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In thin-film silicon solar cells textured interfaces are introduced, leading to improved antireflection and
light trapping capabilities of the devices. Thin-layers are deposited on surface-textured substrates or
superstrates and the texture is translated to internal interfaces. For accurate optical modelling of the
thin-film silicon solar cells it is important to define and include the morphology of textured interfaces as
realistic as possible. In this paper we present a model of thin-layer growth on textured surfaces which
combines two growth principles: conformal and isotropic one. With the model we can predict the
morphology of subsequent internal interfaces in thin-film silicon solar cells based on the known
morphology of the substrate or superstrate. Calibration of the model for different materials grown under
certain conditions is done on various cross-sectional scanning electron microscopy images of realistic
devices. Advantages over existing growth modelling approaches are demonstrated—one of them is the
ability of the model to predict and omit the textures with high possibility of defective regions formation
inside the Si absorber layers. The developed model of layer growth is used in rigorous 3-D optical
simulations employing the COMSOL simulator. A sinusoidal texture of the substrate is optimised for the
case of a micromorph silicon solar cell. More than a 50 % increase in short-circuit current density of the
bottom cell with respect to the flat case is predicted, considering the defect-free absorber layers. The
developed approach enables accurate prediction and powerful design of current-matched top and
bottom cell.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

In R&D of high-efficiency thin-film silicon solar cells, light
management plays a substantial role [1,2]. Introducing a proper
surface texture to the substrate or superstrate of a solar cell can
result in enhanced light scattering and anti-reflection effect,
improving light confinement in the cell. This can lead to increased
photocurrent and consequently higher conversion efficiency if
electrical properties of the cell remain unaffected.

Besides random textures of transparent conductive oxides
(such as SnO2:F [3], low pressure chemical vapour deposition–
LP-CVD of ZnO:B [4], or magnetron sputtered ZnO:Al [5]) and
nano-textured silver back contacts [6], artificial periodic textures
ll rights reserved.

).
have also gained much interest, showing the potential to match or
even surpass the light trapping capabilities of random textures [7].
By using interference lithography, UV nano-imprint lithography,
electroforming process for fabrication of large shims and UV
embossing process, large area substrates with desired textures
can be made on industrial scale [8–10].

In the design of efficient textures, two- or three-dimensional
rigorous optical modelling is an essential tool [11–22]. For accurate
determination of the optimal texture parameters realistic para-
meters of a solar cell have to be considered. Besides the optical
properties of the layers (wavelength dependent complex refractive
indices) and their thicknesses, the exact morphologies of all the
textured interfaces within the device also need to be taken into
account. In many publications on rigorous optical modelling of
thin-film solar cells, fully conformal layer growth is considered (e.
g. [14,15,18,23]) by assuming that the initial texture morphology of
the substrate or superstrate is ideally transferred to all the other
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internal interfaces within the thin-film structure. However, realis-
tic cross-sectional images of thin-film solar cells reveal that this is
usually not the case [24,25]. Recently we indicated that if thicker
layers are introduced or textures with high aspect ratio (ratio of
vertical to lateral surface feature sizes) are used, the conformal
approximation is not sufficient anymore and a combination of
different growth mechanisms is required [26]. Some new
approaches to the modelling of non-conformal layer growth have
been researched and reported recently. These address specifically
the growth of microcrystalline layers [27], or growth in general, by
rounding of rectangular textures at subsequent interfaces [20], or
applying one type of growth, for example, perpendicularly to the
surface normal [28].

