link between PBL mixing and ob- profile. An obvious example is the detection of the top of
served CQ variability at HEI. Concentration observations the residual layer instead of the mixing layer in stable condi-
are performed using the Heidelberg Combi-GC as describedions, leading to systematically different MH estimat8gif

by Hammer et al(2008. del et al, 201Q 2012 Seibert et al.2000. This necessitates
the consistent use of one single method to avoid methodolog-
2.1.3 Radiosonde data ical differences in comparisons. Furthermore, for a method

to be useful for our purposes it is important that it provides
Radiosondes (RS) are usually released one hour before thestimates consistent with the effective MH of trace gases
synoptic hours; most launches took place prior to the syn-as further discussed in Se&.2.1 Bulk Richardson num-
optic hours 00:00 and 12:00UTC. The balloon rises with ber methods Ri methods) were suggested for air pollution
a speed of~5ms1, i.e. it takes one radiosonde about 10— studies because they better correspond with the effective MH
15 min to sample the whole PBL. The data consist of verticalthan other methodsSgidel et al.201Q 2012 Seibert et al.
profiles of pressure, temperature, relative humidity, humid-2000. Ri methods are also considered suitable for convec-
ity mixing ratio, sonde position, wind speed and wind di- tive and stable boundary layers and allow for automatic pro-
rection for altitudes up to 20-30 km. The reported height iscessing of large amounts of datagidel et al.2012. Note
accurate to withink40 m (assessed at UKMO station Aber- that there are different implementations®f methods with
porth, seéhttp://badc.nerc.ac.uk/Data are usually reported associated parameter values, most importantly for the critical

Atmos. Chem. Phys., 14, 7149472 2014 www.atmos-chem-phys.net/14/7149/2014/
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Richardson numbeRri; (Vogelezang and Holtsladl996. the Richardson method as described in S2&. The num-
Here, we estimated the MH using ti& method suggested bersiy, > € N are found by considering the heighjswhich
by Vogelezang and Holtsla@ 996: are elements of the sét of physically consistent data points
in the profile surrounding,,, i.e. they are within the confi-
(&/6vs) (Ouh — Oys) (h — zs)

Ri,(h) = 1 dence neighbourhood ef,:
R R S R @

whereRi, is the Richardson number evaluated at each heighf/= =12 1 € m —1,m,m+1}}U

h above the surface heighthere 17 m) given profiles of vir- {zjm—li<j<m+ls ¢(m,j) <y}, (3
tual potential temperaturé\(), wind componentsi{, v) and

height above ground), as well as the gravitational acceler- Where¢ is the measure of confidence based on Welctest
ation (g = 9.81ms2). A given profile of Ri, was linearly ~ statistic:

interpolated to the MH wher®i, = Ric, with Ric = 0.25, \Ri,(zi) — Rio(z))|
which is the common value recommended in the literaturet (i, j) = —% > g2 = (4)
(Vogelezang and Holtslag 996 Seibert et al.200Q Seidel VOoi toj

et al, 2012. For the value of the surface level height-

gelezang and Holtsla@1996 tested 20, 40, and 80m and  In the denominator we use the variances of the error pro-
found little sensitivity. Here we have chosen the height at thefile which corresponds to thei, profile of a given sounding
centre of the first WRF vertical layer, which+igl7 m. IGRA as described above. From Monte Carlo simulations it was
profiles were linearly interpolated on a logarithmic pressurefound that values of & y < 3 are physically consistent. For
scale to 17 m from the surface measurement and the first upour purposes we set = 2. The advantage of this method is

per air levet> 17 m. the ability to express the uncertainty on a per sounding ba-
sis, instead of deriving a statistic of general uncertainty over
2.2.1 Estimation of MH uncertainty all profiles as was done e.g. I8eidel et al(2012. To ac-

count for additional uncertainty caused by the low resolution
The uncertainty of MH diagnosed from Eq.) vas approx-  of |IGRA RS we assumed additional 50 m uncertainty, which
imated following the method introduced WBiavati et al. s hased on the analysis S&idel et al(2012. The estimated
(2014. Here we briefly summarize the basic steps of ap-yncertainties are shown in Fig. This combined MH un-
plying the method to our MH retrievals. First, the variabil- certainty is further propagated through the KED estimation
ity in the 2Hz UKMO RS signal of the individual profiles a5 explained in the following section. The usefulness of the

of pressure, temperature, relative humidity and wind com-gerived MH uncertainties will be evaluated in SextL
ponents was estimated for each radio sounding. This was ac-

complished by applying a running standard deviation on eactp.2.2  Optimizing modelled MHs

of the available RS profiles, after removing local trends by

subtracting a running mean of three data points from eachrollowing the method proposed Ii§retschmer et al(2013

data point in a given profile. The typical noise of each vari- we need to predict fields of the MH covering the full Eu-
able was then assumed to be uniform for all UKMO and ropean domain at 10 km spatial and hourly temporal resolu-
IGRA soundings. Second, this noise of the RS signal wadion, which are then used as input fields for the STILT model
propagated as error variance through all calculations neede(bect.2.3). The geostatistical approach kriging with exter-
to get theRi, profiles, including Eq.X) using standard sta- nal drift (KED) allows us to objectively take MH uncertainty
tistical error propagation. This results in a discrete profile of (Eq. 2) and interpolation uncertainty into account. The pur-
errors, i.e. one error estimation for each discrete sample poinpose of the external drift is to guide the interpolation with
in a givenRi, profile. These error profiles were computed data that are more easily obtained than the actual observa-
for all consideredri, profiles and were then used to esti- tions and which add some physical process information to the
mate the MH uncertainty as follows. All profiles of a given linear prediction system. Since kriging is a well-established
radio sounding including the height above grounaind the  geostatistical approach, we summarize the main steps and
Ri, profiles are conceived as sequences of real numbers (dathe reader is referred to the standard literature @rgssie
points) with common indices. The profile of errors for a given 1993 Wackernagel1995. The MH Zi*(u, t) at unobserved

Ri, profile has then been used to estimate the uncertainty ofocation in space and at time is predicted by

localizing the MHowy within that profile:

.1 b , Zi*u 1) =y wi(u,0Ziui. 1), (5)
= " — ) 2 i=1

where the value of Z(u,r) is obtained from a weighted
Here,z,, is the value at index: of the height profile of the = combination ofn observed MHs Zi diagnosed with EdL)(
given radio sounding at which the MH was localized using Kriging methods like KED solve for the weights; such

www.atmos-chem-phys.net/14/7149/2014/ Atmos. Chem. Phys., 14, 71A%2 2014
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a) daytime b) nighttime
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Figure 2. Uncertainty of the calculated MH with height (a.g.l.) shown in 100 m bins for daytapend night-time(b). The uncertainties

were estimated using ER)( All available IGRA observations were used for the calculations. Daytime values are shown starting from 100 m
(a.g.l.). Boxes denote the central 50 % of the data, whiskers aré&.&ttimes the inter-quantile range and outliers are not shown. Black line
within boxes indicate the median value.

that the interpolation error is minimal (Best Linear Unbiased 2007, andS has a similar role as the background in these ap-
Estimator, BLUE). The map of MH Zi is conceptualized as proaches. Therefore, one can interpret KED as a way to cor-
random field composed of deterministic mean, referred to asect or optimize the background MHs in the sense of model—
trend, and spatially coloured random noise (auto-correlated)data fusion {WVackernagel1995. We prefer the term MH op-
For this MH field second-order stationarity is assumed, i.e.timization here as it emphasizes the need for a high-quality
the auto-correlated part depends on the separation distand®mckground field, i.e. the variability in the predicted MHs can
only and is translation invariant throughout the estimationonly be as realistic as provided by the meteorological model
window, which is a smaller part of the domain. The auto- owing to the highly underdetermined problem. In this regard
correlation of the residuals (signal trend) is usually mod-Hengl et al.(2007) highlight the importance of a high corre-
elled by one of several permissible variogram functions adation of background and observations, also discussed in the
explained below. The trena: (u,1)) in KED is assumed to  context of MH prediction byKretschmer et al(2013.

