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Abstract

The great majority of the research on CO, capture worldwide is today devoted to the integration of new technologies
in power plants, which are responsible for about 80% of the worldwide CO, emission from large stationary sources.
The remaining 20% are emitted from industrial sources, mainly cement production plants (~7% of the total emission),
refineries (~6%) and iron and steel industry (~5%). Despite their lower overall contribution, the CO, concentration in
flue gas and the average emission per source can be higher than in power plants. Therefore, application of CO,
capture processes on these sources can be more effective and can lead to competitive cost of the CO, avoided with
respect to power plants. Furthermore, industrial CO, capture could be an important early-opportunity application, or a
facilitate demonstration of capture technology at a relative small scale or in a side stream.

This paper results from a collaborative activity carried out within the Joint Programme on Carbon Capture and
Storage of the European Energy Research Alliance (EERA CCS-JP) and aims at investigating the potentiality of new
CO, technologies in the application on the major industrial emitters.
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1. Introduction

The great majority of the research on CO, capture worldwide is today devoted to the integration of
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new technologies in power plants, which are responsible for about 80% of the worldwide CO, emission
from large stationary sources. The remaining 20% are emitted from industrial sources, mainly cement
production plants (~7% of the total emission), refineries (~6%) and iron and steel industry (~5%) [1].
Despite their lower overall contribution, the CO, concentration in flue gas and the average emission per
source can be higher than in power plants. Therefore, application of CO, capture processes on these
sources can be more effective and can lead to competitive cost of the CO, avoided with respect to power
plants. Furthermore, industrial CO, capture could be an important early-opportunity application, or
facilitate demonstration of capture technology at a relative small scale or in a side stream. It should also
be highlighted that in some countries, industrial sources may be responsible for high fractions of the total
emissions, especially where low-carbon sources like nuclear (e.g. in France) and renewables (e.g. in
Scandinavian countries) provide a large share of the total power supply.

This paper results from a collaborative activity carried out within the Joint Programme on Carbon
Capture and Storage of the European Energy Research Alliance (EERA CCS-JP) [2]. Firstly, the source
of emission and the main characteristics of the gaseous streams candidate for CO, removal in cement,
refineries and iron & steel plants are summarized. Then, the potential of the different CO, separation
processes are evaluated for each case, with particular attention for the most advanced technologies today
under development.

Only cement plants, iron and steel plants and refineries are considered in this study due to their
primary contribution to the total world emissions. However, many other CO, emission sources deserve
attention for future installations for CO, capture [3,4]. High-purity industrial sources, such as natural gas
processing, hydrogen production, coal/gas-to-liquids and ammonia production, currently supply the
majority of the CO, that is injected in CO, storage demonstration projects. Pulp and paper industry can
account for significant biogenic CO, emissions in certain areas. The production of biofuels, both through
bio-chemical and thermo-chemical conversion, typically also results in a high-purity CO, stream. At
present approximately 1 Mt of CO, per year is captured at the Archer Daniels Midland Company corn-
based bio-ethanol plant in Decatur, Illinois, and injected in the Mount Simon Sandstone saline formation
as part of an elaborate CO, storage measurement, verification, and accounting program [5]. The
production of biofuels with CCS could lead to net negative emissions; i.e. carbon is sequestered in
biomass from the atmosphere therefore the use of biofuels offsets CO, emissions of fossil fuels, while
most of the remaining carbon ends up in high-purity CO, streams that can be captured and stored [6]. The
capture CO, from high-purity sources and biofuels production processes only affects the thermal
efficiencies of these processes to a minor extent, unlike CO, capture at power plants. Additional operating
and capital expenditure typically only involves CO, drying and compression, which reduces the overall
CO, avoidance costs significantly in comparison with CCS during electricity generation.

2. Cement industry

Due to the high amounts of fossil fuels utilized during cement manufacture processes and the release
of CO, from calcination of carbonated materials (CaCO; and MgCOs3) in the raw materials, cement plants
are responsible for the highest emissions among the industrial sources other than power generation, even
after improvements in energy efficiency [7]. Cement plants are characterized by a single source of
emission (the cooled flue gas from the preheater), characterized by CO, concentrations of 15-30%,
typically released to the environment from one or two emission points, after providing heat for raw
material drying.