In this paper we present a combined 3-D model of non-
conformal layer growth in which not only one, but a combination
of two growth principles are implemented: a conformal and an
isotropic one. We demonstrate on different realistic examples that
the developed model, although simple and easy for implementa-
tion in optical simulations, matches with experimental the cross-
sectional images of realistic structures very well and outperforms
the existing single-type growth models. After calibration and
verification, the growth model is integrated in rigorous 3-D optical
simulations of thin-film silicon solar cells employing the COMSOL
simulator, which uses the finite element method (FEM) for solving
Maxwell's equations. Using the optical simulations, the sinusoidal
surface texture of the substrate of a micromorph (a-Si:H/μc-Si:H)
solar cell is optimised, with respect to increased photocurrent and,
at the same time, assuring crack-free absorber layers in the device.
The model enables to predict and omit the sharp valleys in the
resulting textures that can lead to detrimental crack formations in
semiconductor layers [27]. Using COMSOL simulations, the exter-
nal quantum efficiency and short-circuit current of the micro-
morph device are calculated and the optimal period and height of
the sinusoidal substrate texture are determined, considering all
mentioned aspects.
2. Experimental

Masters with periodic textures were fabricated on silicon wafers
using e-beam lithography and reactive ion etching. As a master with
random texture standard Asahi U SnO2:F transparent conductive
oxide on the glass substrate was used. Ultraviolet nanoimprint
lithography was employed to replicate masters on the solar cell
substrates covered with a lacquer [29,30]. Amorphous solar cells
a b

Fig. 1. Vertical cross-sections of a thin-film layer grown on a substrate as calculated by t
isotropic (g¼1) and (c) combined growth type (g¼0.3). The dashed lines on the top surfa
were deposited using VHF-PECVD at 70 MHz with substrate tem-
perature Tsub¼190 1C, dilution H2/SiH4¼2 and pressure 0.4 mbar.
Microcrystalline cells were deposited by RF-PECVD, at Tsub¼200 1C
using 200 sccm H2 and 3.5–5 sccm SiH4. Supporting layers: Ag, ZnO
and ITO were magnetron sputtered (DC for Ag and RF for ZnO and
ITO) in all types of cells. Cross-sectional images of solar cell
structures were done with Hitachi IM4000 and FEI helios nanolab
400 s scanning electron microscope (SEM) equipped with a focus
ion beam facility.
3. Modelling

3.1. Model of non-conformal layer growth

When building realistic optical models one of the important
issues is to fit the geometry of the modelled structure to the actual
structure of a solar cell as well as possible. In the case of thin-film
solar cells, special attention has to be paid to the realistic
representation of interfacial nano- and micro-textures in multi-
layer structures, since they determine the light scattering and
antireflection properties. Here we present an empirical model of
layer growth which combines two growth principles: (i) conformal
and (ii) isotropic. In the first principle, the morphology of the
interfaces of the grown layers remains unchanged (Fig. 1a), it is
simply vertically transferred from the initial substrate to the
surface of the growing layer. This can be modelled by applying
the growth in vertical direction of the structure only. The second
type of growth principle (isotropic) describes the growth in the
direction of the normal vector at any given point on the surface
(Fig. 1b). Isotropy in this case refers to equal growth in all
directions from each discrete point on the surface, where the
resulting envelope presents the surface. Independently of the
deposition method during fabrication (CVD, PVD, and condensa-
tion), a proper combination of these two types of growth was
shown to result in good representation of the interface morphol-
ogies after thin-film layer depositions, except when the grown
layer produces additional large texture features during growth
(e.g. a thick LP-CVD ZnO or hot Ag layer). This was confirmed by
the cross-sectional SEM images of various thin-film silicon solar
cell structures (single junction, tandem with amorphous and
microcrystalline silicon, metal layers, flat transparent conductive
layers) grown on either random or periodic textures. In our model
this ratio between the two growth rates (isotropic over conformal)
is set by the empirical parameter called the growth parameter (g).
c