be a linear combination of external driftsuch that it satis- The underlying auto-correlation of the MH field is approx-
fies imated with a variogram model fitted to the sample vari-
. . ogram, which is a function of the distance in spakeg @nd
m”(u, 1) =" +p7Su, 1) ©6) time (k) between any pair of MH sample-trend residuals
E[Zi(u,t)] =m*(u,t). (Res;) of the conditioning data binned in distance classes
of size (V):

The coefficients¢*, g*) are first solved for by ordinary
least squares by evaluating the simulated MHs at obser-A(h he) =
vation points, and then in a second iteration predicted byy u =
KED together with the KED weights taking space—time auto- 1 Z [Rewi(u, 1) — Rei (u + hy, t + hi. @)
correlation of the MHs into account. Since the second it- 2N (hu, ht)
eration usually has only a minor impact on prediction skill

(Hengl et al, 2007, we omit this step. Herd is obtained Here, the assumption is that as auto-correlation decreases,
from MHs estimated from WRF simulated meteorology by the dissimilarities (semivariances) between residual pairs in-
using Eq. ). As was shown irKretschmer et al(2013, crease with separation distance and are bounded by a max-

KED estimates are better able to resemble a realistic finetmum value called the sill. Space and time variogram were
scale variability in MH field when using the covariate com- calculated separately (by settihg= 0 andi, = 0 for the
pared to ordinary kriging, which only uses a model of auto- space and time sample variograms, respectively), and then
correlation and the observed MH samples for interpolation.combined linearly with coefficients obtained from the sill
Kriging is mathematically equivalent to data assimilation values and a global sill to yield the product—sum variogram
techniques used in numerical weather prediction (Optimalmodel, which allows for space—time interaction as described
Interpolation, 3DVAR;Kalnay, 2002 Wikle and Berliner in detail inDe Cesare et a{2001). The global sill is found
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by evaluating Eq.q) beyond the distances in space and timefields on a 10 km grid for the STILT model. STILT is a re-
where the respective sills were reached. ceptor oriented Lagrangian particle dispersion model intro-
Due to the strong diurnal cycle in MH (a result from the duced byLin et al. (2003. Since we basically use the same
solar insulation driven turbulent mixing) in combination with modelling system as ifKretschmer et al(2013, we give
limitations in temporal resolution of the conditioning data only a brief summary here. The STILT model calculates for
(the MH observations), special care has to be taken to dea given grid boxi, j of the domain, the rate of change in
rive the residuals needed in EQ).Similar toKretschmer tracer concentration at the receptoe.g. a tall tower obser-
et al. (2013 we calculated spatial sample variograms for vation site, over time steg from a footprint functionf and
day and night observations separately, i.e. 12:00 UTC andhe surface fluxe# (Gerbig et al.2003h Lin et al,, 2003:
00:00 UTC. MHs derived from WRF simulations were sam- ACy i i Coits) = FCorto|i. it F (i i ) )
pled at the grid box closest to a given IGRA profile. This = "5/ ro bt Yis tm) KL Yis tm)-
was repeated for each of the WRF PBL schemes used (YSU The footprint elementf(...) relates fluxes at a specific
and MYJ). We estimated the deterministic component of thelocation and time to changes in the mixing ratio along the
observations in accordance to E@) by fitting a weighted  particle trajectory. The flux functio(...) represents any
linear regression model to the observed MH as a function ofcombination of offline flux input and online calculated fluxes,
the WRF MHs, taking the reciprocal of the estimated MH which are described in Se@.4. The footprint is calculated
uncertainty from Eq.2) as weights. The resulting regression by releasing ensembles of 100 particles at the receptor and,
residuals were taken to evaluate E@). (Variogram mod- for each particle, advection with the mean wind provided by
els were fitted to each sample variogram shown in Big. WRF is computed. As particles move further away from the
The day variogram model was used to predict hours 9 toreceptor the grid is aggregated to a coarser resolution to ac-
16, which was found suitable for this domain Kyetschmer  count for effect of undersampling caused by the relatively
et al. (2013. Since the 12 h resolution of the IGRA data is small ensemble size. Turbulent diffusion is implemented as a
too coarse to constrain the variogram model sufficiently, westochastic process which is added to the mean particle trajec-
make use of the hourly MHs from the WRF simulations, as-tory. Mass fluxes related to moist convection (updraft, down-
suming that the resulting semivariance closely resembles thdraft, and entrainment fluxes) are provided by WRF through
temporal auto-correlation properties of the observed signathe Grell-Dévényi schemesfell and Dévényi2002, and
adequately. This assumption is reasonable since we have chare applied in STILT in a stochastic waiéhrkorn et al.
sen PBL schemes that were shown to realistically simulate2010. The WRF setup is summarized in Tallle
PBL dynamics Ku et al, 2010. We sampled WRF MHs STILT determines the mixing height offline from the me-
again separately for day and night. Because we have usettorological driver fields using & method, or MHs are pre-
WRF MHs as the MH data points, i.e. synthetic data, insteadscribed externallyl(in et al., 2003. For the control simu-
of real IGRA data we cannot use the same WRF MHs adations we determine the MH from WRF output using the
trend to calculate the residual terms (Rgsn Eq. (7). In- Ri method (Eq.1). To reduce the impact from MH errors
stead we follow the usual procedure to model the diurnal paton tracer transport we use the KED optimized MHs (see
tern in the WRF MHs as deterministic trend using an oscil- Sect.2.2.2 as external input for STILT.
lating sinusoidal function. The residuals between this model The results oKretschmer et al(2013 indicate that the
and the WRF MH were then used to compute Eg).fbr dominant effect of MH errors on the transport simulation is
the time domain. MH uncertainty obtained from E8&) (s the turbulent diffusion of tracer particles up to a wrong alti-
considered in the MH prediction by adding this uncertainty tude, suggesting that potential physical inconsistencies and
to the diagonal elements of the covariance matrix used irside effects affect the tracer concentrations in the mixing
the KED system of linear equations as suggestetivagk- layer to a minor extent. Such physical inconsistencies involve
ernagel(1995. This covariance matrix contains covariances other meteorological input variables used for the turbulence
between any pair of MH observations that were computed bycalculations. The profiles of vertical velocity varianeg,
subtracting the semivariances from the sill values obtainedvhich determines the amount of random deviation from the
from the variogram model fit. mean vertical wind for a given particle, and the Lagrangian
The described computations were executed using a modimescaleT;, which describes the decorrelation in the par-
ified version of the Edinburgh Space Time statistiSpg- ticle movement (in et al, 2003, depend not only on the
davecchia2009 and the geoR package for the R program- MH, but also on roughness length, Monin—Obukhov length,
ming language@iggle and Ribeirp2007 Ribeiro and Dig-  convective velocity scale, and frictional velocity, following

gle, 20079). Hanna(1982. However, only the mixing height determines
the altitude at which strong turbulent mixing changes from
2.3 Transport modelling high values within the mixing layer to lower values for the

free troposphere. Here our assumption is that the potential
Our transport modelling system consists of the Eulerianimpact of the other meteorological input variables on result-
WRF model, which provides hourly meteorological driver ing tracer profiles is small. To support this assumption, we
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Figure 3. Spatial(a, b) and temporalc, d) sample variograms as calculated with Ef) for day and night separately. Spatial sample
variograms were calculated from model/observation linear regression residuals for each WRF setup using MYJ (grey pluses) and YSU (grey
triangles) PBL scheme. The time variograms were calculated from WRF MHs subtracting a diurné&t tddndotable differences between

PBL setups were found; thus we fitted separate variogram models for each PBL qcheth&ED was set up to use 25 neighbours in

space and 3 in time, i.e. 75 observations were used to predict each of tHe 40P grid cells of one WRF simulation. The maximal
distance between any pair of observations were typically below 2500 km in space and 48 h in time because of the 12 h temporal resolution of
the conditioning data. The variogram models were fitted to cover these ranges. A temporal trend is observed at synoptic scales beyond 50 h
which does not affect the fitted variogram modglsd).

Table 1. Setup of WRF options.