2.1. Potential application of CO; capture technologies
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From 50 to 70% of CO, emissions from cement plants originate from the calcination of carbonated
materials, the remaining fraction being associated to the oxidation of carbon in the fuel. For this reason,
fuel decarbonization by pre-combustion capture processes is not effective in reducing the emissions from
cement plants and research is focused on post-combustion and oxyfuel combustion processes.

In the case of oxy-combustion, oxygen mixed with recycle CO, is fed to the burners instead of air.
There are two locations in a cement plant where combustion takes places; the pre-calciner, where fossil
fuel or wastes are burnt to reach calcination temperature of ~900°C, and the kiln where cement clinker is
produced at 1450°C. Oxy-combustion in the pre-calciner is suggested as a viable option to capture CO,
from fuel combustion and raw material calcination, avoiding technical uncertainty of operating the
cement kiln under oxy-combustion conditions [8]. Dual preheaters with oxy-combustion pre-calciner
have been designed while raw mill, kiln and clinker cooler operate conventionally. Part of the CO,-rich
flue gases from the pre-calciner is recycled back and mixed with oxygen to prevent excessive flame
temperatures. The CO, avoidance rate by oxy-combustion in pre-calciner is 61% since only part of the
CO; can be captured. ECRA [9] has been investigating the operation of the cement kiln as well as the pre-
calciner under conditions of oxy-combustion for new installed cement plants. The theoretical and
experimental outputs of this new design would allow utilization of oxy-combustion in the kiln, resulting
in higher CO, avoidance rates. The applicability of advanced oxygen production technologies, such as
oxygen transport membrane-based systems (OTM), should be investigated to reduce energy and
economic penalties involved in conventional cryogenic air separation which would reduce the energy
consumption of oxy-combustion further. However, since OTM are best coupled with a combustion
turbine providing hot and high pressure air [10], it is reasonable that a combined cycle power plant would
be needed for OTM integration. Therefore, allocation of additional CO, emissions from fuel combustion
to the cement plant should be accepted, or a decarbonized fuel should be used in the turbine, bringing
about additional cost and plant complexity.

Post-combustion CO, capture represents the alternative option for end-of-pipe CO, abatement and
provides low technical risk. The high CO, concentration in the flue gas would make amine-based post-
combustion absorption attractive for the cement industry. However, a significant amount of steam is
required for solvent regeneration and this is expected to have high energy penalties since a separate steam
boiler is needed to supply steam to the solvent regeneration stripper (in case of capture rates > 80%, only
10 to 50% of the heat required for solvent regeneration can be recovered from the plant waste heat [11]).
The steam generator could generate some electricity with one back pressure turbine as well as steam [8];
however, such a steam cycle design results in very low plant efficiency. The integration of an amine
process with a cement plant, capturing the CO, from the flue gases from the raw mill has been
investigated in [8]. A coal-fired CHP plant has been designed to provide the steam for solvent
regeneration. The flue gases resulting from fuel combustion in the CHP plant is also fed to the amine
process. The need of flue gas desulphurization (FGD) and selective catalytic reduction (SCR) units are
major limits of this configuration, in which up to 85% of the released CO, can be captured, corresponding
to 74% of CO, emission avoided. Therefore, the application of the advanced solvents systems, requiring
less energy consumption for carbon capture than an amine process and having improved tolerance to SOy
and NO,, deserves to be investigated further. Similarly, advanced post-combustion capture technologies
based on physical processes (e.g. advanced solvents, sorbents, CO, membranes) could be applied
successfully in cement plants.