he developed 3-D growth model by considering: (a) fully conformal (g¼0), b) fully
ces in (b) and (c) indicate the reference texture obtained by conformal growth type.
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Fig. 2. V-shape valley formed after layer growth (example of Ag layer, simulation of
growth) is characterised by the opening angle φ. The V-shape valley is not present
at the initial substrate surface but is a consequence of the layer growth.
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It determines the resulting direction of the combined growth,
while the length of the growth (distance between the initial point
and the point on the new surface) is assigned to d, which we refer
to as the layer thickness. For completely conformal growth when g
equals 0 (see example in Fig. 1a) and for solely isotropic when
growth g equals 1 (Fig. 1b). The values between 0 and 1 define a
linear combination of the two growth rates. Fig. 1c shows an
example of a growth corresponding to g¼0.3. For the sake of
simplicity of representation, Fig. 1(a–c) only shows vertical cross-
sections of the structures, whereas the developed model is fully
three dimensional and thus considers both lateral (x, y) and a
vertical dimension (z).

Using atomic force microscopy (AFM), the morphology of the
initial surface texture—either the substrate or the top surface of the
previously deposited layer—can be determined. This presents the
input data for (initial texture) for our model. Each discrete point (i)
on the surface is described by its lateral position xi0, yi0 and the
vertical position zi0 (relative height). Subscript 0 refers to the initial
surface. From multiple neighbouring points in both lateral dimen-
sions, locally averaged unit normal vector of the surface is calculated
in the ith point and labelled as shown in Eq. (1):
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In order to apply the correct layer thickness (d) to the grown
layer, which we consider to be equal to the thickness of the layer
grown on a flat surface under the same conditions, we need to
define a scaling factor si (Eq. (2)). The si ensures, that every pair of
points i0 and i is exactly d apart.
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After calculating ni and si for each discrete point on the surface,
the corresponding new points, defining the morphology of the
next interface, can be calculated as:
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The second and third part of Eq. (3) correspond to the isotropic
and conformal contribution to the growth respectively.

Due to the nature of calculations, some of these points may
form internal loops in the material (e.g. as shown later in Fig. 6c)
and must therefore be discarded. Only the highest point at a
certain lateral position has to be considered. However, we observe
that regions where internal points are overlapped in the model
coincidence with the locations at SEM images where defective
regions (cracks) are identified (discussed later). On the other hand
there are regions of fewer points and they require interpolation.

An important property of the model is that it follows the
physical law of superposition of growths. The resulting texture
from a single step growth from initial texture is the same as if the
growth is separated in several, partial growths of a layer. With
multiple steps we can also get more information about the
defective regions at a certain position inside a layer (not only
situation at final surface).

Before application of the model into rigorous optical simula-
tions of realistic solar cells, it needs to be calibrated—one must
adjust the growth parameter (g) for each layer grown under
particular deposition or sputtering conditions on the selected
testing textures. Cross-sections obtained by scanning or transmis-
sion electron microscopy (SEM, TEM) of realistic structures are
used for this purpose. The adjustment of the g can be automated
by minimisation of the root-mean-square error between the sur-
face morphology of the realistic device and the modelled device
on a few samples. Once g parameters are determined for each
layer, the calibrated model can be utilised to predict interface
morphology for new textures, where (i) lateral and vertical
dimensions of initial surface morphology are changed (optimised)
or (ii) thicknesses of layers are varied.

Besides predicting the morphologies of interfaces for optical
simulations, another important role of the proposed growth model
is to predict sharp angles (V-shapes) in the morphology of the
grown layers (Fig. 2). It has been shown that sharp valleys often
lead to the formation of defective regions—cracks, in silicon layers
(amorphous and especially microcrystalline), significantly dete-
riorating the electrical properties of a solar cell [7,27,31].