Option Setting

Model code version 3.0.11

Time step integration 1 min, third-order Runge—Kautta, output interval 1 h

Grid definition 280x 400 (north—soutlx west—east), 10 km spacing, Arakawa C

Vertical coordinates 41 levels (20 below 2 km), terrain following, eta coordinates, pressure top
50 hPa

Basic equations Non-hydrostatic, compressible

Microphysics WREF single moment class 5

Atmospheric radiation Rapid Radiative Transfer Model (RRTM, long wave), Mesoscale Model 5

(MM5, Dudhia, short wave)
Cumulus parameterization  Grell-Dévéni
Land-surface model (LSM) Noah LSM, 4 soil layers

PBL scheme Yonsei University (YSU setting), Mellor—Yamada-Janjic (MYJ setting)
Surface layer scheme Monin—Obukhov similarity (YSU setting), Monin—Obukhov (Janjic Eta,
MYJ setting)
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Figure 4. Comparison of WRF- and IGRA-derived MHs using tRemethod. We used about 6700 samples almost evenly distributed among
day and night (00:00 and 12:00 UTC). The left colufanc) shows 12:00 UTC and the right colunfio, d) 00:00 UTC data. The function

of a weighted linear regression model together with the resu;lﬁrig shown in the upper left corner of each plot (dashed grey line). The
weights were set to the reciprocal of the MH estimation uncertainty. The regression function neglecting this uncertainty is indicated as a solid
grey line. The squared correlation coefficients for the latter are shown in Zable

would need to assimilate these additional variables, but inDuring daytime the NEE is less homogeneous, but the mix-

comparison to MHs these are harder to measure. Anotheing layer is generally deeper and thus the impact of a slight

side effect is the de- or entrainment of air particles to or fromincrease of the MH is expected to cause only small alterations

the layer above the mixing layer when the MH is changed, inof the mean horizontal trajectories. These assumptions are

combination with wind shear typically present in that region, supported by the results &fretschmer et al2013.

which could lead to an alteration of the particles’ trajectories In the present study transport was simulated hourly for

within the mixing layer, resulting in modified surface influ- Cabauw and Heidelberg in the period of 1 September to 9 Oc-

ence. Lowering the MH leads to a more local flux influence tober 2009, and for receptors located along the IMECC flight

since horizontal wind speed decreases with decreasing didrack (Fig.1). The STILT domain was set up to cover most of

tance to the surface; thus we can expect a minor alteration oEurope on a Cartesian grid at12° x 1/8°(~10 kmx 10 km)

mixing ratios. More sensitivity has to be expected in the caseas inGerbig et al(2008 with 41 vertical levels similar to our

of strong wind shear near the MH together with an increaseVRF setup.

in the MH. This is likely to happen during night-time when

low-level jets can develop near the MH. For €@e can 2.4 Boundary conditions and input fluxes

expect minor negative impact on mixing ratios, because the

dominating respiration flux is spatially rather homogeneous.For the transport simulation of any tracer, lateral boundary
conditions and surface fluxes need to be prescribed. These

www.atmos-chem-phys.net/14/7149/2014/ Atmos. Chem. Phys., 14, 71A%2 2014
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Table 2. Results of the comparison of WRF and IGRA RS-derived MHs based onl(uper panel) and cross-validation results (lower
panel) for day (12:00 UTC) and night (00:00 UTC). Results are shown for both PBL parameterizations: MYJ and YSU. The values in the
tables denote the results without and with considering the MH uncertainty shown in the format: without/with MH uncertainty considered.
The MH uncertainty was derived as described in S2@.1 Bias and random error were normalized by the mean observed IGRA derived

MH (columns % Bias, % RMSE). When taking MH uncertainty into account the normalization was done with a weighted mean. Column %
SD refers to the number of observations within one standard deviation of the KED estimate and % CI to the observations within the 95.42 %
confidence interval.

Comparison of WRF MH to IGRA derived MH

Simulation  Time Bias % Bias RMSE % RMSE 2 %inSD %inCl
MYJ day —144/—219 —14/-20 543519 5242 032/0.41 NA NA
YSU day —36/-116 3/10 533487 5142 0.300.41 NA NA
MYJ night 10889 54/40 235222 11692 0.5¢0.61 NA NA
YSuU night 156/135 7761 277/259 137116 0.540.61 NA NA
Cross-validation results of KED derived MH
Simulation  Time Bias % Bias RMSE % RMSE 2 %inSD %inCl
MYJ day 535 0/3 521/458 5040 031/0.42 6969 92/91
YSU day 742 1/4 518447 5039 032/0.45 7374 9594
MYJ night 4/13 2/5 195196 9¢/85 057/0.62 7878 93/93
YSU night 515 2/6  192/195 9484 059/0.63 81/80 9595

fields were re-projected and aggregated to the STILT grid Contributions from oceanic fluxes were accounted for by
taking mass conservation into account. In the following weincluding theTakahashi et al(2009 climatological inven-
give a summary of the input data we used for individual trac-tory for the reference year 2000 and revised in October 2009

ers. provided monthly with a spatial resolution of 4 5°.
Vegetation fluxes of the net ecosystem exchange (NEE)
241 CO were calculated within STILT based on the Vegetation Photo-

synthesis and Respiration Model (VPRMahadevan et gl.

The CQ boundary conditions were taken from 6-hourly 2008. VPRM is a diagnostic model that uses as input short-
analysed fields of 2009 from the Jena Inveréiversion 3.3 wave radiation and 2m temperature, both calculated within
on a4 x 5° grid with 19 vertical levelsR6denbeck2009.  WRF (variables SWDOWN and T2), and two vegetation in-

To prescribe combustion fluxes we make use of thedices. These indices, the enhanced vegetation index (EVI)
2005 Emission Database for Global Atmospheric Researchand the land surface water index (LSWI) are obtained from
(EDGAR) on a 01° x 0.1° grid to consider anthropogenic 500 m, 8-daily MODIS (Moderate Resolution Imaging Spec-
flux contributions (source: EC-JRC/PBL; EDGAR version troradiometer) satellite surface reflectance dat@(//modis.
4.1. http://edgar.jrc.ec.europa.e010). Similar toStein-  gsfc.nasa.gdv VRPM indices are scaled with parameters
bach (2010 we extrapolated country total emissions to gptimized against eddy covariance flux measurements for
the year 2009. The extrapolation is based on BP statisticEurope Pillai et al, 2011) to derive respiration and Gross
obtained from http://www.bp.com/statisticalreviewThese  Ecosystem Exchange (GEE) fluxes separatslghiadevan
emissions were then spatially distributed down to the gridet al, 2009. There is one parameter set for each of the
level based on the 2005 data set. Time factors were obtainegight vegetation classes used. Fractional vegetation cover-
from the EDGAR database and then applied to yearly fluxesage for each model grid cell was derived from SYNMAP
to resolve the daily cycle. The time factors are based on thgJjung et al. 2006 with a horizontal resolution of-1 knr?.
step-function time profiles published on the EDGAR website \yvPRM fluxes were calculated once from SWDOWN and T2
(http://themasites.pbl.nl/tridion/en/themasites/efigdhese  produced by the WRF-YSU simulation and then used for all
were modified before they were applied to yearly fluxes inother STILT simulations, which effectively resembles an of-
order to resolve the daily cycle. The modification of the tem- fline flux model similar to the other offline fluxes (EDGAR,
poral factors involves a better global representation and &cean fluxes). This approach ensures that all transport simu-
smoothing of the monthly transitions (s&einbach2010  |ations use consistent biospheric fluxes and thus facilitates
for further details). the interpretation of the results, avoiding the impact from
e.g. changes in temperature and cloud cover due to MH al-

2Available at www.bgc-jena.mpg.de/~christian.roedenbeck/ terations on the fluxes. In contrast to CO, emissions due to
download-CO2-3D/
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fire were not considered explicitly, because they are knownTable 3. Results of STILT-data C®comparison at Cabauw (up-

to have only negligible impact on G@oncentrations. per half) and Heidelberg (lower half), considering STILT/MYJ
and STILT/YSU simulations (rows: MYJ, YSU). Also shown are
242 CO the statistics of the STILT simulations using KED-optimized MHs