Experimental results indicated that in the case of substrate
configuration of thin-film silicon solar cells this opening angle
should be greater than 1351 to avoid the formation of defective
regions in microcrystalline and amorphous silicon layers [8,32,33].
With the model we can also detect and omit textures with sharp
valleys, which would cause crack formation in the layers. Thus, not
only optical aspects (high photocurrents) but also electrical ones,
i.e. preserving or even improving the fill factor and open-circuit
voltage of the device, can be considered in optical simulations. All
of these considerations are crucial in the design of the surface
textures for high-efficiency solar cells [34–37].
3.2. COMSOL simulator

In our 3-D optical simulations, the COMSOL Multiphysics simula-
tion software [38] was employed. Simulated 3-D structures with all
interfaces were imported from the calibrated growth model; discre-
tisation for optical simulations was done inside the COMSOL. Rigorous
solving of Maxwell's equations is based on the finite element method
(FEM). COMSOL's CAD-like graphical interface enables simple imple-
mentations of different geometries of 3-D multi-layer structures, such
as thin-film solar cells with either periodic or random interface
morphologies. In the case of structures with lateral periodicity and
symmetrical properties, integrated symmetry boundary conditions
enable simulation over one quarter of a structure period only, reducing
the time of simulation significantly. COMSOL enables dynamic adjust-
ment of the meshing depending on the wavelength of light. Since
meshing in FEM is not restricted to rectangular elements, these
structures can be modelled with great geometrical precision. This is
important for thin-film solar cells where various nano-textures
(periodic and random) are studied for efficient light trapping. The
FEM method requires separate simulations for each wavelength of
light. Many integrated iterative and direct methods for solving the
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system of equations are available and applicable to specific solar cell
structures. Recently, methods enabling inclusion of thick layers (such
as glass) in FEM simulations of thin-film solar cells were reported as
well [39].
4. Results

4.1. Application and verification of the growth model

As the effect of applying three different g parameters on the
resulting morphology of a grown layer was indicated in Fig. 1, here
we show the effect of applying different layer thicknesses in the
model. The g parameter was chosen to be 0.4 in this case. Results are
presented in Fig. 3. We can see that by increasing the thickness, the
layer surface becomes smoother. The initial substrate texture (Fig. 3a)
in this case is a real AFM scan of a randomly textured LP-CVD ZnO
(2.5 mm thick). The root-mean-square roughness of the surfaces
(sRMS) corresponding to different layer thicknesses (d¼0 nm,
200 nm, 500 nm and 1000 nm) decreases with the thickness of
growth as specified here: (a) 86.9 nm (roughness of the substrate),
(b) 82.4 nm, (c) 77.6 nm and (d) 74.0 nm. Thus, the model also
predicts the decrease in roughness as a function of layer thickness,
which presents an important information for 1-D scalar scattering
models [40,41] as well.

In next section we apply the growth model on realistic thin-
film silicon solar cells. We demonstrate that both growth princi-
ples are necessary for accurate modelling of the layer growth. In
Fig. 4a we show an example where periodically textured substrate
with sinusoidal texturing was used in a single-junction micro-
crystalline thin-film (μc-Si:H) silicon solar cell in substrate config-
uration. In Fig. 4b the results of the modelling are presented with
white curves. For the sake of simplicity we show them only for the
ZnO/n-μc-Si:H interface (middle curve) and for the the p-μc-Si:H/
ZnO interface (top curve). The bottom curve represents the
substrate morphology and its input parameter. From the cross-
sections, we determine the calibrated g parameters to be 0.2 for Ag
Fig. 3. The gradual change in surface morphology for g¼0.4 as a function of the layer thic
3-D AFM-like images of the modelled surfaces. The cross-sections denoted with the white
to AFM scan of the surface, whereas (b), (c) and (d) are results of calculations with the
(200 nm) and ZnO (80 nm) and 0.3 for the μc-Si:H (800 nm) layers.
Parameter g is to be independent of the layer thickness. However,
for its accurate determination, it is desirable to have samples with
different thicknesses of the same layer for the calibration. In Fig. 4
one can see that the top surface of the μc-Si:H layer stack differs
significantly from the one on the substrate, which excludes the
conformal growth approach. With the developed model a good
matching can be obtained. No additional texturing due to μc-Si:H
material needed to be considered.

The importance of using the combined model is clearly shown
in Fig. 5, where a special sample with a variable period was
fabricated (using e-beam process at the Valencia Nanooptics
Technology Centre). In this sample, the period of the sinusoidal
shape was gradually changed, obtaining different aspect ratios of
the texture on one sample. In this case, single-junction amorphous
silicon (a-Si:H) solar cell was deposited on this texture. The
calibrated g parameters corresponding to different layers were
again 0.2 for Ag and ZnO, whereas for a-Si:H layers the calibrated g
value was 0.3.

Fairly good agreement between the calculated and experimen-
tal growth is observed for the combined model (thick full lines).
For comparison the results are also shown for the case of a)
conformal (g¼0, dotted line) and b) isotropic (g¼1, dashed line)
growth type. Root-mean-square errors between the exact mor-
phology and the calculated ones for the top a-Si:H interface (top
curves in the figure) are 71 nm, 120 nm and 35 nm for the
conformal, isotropic and combined model, respectively.

Random textures consist of features of different sizes and
orientation and are therefore good testing example for our model.
Fig. 6a shows cross-section of a μc-Si:H cell deposited on a
randomly textured substrate. Again, parameter g was calibrated
to 0.2 for Ag and ZnO layer and 0.3 for μc-Si:H layers. One has to
point out that small rotations of cross-sectional images have to be
applied in some cases to match the actual normal direction of the
sample during deposition (not necessarily equal to the normal
direction of SEM image). This is especially important for
layers where the conformal component of growth predominates
kness (0 nm—no layer, 200 nm, 500 nm and 1000 nm). The top figures (a) to (d) are
lines in the top images are enlarged and shown in the figure below. (a) corresponds
proposed model.



Fig. 4. (a) Cross-sectional SEM image of μc-Si:H pin solar cell with introduced periodic sinusoidal texture, and (b) growth as predicted by the combined model with g¼0.2/
0.3 for Ag and ZnO/ μc-Si:H stack (white lines).

Fig. 5. (a) Cross-sectional SEM image of a-Si:H solar cell grown on variable sinusoidal textures, and (b) predicted growth roughness as obtained with the model, depending
on the considered growth type, are shown in dotted, dashed and full lines for conformal, isotropic and combined growth type (with g¼0.2 for Ag and ZnO and g¼0.3 for a-
Si:H layers).

Fig. 6. (a) Cross-sectional SEM image of μc-Si:H solar cell deposited on a randomly textured substrate, (b) first step of modelling of growth—calculation of direction vectors
with the corresponding final points, (c) generation of lines from the final points, (d) the highest points selection/ elimination of the loops underneath. Fig (b), (c), and (d) are
results calculated by the model.
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(small g). The procedure of the calculation in the model is shown
here in several steps. In Fig. 6b, we show calculated the directional
growth vectors of combined growth with the corresponding final
points for the case of top surface of the μc-Si:H pin stack. In Fig. 6c
the final points for every layer are connected to the surface
representing lines. Overlapping of directional vectors, resulting
in loops of points underneath the top surface of μc-Si:H layers, can
be observed. The loops present in Fig. 6c need to be eliminated



a-Si:H μc-Si:H

Fig. 8. Simulated external quantum efficiency of the micromorph structures
obtained considering: (a) combined growth model (g¼0.3), (b) conformal (g¼0)
and (c) isotropic (g¼1) growth. The 2-D sinusoidal texture has the period of
1100 nm and height of 1050 nm in this case.
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and, therefore, the resulting textures are presented in Fig. 6d. The
interface representing lines match the real interfaces well. Further-
more, comparison of Fig. 6c to Fig. 6a reveals that the regions
where the directional vectors intensively overlap correspond to
dark areas in Fig. 6a, indicating defective regions inside the μc-Si:H
material. This indicates that the model may be used to predict
such regions and, by optimising the initial substrate texture, to
avoid them. In this way the electrical properties of the device can
be maintained or even improved.