(rows: MYJ KED, YSU KED). Bias and RMSE were normalized
CO s used as auxiliary tracer to isolate the impact from com-With the observed C@subtracting STILT simulated background
bustion fluxes on C@®signals. Initial and boundary condi- concentrations (columns_ % Bias and % RMSE). Day denotes hours
tions for the CO transport were obtained from re-analysed!0-00-12:00UTC and night 20:00-04:00 UTC.
4-D fields provided as part of the Monitoring Atmospheric
Composition and Climate (MACC) project (sourdatp://

CO, Cabauw, 20m

data-portal.ecmwf.int/data/d/macc_reanalysishe MACC Simulation Time Bias %Bias RMSE % RMSE r?
re-analysis is provided on a 6-hourlyl25 x 1.125 grid MYJ day 1.45 9 4.95 31 064
with 60 vertical levels. Similar to the CQracer we obtain MYJKED day 0.84 5 4.60 29 0.69
anthropogenic emission from EDGAR (Sez#.1). The im- YSU day 117 7 4.81 30 0.66
act of fire emissions are considered by including flux fields YSYKED day ~ 0.83 5 4.58 28 069
P y 9 MYJ night —8.96 —56  16.34 101 0.53

from the Global Fire Emissions Database (GFED; source: \vjkep night —2.95 —18 17.45 108 0.59

http://www.globalfiredata.ojgn version 3.1. We used the 3-  ysu night —-9.96 -62  17.77 110 0.42
hourly fields on a ®° x 0.5° grid (Mu et al, 2011). The ma- YSUKED night -1.02 -6 22.4 139 0.42
jor sink for CO is atmospheric destruction by hydroxyl rad- CO, Heidelberg, 30m

ical OH which is computed within STILT. Similar tGerbig

. X . i . . . . 0, . 0, 2
et al.(2003 we estimate the OH on a given particle location _Smufation  Time  Bias  %Bias RMSE % RMSE r

based on a climatological OH field. The soil uptake of COis MYJ day -189 -10 438 23 0.75
an order of magnitude smaller than the OH reaction and is MYJKED day — -187  -10  4.57 24 070
herefore neglected YSu day -1.68 -9 5.08 27 0.6
there 9 - YSUKED day -1.31 -7 457 24 0.67

MYJ night —6.91 —36  11.84 62 0.58
2.5 Statistical measures MYJKED night -254 —13  11.67 61 0.51

YSu night —7.04 —37 1232 65 0.53
To summarize the performance of the transport simulation YSUKED night -1.53 -8 11.12 58 0.53

and MH optimization we report some commonly used sta-
tistical measures. Bias is computed as the mean differ-

ence between pairs of estimated and observed quantity, suct]

that the bias is negative when the estimations are on avd ots exhibit large scatter, especially during daytime. Cor-

erage smaller than the observation and positive if the esti_re_spondlngly, the explained variability is rather 'OW at Qay
. with ~30 % for both PBL schemes compared to night-time
mates were greater, respectively. The random error denotes.

. ) - Wwith over 50%. Unlike the simulations, IGRA-diagnosed
the standard deviatianof these differences. In addition, we . . )
) . H seems to detect surface-based inversion layers fairly of-
report the root mean squared error as a function of bias an

random error: RMSE= (b + 52 Y/2. To test the statistical en, which leads to MH detection at the first upper air level

significance of the bias we performed one-sample, two-taileo(17 m). Ta"'f‘g MH uncertainty (E) as weights fqr the lin-
ar regression into account seems to downweight some of

t tests. With the null hypothesis that the sample was unbiaseﬁ1ese rather low IGRA MHs, which is likely caused by the

(b =0) with a 5|gn|f|<_:ance I_evel of 0.05. Welghted statistics poor vertical resolution of IGRA RS that affects especially
were calculated setting weights to the reciprocal of the est|-the night-time Seidel et al,2012. The weighting results in
mated MH uncertainty variance (see S&ck.2. 9 i i ghting

improved correlation coefficients by10 %.
Table 2 summarizes some statistics computed from the
comparison taking the MH uncertainty into account. In gen-

3 Results eral all simulations exhibit significant bias and substantial

3.1 Evaluation of mixing heights random error especially at night. As could be expected YSU
produces the best correspondence to IGRA MHs at day, with

3.1.1 Comparison of WRF MHs to IGRA RS bias ~10 %, albeit random errors of 40 % occur. MYJ ex-

hibits greater daytime bias @¥20 %, which is expected to
Figure4 shows the comparison of MH estimated from IGRA bias the simulation of vertical tracer diffusion notably. At
profiles for day and night-time and both WRF simulations. night YSU has a large bias of 60% while MYJ exhibits
Daytime WRF MHs are in general lower than observed.a bias of only 40 %. Random errors for both PBL schemes
Most night-time MHs are below 500 m although there are approach 100 % at night. These numbers confirm the large
quite a number of MH above that threshold, which is reason-model uncertainty in MH during night-time; thus we expect
ably captured by both WRF simulations. However, all of the a corresponding transport model error, which will lead to
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too much or too little accumulation of tracer mass in the w/o uncertainty
SBL, respectively. Thus, the use of optimized MH should
have most potential for improvement in stable/wind-shear-
driven conditions. The observed mismatch in MHs are com-
parable to the findings dBerbig et al.(2008. They com-
pared radiosonde based MHs to ECMWF-analysed metea
rology (~35 kn? resolution).

w/ uncertainty

September 9
12 UTC
YSU PBL

background)
=
32

WRF MH

3.1.2 Evaluation of MH optimization

00 05 10 15 20

estimated
)

We assessed the skill of the KED optimization by cross-L X<
validation, such that each of the 6722 IGRA samples was= = g WA Y e _
temporarily excluded from the data set and then estimate(, c¢) (km)
with the remaining data. Tabl2 shows the results of the £ 2 ; ; T
cross-validation, which was executed with and without tak- 3
ing MH uncertainty into account to test the validity of the
assumptions stated in Se2t2.1 A small but significant bias  w
on the order of a few percent remains for some simulations= .
which decreases when taking MH uncertainty into account.
Compared to the random errors of the unoptimized WRF MH s
(see Table, upper panel) the random errors of the optimized
WRF MH are slightly smaller during the day (see TaBle
lower panel), but become notably smaller when considerin
MH uncertainty, too. The correlation values stay at the level
before the optimization with rather low values for the caseFigure 5. Example of the KED estimation. Shown are the MHs pro-
neglecting MH uncertainty. The KED errors were reason-duced by the WRF YSU simulatica) for each 16« 10 ki pixel of

ab|y estimated — from a normal distribution we would expect the simulation domain on the 9 September 2009, 12:00UTC used as
68 % of the observed MH to lie within one standard deviation €xternal drift (background field) in the KED estimation. The maps
and 95 % within the confidence interval of the KED estimate. " (®: C’fd) Seft COL“TAE) _Shct’;]"’ e;:zigatiotp refﬁ”'ts ”%glt‘;‘:“”_g rl:tncelr_

. T . tainty of observe In the estimation an erl col-
This reS.UIt suggests the poss!blhty of.propagat.lng these un[Jmnythe results when accounting for this uncertainty. Theg}]<ED op-
C?rtamtles through a Caner.S|0r.1 as.dlscussgd n Se@g . timized MHs are shown in ro\b). The innovation for each pixel is
Flgur_eSShows an example _hlgh!lghtlng t_he differences in _'n' computed as the difference of optimized MH and background field
novation when MH uncertainty is taken into account, which (yo, ). Also shown in row(d) is the resulting KED error variance.
also leads to alterations in the spatial distribution of KED |ess error variance is observed near the locations of radiosondes.
errors.