4.2. Optical simulation of micromorph solar cells using
the improved model of layer growth

The micromorph solar cell simulated in COMSOL is shown in
Fig. 7a. Two dimensional sinusoidal texture was applied to the
substrate surface and its lateral and vertical parameters were opti-
mised. For the optical simulations, a model of the structure, including
the morphology of all the interfaces, is imported from the developed
model of non-conformal layer growth presented in previous sections.
Realistic complex refractive indices of layers were used [40]. Fig. 7b
shows an example of the meshing obtained with finite element
discretisation. In the simulations, only one quarter of the structure is
used due to the symmetry of the sinusoidal texture considered here.
Special attention was paid to define a proper mesh in each layer, i.e.,
that the nano-textures are accurately described and that the distance
between two points is a few times smaller than the effective
wavelength of light inside the specific layer. Several trials were done
to be sure that the results are not affected by the meshing.

In the structure, the thicknesses of i-a-Si:H and i-μc-Si:H
absorber layers were fixed to 200 nm and 1.2 μm, respectively.
2-D sinusoidal texture was chosen as: (i) it is smooth in compar-
ison to other shapes (e.g. triangular and rectangular) which
already by itself reduces possibilities of forming defective regions
within solar cell and (ii) previous 2-D simulations reveal high
potential of sinusoidal textures for improved light trapping
[16,42,43]. The textures of internal surfaces in the cell were
changed according to the resulted morphologies from the growth
model presented in the previous sections. Due to simplicity reason
here the same g value (g¼0.3) was used for Ag, ZnO, a-Si:H and
μc-Si:H materials. No significant differences in optical simulation
trends were detected if g¼0.2 was used for thin Ag and ZnO layer
for these textures (tested for selected P and h combinations, not
shown here). As the top contact LP-CVD B-doped ZnO was used.
Fig. 7. (a) Simulated structure of the micromorph solar cell (a-Si:H/μc-Si:H) grown on a
simulations.
The texture of the top contact consist of randomly distributed
pyramids [44], which are superimposed to the textures resulting
from the growth of the underlying layers. In the approximation of
the top contact texture, we consider periodically distributed
pyramids with the period (P) corresponding to an average correla-
tion length of 200 nm and the height (h) corresponding to an
average peak-to-peak value of 120 nm [45].

In order to demonstrate the importance of using the presented
model of layer growth we show a comparison of simulated
external quantum efficiencies of the top a-Si:H (EQEtop) and the
bottom μc-Si:H (EQEbot) cell, obtained with different models of
layer growth (Fig. 9). Here, external quantum efficiencies are
equalled to the simulated absorptances in i-layers as holds very
well for most state-of-the-art devices [46,47].

Fig. 8 shows that the use of different models of layer growth has
a significant influence on the results of optical simulations.
sinusoidal texture, and (b) example of finite element discretisation meshing used in
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The differences are more pronounced if aggressive textures (with high
aspect ratios) are used. In Fig. 8, there are differences in both EQEtop
and EQEbot. The highest deviations are observed for conformal model
(b). In particular lower EQEtop and higher EQEbot in the wavelength
range of 500 nm–700 nm are observed. This is a consequence of less
efficient light trapping in the top absorber layer for these textures. The
results of the isotropic model (c) are closer to the results of the
combined model (a), but still deviate. The differences in EQEs are
reflected also in the corresponding short-circuit currents (JSC) of the
top and the bottom cell given in the figure. JSCs were calculated from
the absorptance in the intrinsic layers by applying the AM 1.5 spec-
trum. Contributions from the p and n doped layers were neglected as
in the case of EQE calculation. JSC values of the simulated cell (Fig. 8)
reveal that the device was not current-matched. However, we can see
that using different models of layer growth the ratio of top over
bottom cell current is changed. Taking into account the actual non-
conformal change of morphology at the interfaces of the micromorph
Si solar cell this approach enables for the first time an accurate design
of current-matched top and bottom cell. Furthermore, simulations also
revealed that different growth models can lead to different results of
texture optimisation (different P and h values, not shown here).