We compared estimated MHs to 73 UKMO RS profiles (32
day, 41 night) from the stations Castor Bay and Albemarlebe consistent if they are within one standard deviation of
(shown in Fig.1). Castor Bay was typically 380km and the KED error. However, there is no well-established method
Albemarle 230 km away from the next IGRA station. The re- known to us to objectively diagnose effective MHs from£0O
sults were comparable to the cross-validation (not shown). Irprofiles. Here we followed a visual approach. First, we se-
general, daytime MHs are less affected by the MH optimiza-lected profiles which have a good vertical £data coverage
tion while large reduction in bias and random errors occurredn the lower parts of the PBL. We omitted profiles where data
at night, together with substantial increases in correlation. Inin the PBL are sparse or missing, such that in the remaining
contrast to the cross-validation, we observed KED variancegprofiles gradients from vertical mixing are visible. The anal-
that are usually too conservative, with80 % in one stan-  ysis of profiles obtained during stable conditions, i.e. mainly
dard deviation of KED error, which might be due to the small night-time and early morning, was hampered by poor data

Estimat
tion)

Innova

(

imation eri
(KED variance)

[{e]
Est

sample sizes. coverage and by the fact that the relationship between the
CO, profile and the Richardson number is not well under-

3.2 Comparison to IMECC campaign data stood. During these stable conditions we often observed the
absence of mixing, caused by strong temperature inversions

3.2.1 Effective CQ mixing height and low friction velocities. The definition of a MH is difficult

in such situationsSeibert et a.2000 and CQ concentra-
In order to test whether the KED MHs are consistent with tions show large gradients in the lowesb00 m. Therefore
the actual vertical mixing of C& we estimated an effec- we decided to analyse profiles that have been taken likely in
tive MH from IMECC vertical profiles. We define MHs to well-mixed conditions. The profiles that were used for the
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Table 4. Comparison of C@ and MH model to model differences shown for Cabauw. The differences were calculated by subtracting the
simulations using YSU PBL scheme from the ones using MYJ PBL scheme for each experiment, i.e. with and without MH optimization
respectively. Day denotes hours 10:00-12:00 UTC and night 20:00-04:00 UTC.

MH Optimizaton Time CO Bias (ppm) CQRMSE (ppm) CGr2 MHBias(m) MHRMSE (m) MHr2

off day 0.27 2.42 0.86 —116.56 189.96 0.74
on day —0.06 2.18 0.86 5.45 122.09 0.84
off night 2.16 17.77 0.5 —90.79 178.94 0.85
on night —-0.92 26.29 0.46 —14.04 105.14 0.88

analysis are shown in Fig. During well-mixed conditions the mixed and residual layer. The effect of optimization in
the profiles of CQ@ concentrations are constant with height the residual layer was in general negligible.

within the mixed layer, and exhibit a gradual change to free

tropospheric values above. Thus, we plotted the, @@&- 3.3 Comparison to ground measurements

dients as a function of altitude and then selected the height

above the surface layer where the gradient from ML to freeWhile the IMECC profiles give a good vertical coverage,
troposphere was observed as the effective MH. This visuathey provide only snapshots. Thus the continuous observa-
approach requires that turbulence in the entrainment zon&ons from Cabauw and Heidelberg are useful to better un-
causes well distinguishable gradients in {1Bat can be de- derstand the impact of MHs on Gdime series as shown in
tected. Thus a larger uncertainty is expected for cases whehig. 7. The average diurnal cycle of KED estimated MH are
mixing layer and free troposphere (or residual layer) haveshown in Fig.8. Table3 gives an overview of the statistics.
nearly the same concentration. As indicated in FBigop-

timized MHs are in most cases consistent with the effective3.3.1 Cabauw

MH. This result holds for both PBL schemes. WRF generally _ )
reproduces the observed potential temperature profiles wefriguré7a and b show the complete CBW time series at the
and accordingly the optimized MH has a minor impact at day,20 M level, which is mostly affected by the MH during day
except one instance at Hohn, 2 October 2009, 12:17 UTENd night. The C@signal at CBW shows a pronounced am-
when the WRF MH is 200-300 m too high. This error is sig- Plitude of 30 ppm on average, caused by the accumulation of
nificantly reduced in the optimized MHs. Another instance at"espiration and nearby anthropogenic sources during night.
Hohn, 9 October 2009, 11:34 UTC shows a well-mixed IayerThe diurnal and synoptic variability in the time series is well
of CO, up to only~600 m, while the simulations show much represented in all simulations witﬁ typically between 0.5
larger mixing heights. Here MYJ had a better agreement with@nd 0.7. These values generally improve-§-6 % when

the observed C@profile, but the MH optimization caused an USing optimized MHs (see Tabl®. Large negative biases
increase of the MH. Such large deviations are an indicationVére produced at night o9 to —10ppm, when the op-

of low correlation between WRF background and condition-timization of MHs is most effective reducing biases from
ing data from IGRA RS. Here the effective MH is not within —26 % t0 —18% (STILT/MYJ) and from—62 % to —6 %

one standard deviation of the KED error, but well within the (STILT/YSU; see Tabl@), which was expected from the MH

confidence interval. cross-validation results. There are positive biases at day of
1.17 ppm (STILT/YSU) and 1.45 ppm (STILT/MYJ) about 9
3.2.2 Simulated CQ profiles and 7 % of the regional signal, i.e. here the bias reduction

due to MH optimization is at 29-44 %. The overall size of
Here we focus on the STILT simulated @@rofiles during  the errors is comparable to previous simulation results (e.g.
the IMECC campaign (Fig6). During well-mixed condi- Broquet et al.2011). Note that we used prior fluxes for the
tions both STILT simulations are able to reproduce the ob-regional simulations, which were not optimized against ob-
served CQ profile reasonably, but tend to bel ppm too  servations of C@through inversions. The random errors in-
high in the mixing layer. Because differences in initial and crease during events when using optimized MH fields, e.g.
optimized MHs were small, the impact on @@imulations 7 to 9 September or 25 to 28 September (Fig.and b).
was limited, but usually the mean G@oncentration in the The events are characterized by especially large random er-
mixing layer is corrected towards the observations. A no-rors and model-model differences. The error is most obvious
table example is the profile at Hohn, 2 October 2009, wheren the STILT/YSU simulation, which is further discussed in
the CQ concentration was adjusted by about 0.5 ppm, butSect4. At the highestinlet (200 m) the signal amplitude is on
a 1ppm model-data mismatch in g@emains. The pro- average a factor 6 smaller (not shown), and model bias and
file near Gdask, 30 September 2009, 10:37 UTC shows random errors were below 5 ppm respectively wih~ 0.5.
a large model mismatch in GQroncentrations throughout At this altitude the overall bias of the STILT/MYJ reduced
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Figure 6. Measured and simulated IMECC profiles measured in daytime with enhanced mixing. The left column shows observed (black
dots) and WRF simulated potential temperature. Shown are both WRF simulations using the YSU PBL (orange dash-dotted lines) and the
MYJ PBL (blue dashed lines) parameterization schemes. The statistics in the temperature plots indicate the location and time of the profile.
Site abbreviations correspond to the red squares on the map id.Fdso shown are the minimum and average distances to the next
IGRA radiosonde used for optimization. The comparisons of STILT simulated and obserggar@files are shown in the middle and right
columns. A new STILT receptor was defined every 10 km horizontal or every 100 m altitude change of the airplane. Horizontal lines indicate
MHs. Observed MHs were derived by analysing gradients in the @©file (see text for details, black lines). STILT MHs are averages

from all receptors of a given profile. STILT GQprofiles are shown with (orange crosses) and without optimized MHs (blue triangles). One
standard deviation of the KED error is shown as an orange dotted bar in the right of each plot. Thick vertical lines from the surfade)(0O ma

to each MH correspond to mixing layer averaged>Ghblue and orange lines).

Atmos. Chem. Phys., 14, 7149472 2014 www.atmos-chem-phys.net/14/7149/2014/



R. Kretschmer et al.: Mixing height optimization 7163

550
550

| — oBs
- = YSU, bias/RMSE/corr.: -4.95/12.78 / 0.51
KED, bias/RMSE/corr.: -0.62 / 15.37 / 0.51

| — oBs
- - MVJ, bias/RMSE/corr.: ~4.41/11.87/ 0.58
KED, bias/RMSE/corr.: -1.56 / 12.6 / 0.61

I
/0
\

1
Z
a4
\
v
\
\

500
500

CO, mixing ratio (ppm)
400 450
I I
Q
,g -

450
|

=

09/01 09/05 09/09 09/13 09/17 09/21 09/25 09/29 10/03 10/07 09/01  09/05 09/09 09/13 09/17 09/21 09/25 09/29 10/03 10/07
time (month/day) time (month/day)
o o
n — n — —
10 — OBS c | b — OBS e |
. - - MYJ, bias/RMSE/corr.: —6.08 / 13.42/ 0.49 < ] <3 - - YSU, bias/RMSE/corr.: -6.66 / 12.77 / 0.59 A P
1 o KED, bias/RMSE/corr.: -3.82 / 13.54 / 0.44 = N / o KED, bias/RMSE/corr.: -3.56 / 11.71 / 0.57 - ~d 0/
s 38 ] = S 4 =] >
% © T T T T T 0 & N T T T T
K 0 5 10 15 20 d) 0 5 10 15 20
> o =} §
£ 2 2] 'l
£ P b
8 S ,II ,4 o 1 !‘w gt I‘I
S 8 A i \WJMW S \ § /\_\5uuui"u N KA J\A/ \
| v \
TT T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 711 TT T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T TTT11
09/01 09/05 09/09 09/13 09/17 09/21 09/25 09/29 10/03 10/07 09/01 09/05 09/09 09/13 09/17 09/21 09/25 09/29 10/03 10/07
time (month/day) time (month/day)

Figure 7. CO, time series observed at Cabauw 20 m a(g,Ib) and Heidelberg 30 m a.g.lc(d, black lines). STILT simulations are shown

with (orange dash dotted lines) and without optimized MHs (blue dashed lines). Inlets in the upper right corner of each plot show the averaged
diurnal cycle. In the upper left corner of each plot are summary statistics calculated for the full times series of this@@xtch: STILT
observations together with STILT/observation squared correlation coefﬁe?e)ndata shown are 3 h averages. Dates onthgis refer to

the analysis year 2009.

by 1 ppm due to optimized MHs, while STILT/YSU was not effect of MH optimization on correlations and random errors
affected. Night-time improvement,.i.e. reduction in bias andwas mixed (Table). Similar to CBW slight deterioration is
random error, is less notable than at the 20 m inlet, becausebserved at the event with increased errors and model-model
the receptor is located below the MH. In general Gfiases  differences centred around 10 October 2009 (Figand d),
between PBL schemes were in line with our MH comparisonalbeit less obvious.

(see Sect3.1.1and Table?), i.e. better results of STILT/YSU

at day and worse at night than STILT/MYJ (Tatdg The

general reduction in model-data mismatch indicates the efy piscussion

fectiveness of the MH optimization. Remaining £@is-

matches are of comparable size for both PBL schemes; thishe KED estimation was most effective to remove biases

is to be expected when estimated MHs converge @ig. from WRF MHs. In addition, KED MHs were found to be
mostly consistent with actual GOnixing. This is also sup-
3.3.2 Heidelberg ported by the generally favourable effect of optimized MHs

on CQ transport, as averaged diurnal cycles were notably
Similar to CBW, the HEI CQ time series shows a pro- better captured. However, substantial deviations from ob-
nounced daily amplitude at the ca. 30 m inlet height of aboutserved CQ signals remained. Model-data mismatch in,CO
30ppm on average (Figic and d). Correlation between concentrations can be caused by other factors that need to be
CO;, observations and all simulations were generally goodconsidered, namely (1) errors in @@uxes and (2) remain-
r? > 0.5. All simulations produced too low concentration at ing transport-related model errors, which includes horizon-
day and especially night with biases ®6 ppm. The phas- tal advection and imperfect MH optimization. Factor (1) is
ing of the mean diurnal cycle exhibits notable mismatch inlikely since we used non-optimized (a priori) fluxes; thus
all simulations, the MH optimization cannot resolve this is- a perfect match to observed @@annot be expected. This
sue, probably due to the low temporal resolution of the con-could to some extent even lead to a shift in phasing such
ditioning data (Sect2.2). Nevertheless, the usage of opti- as observed at HEI. Factor (2) is also possible, as we have
mized MHs reduces the overall bias by 40-50% (Teble shown that significant bias and errors remain in MHs (Ta-
and Fig.7c and d). We observed again a most notable reducble 2). In addition, transport model errors could be due to
tion of night-time bias, especially in the early morning. The physical inconsistencies of the presented method for MH

www.atmos-chem-phys.net/14/7149/2014/ Atmos. Chem. Phys., 14, 71A%2 2014



7164 R. Kretschmer et al.: Mixing height optimization

a) Cabauw temperature) with MH observations, for instance one could
use aRi method such as presented in Ef. (
— MYJ While Kretschmer et al(2013 showed that an increased
RN number of MH data to condition the KED optimization will
% YSUKED wE*KE eventually lead to further improvement, the observed dete-
<« rioration of night-time RMSE especially at Cabauw can be
caused by any of the mentioned factors. The following dis-
cussion focuses on CBW, because prominent RMSE features
were observed there and additional meteorological observa-
tions were available, which were needed for the purpose of
analysis.
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4.1 Uncertainty in fluxes

200
!

Errors in CQ fluxes are an obvious reason for g@odel—

© 7 data mismatch. Thus we need to evaluate the ability of our
T T T T T modelling system to adequately reproduce biospheric and an-
0 5 10 15 20 thropogenic flux components at CBW.

hour

4.1.1 Uncertainty of VPRM parameters

b) Heidelberg Ahmadov et al.(2007 have shown the general ability of
VPRM to calculate realistic fluxes in the European do-
— MYJ main. However, we evaluated radiation and surface tem-
ff‘ ’\YA?(E]J <D o perature, the two main WRF parameters that drive VPRM,
.x- YSUKED 4 % to hourly measurements at CBW. Radiation was found to
\ deviate by 50% for some days, but was unbiased. Sur-
g face temperature was simulated well, but revealed® K 1
bias in the evening with higher temperatures in the YSU
PBL, likely caused by a too deep mixing layer that does
not cool down as fast as a shallow mixing layer. Consid-
ering characteristic VPRM parameters relevant for the site
o = 0.088pumole m?2s~1K~1 andg = 0.58 umole n2s71,
a change in temperature from 13 to°Xlincreases the res-
piration only slightly from 1.72 to 1.81 pmoleTis~1. This
effect seems negligible compared to the large overestimation
of nocturnal CQ build-up. Other sources of uncertainty are
‘ ‘ ‘ ‘ ‘ the scaling of VPRM parameters from point to region and
prior uncertainty, e.g. from VPRM in comparison to eddy
hour flux residuals and the uncertainty of fitting VPRM parame-
ters to eddy covariance data. The significant temporal varia-

Figure 8. Comparison of averaged diurnal cycles of WRF derived tion of the peat-on-clay and clav-on-peat emissions depend-
(black dots, red triangles) and optimized MHs (green pluses, blue P y y P P

crosses) at Cabau(@) and Heidelberdb). The KED optimization ing on the soil moisture content are ”,Ot (?aptured by the alpha

was done with the MYJ and YSU PBL scheme and using the MHand beta parameters, but these emissions could have a no-

observations. Average difference of MHs between the PBL scheme&able impact on C@emissions at CBW\ermeulen et a).

is minimized by the optimization as both converge to the condition-2011). A detailed analysis of these factors is not trivial and

ing data. Note that there is no MH observation co-located with CBWis beyond the scope of the present study. For a discussion the

or HEI. reader is referred to the work bfahadevan et a(2008 and
Ahmadov et al(2007).
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4.1.2 Uncertainty of regional signals
optimization (see SecR.3). An improvement would be an

assimilation of the MH directly in the meteorological model, Because the general correspondence with the observations
which could be achieved by more classical assimilation techis high, we gain confidence that we can use the model to
niques (e.g. 4D-VAR) and the introduction of a new ob- disentangle the C®signal into its individual components.
servational operator that relates prognostic variables (e.gFigure 9 shows simulated GEE, respiration and fossil fuel
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Figure 9. Simulated CQ tracers for the vegetation signal Gross Ecosystem Exchange (GEE, black line), respiration (RESP, blue dashed
line) and the fossil fuel tracer (FF, orange dash dotted line) at Cabauw 20 m (a.g.l.) from the MYJ KED STILT sim(algiod the YSU

KED simulation(b). The grey areas indicate the occurrence of two events characterized by comparably large model errors: period 1 (7 to
9 September 2009) and period 2 (25 to 28 September 2009). Airflow in both periods is qualitatively different, resulting in a strong vegetation
signal in period 1 while in period 2 the FF signal dominates. In these periods quantitative model-model differences are notable although the
same surface fluxes were used.