In the following we show the results of 3-D optical simulations
and optimisation of the 2-D sinusoidal periodic surface texture of the
substrate in the above described micromorph solar cell. The textures
of all the internal interfaces were defined based on the combined
model of layer growth using g values as mentioned above.

Tested periods (see definition of P in Fig. 7a) of the substrate
texture range from 200 nm to 1400 nm in 100 nm increments and
the heights (h) from 150 nm to 1050 nm in 150 nm increments.

In Fig. 9 we show simulated JSC of the top (a-Si:H) and the
bottom (μc-Si:H) cell as a function of the period and height of the
substrate texture (see legend). At this point, we refer to the thin
lines in the graphs, while the thick ones (on top of thin) will be
explained later on. On the left scale the absolute JSC values are
given whereas on the right scale the relative increase of JSC in
respect to a perfectly flat, non-textured solar cell is presented.

Since this solar cell is made in substrate configuration, the top
solar cell is less influenced by the already severely smoothed
textures (due to the realistic growth). This is the reason, that
smaller changes in JSC as a function of P and h are observed for the
top cell (Fig. 9a) than for the bottom cell (Fig. 9b), where over 70%
improvements are observed if proper periods and heights are
selected.
Fig. 9. (a) Simulated JSC top and (b) JSC bot as a function of period (P) for different height
shown in Fig. 7. Thick lines correspond to validity of angular restriction of φ41351 at t
As mentioned before, the growth of thin layers in thin-film solar
cells can lead to formation of narrow-angle valleys even if the initial
texture of the substrate is smooth. In this case we pay special
attention to the top surface of the Ag contact, which appears to be
critical. In order to avoid defective regions formation in subsequent
μc-Si:H and a-Si:H layers we apply the before mentioned criterion
of the minimal opening angle (φ41351). Selections of textures (P
and h combinations) that fulfil this criterion were done based on
the growth model and the corresponding JSCs are shown by thick
lines in Fig. 9. One can observe that even if the texture of the initial
substrate is sinusoidal (relatively smooth), many of P and h
combinations do not fulfil the condition. These textures could lead
to improvements in absorption and consequently JSC, but would
deteriorate the fill factor of the cell [27]. Better choices for the
optimal textures present the ones considering the mentioned
condition. In particular the sinusoidal texture of P¼1100 nm and
h¼300 nm presents the optimum according to the simulations.
More than a 50% increase in JSC bot (+53.4%), compared to the flat
cell is achieved. In the top cell, however, improvement of JSC top is
only 3.8%. Since the JSC of the top cell is not improved so much,
incorporation of an intermediate reflector is of interest.
5. Conclusions

Amodel of non-conformal layer growth developed for the accurate
determination of realistic morphologies of the internal interfaces in
thin-film silicon solar cells was presented. The model combines
conformal and isotropic growth principles, while the ratio between
the two is determined by the growth parameter g (per certain material
and deposition conditions). The model was calibrated on cross-
sectional images of realistic thin-film solar cells. The importance of
the model was shown by means of reduction of the mismatch
between the realistic and modelled top surfaces and by displaying
the significant differences in simulated EQE when different layer
growth approximations are employed.

The calibrated model of layer growth was used for accurate 3-D
optical simulations of micromorph a-Si:H/μc-Si:H solar cells on
sinusoidal textured substrate. The texture was optimised with
respect to the highest short-circuit current of the top and bottom
cell. Additionally, the layer growth model was utilised to indicate
textures which could result in formation of defective regions inside
the Si absorber layers. Such textures were excluded from the final
s (h) of 2-D sinusoidal texture of the substrate in the micromorph silicon solar cell
he ZnO/μc-Si:H interface.
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optimisation, assuring that high values of fill factor and open circuit
voltage are retained for the optimised cells as well. Considering this
additional condition, the optimal sinusoidal texture of the substrate
was determined by the period of 1100 nm and height of 300 nm
which resulted in the predicted 53.4% JSC increase of the bottom solar
cell and 3.8% JSC increase of top solar cell.
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