signals at CBW. The differences between these componentsandom errors and absolute bias changes relative to the sim-
point to strong sources of GOn that part of the domain, ulations with unoptimized MHSs frons 1 ppm to< 0.5 ppm.
as expected. Two events with specifically large amplitudesPeriod 1 shows less deterioration; thus fossil fuel emission
in the fossil fuel signal (henceforth referred to as period 1 mightindeed be overestimated. However, especially the YSU
and 2, marked grey in Fid), correspond to notable dete- simulation remains deteriorated. The MYJ-YSU differences
rioration in the KED simulations, which might be caused during these periods and the general low amplitude of the
by overestimated fossil fuel fluxes. To test the relative im- models in the second period (Fi@0) point to transport-
pact of the regional fossil fuel signal (G®) on STILT with related uncertainties, which is discussed below.
optimized MH during these periods, we isolated the signal We observed a notable model mismatch of the@@rnal
from regional biosphere—atmosphere flux&€0; veg) from cycle at HEI (see SecB.3.9). This effect could be the result
measured C@concentration (C@mead as inGerbig et al.  of awrong diurnal cycle in the used EDGAR fossil fuel emis-
(20031 using observed and STILT simulated CO signals:  sion inventory. Here we used the observed,G@getation
signal that was estimated with E®) (o compare the phase
ACOzveg= CO2meas— ACO 1 — COZbg- (©) of the mean diurnal cycle to the simulations (not shown). We

Here CQ pg is the contribution from the background con- found a similar shift in the phasing of the diurnal cycle of the

centration advected to the receptor, which is simulated b))/egetation signal. This indicates that a potential error in the

STILT. The regional fossil fuel signal is then approximated t€mporal variability of the EDGAR emissions cannot fully

by explain the mismatch in the diurnal cycle. We rather need
to consider transport-related causes for these mismatches,

ACO; f mod which is discussed in Seet.2

ACoﬁ,mod .

The ratio on the right-hand side of EqQ] relates regional ~ 4-1.3  Uncertainty in CO emissions
COy and CO signals as simulated by STILT. Similarly, the
advected background signal g was again obtained from We also compared simulated CO directly to observations for
STILT, which uses MACC reanalysis and accounts for chem-indications of overestimated fossil fuel emissions shown in
ical production/loss during transport from the lateral bound-Fig. 11. Even before optimizing MHs, CO was close to ob-
ary to the receptor. CQlrasis the measured CO signal at served levels and even higher in period 2, although night-
CBW. time MHs were likely too high in both PBL model setups.
Figure10shows the resulting estimates for the signal from This is another indication that fossil fuel emissions might be
regional NEE fluxes using each of the four simulations of ouroverestimated. Especially in the Netherlands substantial un-
experiment. The KED simulations exhibit slightly reduced certainties in fossil fuel inventories were shown Bgylin

ACoz,ff = (COmeas— Coog) (10)
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Figure 10. Approximated regional vegetation signal with (grey lines) and without (black lines) optimized MHs during period 1 and 2 of 2009
using the STILT/MYJ mode(a, b) and the STILT/YSU mode{c, d) at Cabauw 20 m (a.g.l.). The observed vegetation signal was derived

from modelled and observed CO concentrations by E@jsafid (L0). Compared are also the modelled vegetation signals with (orange
pluses) and without (blue triangles) using optimized MHs. For both of these variants we calculated the observed vegetation signals shown
for comparison with black and grey circles respectively. In the upper left corn@) ahd(c) are summary statistics calculated for the full

times series of the signal mismatch: STILT “observations” together with STILT/“observation” squared correlation coeffiistaistics

are shown for the approximations without MH optimization.

et al.(2011). However, error in fossil fuel signal can also be night-time which is contrary to our expectations. To un-
caused by mismatches in transport, which could lead to thalerstand the reasons for this behaviour we studied cases
advection of CQ from relatively strong fossil fuel emission where model-model differences are most obvious. We find
sources. Such potential uncertainty in transport is discussethost striking differences during the events in period 1 and 2

in the following section. (marked in Fig9). Figure12 shows a comparison of STILT
and observed wind speeds at CBW. Wind speed is about
4.2 Uncertainty in transport a factor 3 higher in period 1 and this is well captured by

all simulations. Because of the higher transport speeds, the

There are striking differences between the two PBL schemestOtp”mS capture a larger source area in the last 12 h before

Because both STILT/MYJ and STILT/YSU use the same in- 2" &t CBW. Good correspondence was found between
put fluxes, any C@deviations between the two sets of mod- modelled and measured local wind direction (not shown).

Since CQ surface influence is more local in period 2, we ex-
elling results have to be transport related. Thus, after optimiz- ect a greater impact of the MH on the g€kgnal. Similar to
ing the MH, we expect model differences in €@ become b 9 b

. Vogelezang and Holtslad 996 we estimated MHs at CBW
smaller. Tabletl shows a comparison of actual model-model from observed meteorol Ef). The dat ver < al
differences at CBW. While differences in MHs are well re- mochtc():oi? I:te inetheeoft?lloggri(oc?)éf inteereas? gﬁt gnallgi/la?)é-
duced when using MH optimization, an increase in model P P . L y

. ) , low 200 m can be detected. During period 1 CBW MHs were
divergence of simulated CQCcan be observed especially at
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a) period 1, Sept. 7.-9. b) period 2, Sept. 26.-28.
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Figure 11. Comparison of observed (OBS) and simulated night-time CO concentrations using the STILT/MYJ simulation (MYJ), the
STILT/MYJ simulation with optimized MHs (MYJ KED) and similarly the STILT/YSU simulations (YSU, YSU KED) during period 1
(a) and 2(b). Boxes denote the central 50 % of the data, whiskers atel & times the inter-quantile range and outliers are shown as open
circles. Black line within boxes indicate the median value. Filled points show the mean values.

Obviously, KED MHs are too low in period 1. To test the
impact of the local MH on C@ we used the CBW MHs
as additional conditioning data for the KED prediction. The
. . resulting CQ time series for periods 1 and 2 are shown in
© o Fig. 13. The problem of deterioration is largely reduced in
’ period 1, while period 2 is nearly unaffected, which could be

g expected from the MH comparison. However, a notable over-
B o] T - estimation of CQ@ remains during two nights within period
=T 1

E i : S Overestimation was found to be stronger in STILT/YSU,

‘ . - : ‘ ‘ and to find causes for this effect we studied cases where
i ° : these model differences were most obvious. At 7 Septem-
: ber, 00:00 UTC in period 1, STILT/YSU shows a large peak
— - in fossil fuel CQ, which is not seen as strong in MYJ
o — (Fig. 9). Figure 14a shows southwesterly footprints in the
[ ‘ ‘ ‘ ‘ L 12 h before arrival at CBW. The STILT/MYJ footprint cov-
OBSPL  MWPL  YSUPL OBSP2 MYJPZ  YSUPZ ers about twice the area, i.e. particles travel faster. Thus,
Figure 12. Comparison of observed (OBS) and simulated 20m STILT/YSU influence is more local and at the same time
wind speed by STILT/MYJ (MYJ) and STILT/YSU (YSU) both MHs are at 50 m while MYJ KED MHs are quickly above
using KED optimized MHs at Cabauw. Results are shown for pe-100 m. In contrast, 28 September is an instance during pe-
riod (P1) and period 2 (P2) shown as grey stripes in Biggoxes  riod 2 where STILT/MYJ shows a stronger peak in £@an
denote the central 50 % of the data, whiskers areBb times the  gT|LT/YSU (Fig. 14b). Here the MHs are at about 50 m in
i_nter-qua_mtile range _and outliers are shown as open circles. Blackha |55t 31 before particles arrive at CBW in both simula-
line within boxes indicate the median value. tions, which was found to be in line with CBW MHs. The
) . horizontal advection was notably different in both simula-
on average 100m, in contrast, KED estimated average MH$ions \which caused STILT/MYJ to capture emissions from

of 50m. Contrarily, during period 2 KED and CBW obser- o potterdam area when surface influence was still above
vations agree on average MHs of 50 m, which could explaing g ppm pmole® m~2 571, while STILT/YSU just missed

the little effect of the MH optimization on C©On the one these emissions. From these examples it is clear that uncer-

hand a local surface influence and correctly simulated MHSinty in simulated horizontal winds needs to be considered,
suggest overestimated G@missions. On the other hand the ¢, example using a method as introduced lyand Gerbig
CBW site is surrounded by strong point sources, e.g. Am'(2003

sterdam, Utrecht, Rotterdam; thus even minor mismatch in
horizontal advection might have a large impact on,@0On-
centrations.
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Figure 13.0Observed and simulated G@me series for period (a) and 2(b) of 2009 at Cabauw 20 m (a.g.l.). Shown here is the STILT/YSU
simulations for which deterioration in simulated €@as most notable when using optimized MHs (blue triangles). Using additional night-
time MHs observed at Cabauw to condition the KED optimization reduces the overcompensation in period 1 actadhgé pluses). No
such effect is observed in period2).

4.3 Potential of MH optimization for regional CO3 resolved by adding MH observations in the hours between
inversions 00:00 and 12:00 UTC, e.g. from continuous retrievals of the
MH.

The key advantage of geostatistical methods like KED lies in look
the provided estimation errors, which are a combination of4'4 Outloo

the uncertainty related to spatio-temporal interpolation and .
uncertainty of estimating the MH from RS data. These er—4'4'1 Additional MH data

rors can be propagated to @@luxes estimated from the o |GRA data set is limited especially in the temporal res-
transport inversion as suggested®grbig et al(2008, pro-  ,4ion The KED estimation error is a tool that can help

viding improved and more reliable inversion results. In this to guide the installation of future instrumentation. A par-

app_r(_)ach the MH error variance from K_ED is added as anticularly promising data set can be obtained from lidars or
additional term in the stochastic calculation of each part'deceilometers that are able to continuously observe aerosol

trajectory. Two STILT runs, one with and one without the . s atter signals, from which MH can be retrieved at rel-
additional stochastic process, yield ensembles of particle traétively low cost Eresmaa et 312006. Networks of lidars
jectories that provide two distributions of G@nixing ratios and ceilometers are already operated throughout Eukdge (
with differing variances, and the differences in these Vari'eﬁelin et al, 2012. Within the Integrated Carbon Observa-
ances pf‘?"'de an estimate of MH_-mduc_:ed Oncertainty. o, System (ICO8) project a network of atmospheric mea-
The additional CQuncertainty variance is then added to the surement stations is built for which MH measurements are

diagonal elements of the error covariance matrix. Howevergandatory for level 1 continental stations. In additidordan

this method requires that the transport model has an unbiaseg (2010 demonstrated the retrieval of the PBL heights
representation of vertical mixing. Our results indicate thatg,n satellite-based lidar data. A challenging task for the
the systematic error in simulated @ue to errors in MHS 1,16 il be to assure the consistency of effective tracer

were largely reduced by the MH optimization for night time ;i and these different MH estimation methods. Future

observations, and at least slightly reduced for daytime obsefzogoarch should aim at the quantification of the uncertainty

vations. Thus it can be expected that the proposed methog ., jitferent kinds of MH observations. In the present study

has potential to yield more reliable results when applied forWe have shown the substantial impact of such uncertainties
inverse estimation of surface—atmosphere exchange quxe§m KED estimates

However, substantial problems are associated with the spa-

tial and temporal undersampling of the RS dateefschmer 4 42 |mprovements of MH estimation

et al, 2013. The fact that including CBW MH measured at

the tower yielded better results in simulated night-time;CO The chosen KED approach is quite simplistic in terms of
clearly indicates the potential for using MH data based on obthe underlying product-sum covariance model which as-
servations made in close proximity to the £@easurement  sumes space—time stationarity. This assumption is likely to
site. In contrast, the HEI comparisons showed large biases
caused by a shift in the diurnal phasing, which can only be  3www.icos-infrastructure.eu
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Figure 14. Comparison of STILT simulated surface influence using KED-optimized MHs. Shown are maps around the Cabauw tall tower
(green triangle) ifa) and(c) together with polygons indicating the area covered by particles with non-zero surface influence in the last 12 h
before arrival at Cabauw for the STILT/MYJ (blue lines) and STILT/YSU (red dashed lines) simulations. These areas were approximated
by convex hulls around horizontal particle distributions. Also shown are strong point sources in the EDGAR emissions (black pluses) on
7 September 2009, 00:00 UT@&, b) and 28 September 2009, 02:00 UTe; d) when deviations in fossil fuel signals between the simulations
were found most distinct (Fi@). Surface influence is also shown for the simulations STILT/MYJ (blue crosses) and STILT/YSU (red crosses)
as a function of time before arrival at Caba(iw d). The optimized MHs using WRF/MYJ (blue pluses) and WRF/YSU (red pluses) as
external drift in KED are plotted for comparison. Although the same conditioning data were used, the estimated night-time MHs differ
notably in(b), leading to corresponding differences in surface influences.

be violated by processes like PBL mixing as the temporalcorrection of the variogram model may be flawed, which
partial ranges of the variogram model are likely changingsimilarly can cause biased estimates. The use of variance-
during day/night transition times. Non-stationary covariancestabilizing transformations are suggested to circumvent such
models exist, but their application to the special problem ofcomplications Christensen2011). Additional research in
PBL mixing is non-trivial and an improvement in predictions this direction could lead to improved estimation of uncer-
skill is not guaranteedqaciorek and SchervisB0086. In ad- tainty, which in turn may have a positive impact on inversion
dition, such methods require the analysis of temporal corretesults.
lation length scales from continuous MH observations, e.g.
from ceilometers. Nevertheless, we believe such an analysis )
would be worth future research. 5 Conclusions

We found indications of overestimation in the KED vari- We evaluated a method to interpolate MH estimated from

ances, which could be caused by biases in the semivarianc :
model due to MH uncertainty. Methods exist that allow one Gata of the IGRA database using the KED approach. The

) . R : impact of the resulting optimized MHs on regional tracer
to account for such biases in the estimation of the covariance . o+ \vas assessed by comparing two STILT simulations
model (e.gChristensen2011). However, MH uncertainty it- P y baring

: : g . with different kinds of WRF PBL parameterizations (MYJ
self is a function of the PBL mixing process, e.g. day/night )
. . s .__and YSU) to observations.
difference of error magnitude. In such a situation the bias
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Referring to the questions posed in the introduction weinversions. In particular, the effective removal of night-time
summarize and conclude: bias could potentially allow for the use of night-time green-
o ) . . house gas observations. These are currently neglected by in-
1. Significant biases in Cpat CBW, where the diurnal  yersions, due to large transport model errors. However, these
evolution of CQ was captured well, were approxi- opservations could provide important information to con-
mately 7-9% (day) and 60 % (night) of the regional grain flux estimates, especially to gain further insight spatio-

signal. The use of optimized MH data yielded bias re- \¢mnoral variability of anthropogenic fossil fuel G@mis-
ductions of 29-44 % (day) and 68-90 % (night), respec-gions on regional scales.

tively. While bias reduction at HEI was similarly effec-

tive at night, daytime biases remained due to errors in

phasing of the C@signal. The effect on random errors  acknowledgementsThe authors would like to thank the Max
andr? was mixed. At CBW, RMSE was even increased Planck Society for providing funding and facilities, Ingeborg Levin
by using optimized fields. The reasons for this effect arefor many helpful suggestions to improve the paper, Ina Bur-
likely related to the sensitivity on the external drift and jack for providing Python plotting routines, Ravan Ahmadov,
errors in horizontal advection. In addition, we found in- Veronika Beck and Dhanya Pillay for general discussions and

dications of overestimated fossil fuel emissions. help, and the IT department of the Max Planck Institute for
Biogeochemistry for technical aid.

2. Simulated MHs were significantly biased with values
of —20% (MYJ) to 10 % (YSU) at day and 40-60 % at The service charges for this open access publication
night, respectively. RMSE was of the order of 90116 % have been covered by the Max Planck Society.

with larger values for the YSU scheme. Edited by: S. Galmarini

Because of these results, we conclude that mismatches

in MHs lead to significant bias and random error in

tracer concentrations. Therefore, biased flux estimateReferences
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