Calcium looping (CaL) process can be a promising post-combustion capture technology especially
when integrated with cement plants. The process operates between two reactors: one is the carbonator in
which CO, is captured by exothermic carbonation reaction at ~650 °C and the other is the calciner where
CaCO; is regenerated to CaO by endothermic calcinations reaction. Since the process operates at higher
temperatures than the amine process and uses CaO, which is one of the cement raw materials, it is more
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advantageous to apply this process to cement plants. This is because the purge from the calciner can be
used as additional feed for clinkerization [12]. In addition, the heat of the carbonation reaction can be
recovered by generating steam for a steam cycle and the integration of the Ca-looping process on
different locations of the cement process can be implemented without additional heat exchange
requirements. Rodriguez et al. [13] applied this process to the kiln gas and achieved up to 99% capture
rate. The raw material including CaCO; and MgCO; has been calcined in a retrofit oxy-calciner replacing
the existing pre-calciner. While part of the raw material from the oxy-calciner is sent to the kiln for
cement production, the rest is fed to the carbonator to capture CO, resulting from fuel combustion in the
kiln. The Ca-looping process can be applied to 3" preheater stage [14]. This location provides higher CO,
concentration and lower volumetric gas flow rate. It was suggested that CO,-depleted flue gases from the
carbonator is routed back to 2™ preheater stage for additional raw material preheating. It has been
reported that this process is capable of reducing CO, emissions by more than 90%. In both designs, the
surplus energy is recovered and used for electricity generation, achieving lower energy penalties. Another
possibility is a symbiosis model of a power plant, a cement plant and a CaL process, where the flue gases
of both plants [15] or the power plant only [16] are treated in the CaL unit. It must be highlighted that co-
location of the power plant and the cement plant is needed in these cases, since transporting large
amounts of solids between the two plants over long distances would bring about additional costs and
logistic issues.

Another advanced CO, capture option for cement manufacture is to separate combustion and
calcination occurring in conventional pre-calciner into two different chambers [17]. Therefore, the pre-
calciner consists of a calciner and CFB combustor at 1056°C. The calcium oxide, which is used as heat
carrier is transferred between the combustor and calciner. The calciner operates at 937°C, and the heat
requirement in the calciner due to endothermic calcination reaction and fresh sorbent preheating can be
supplied by preheated CaO coming from the combustor. The CO, capture rate is lower compared to post-
combustion capture since it cannot recover the CO, generated by fuel combustion. Therefore, this option
is only usable when the target is moderate level of CO, reduction.

3. Iron & Steel industry

Integrated steel mills based on blast furnace (BF) and basic oxygen furnace (BOF) route, the most
common iron production process around the world, are characterized by plants with very high average
emissions per installation. Averagely, 3.5 MtCO,/year are emitted by integrated steel mills, vs. 3.9
MtCO,/year of coal-fired power plants and 1 MtCO,/year of natural gas-fired ones [1]. This process
requires a powerful reducing agent to reduce iron ore. The main carbon input to the steelmaking process
is coke utilized in the blast furnace process. The coke utilized in the process can be either bought or
produced on site. The side product from the blast furnace process is blast furnace gas, a CO-rich low-
BTU gas that is utilized on the steel mill site as an energy carrier. As the blast furnace gas, which contains
50-80% of the total carbon entering the steel mill in the form of CO and CO,, is utilized on site, e.g. for
pre heating of the hot blast or at a power plant, it is the source of majority of the CO, emissions. In
addition, production of coke results in carbon-rich coke oven gas and finally CO, emissions. Numerous
improvements, such as energy efficiency improvements and new process configurations enabling
alternative fuel usage, in complicated BF+BOF based steel mills are possible, but the reductions in CO,
emissions are typically small in comparison to overall CO, emissions from the mills and the possibilities
of CO, capture technologies. Most of the iron and steel installations in Europe are old mill sites and
therefore would be considered as retrofit installations, either with post-combustion capture or other
technologies in relation to the blast furnace lifecycle.

There is no single one typical configuration for an integrated iron and steel mill. Some process steps,
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e.g. coking or sintering can be outsourced or centralized. Different options for integrating different
processes in and outside plant site can be considered. The main integrations between process units are
based on flexible and efficient utilization of process gases in processes, direct heating and power and heat
production. Despite the different configurations and process units on site, the CO, emissions are typically
scattered into several stacks around the mill site of several kilometers in diameter. This poses a challenge
for the capture of CO,. However the main sources of CO, can be identified.

The carbon dioxide can be captured from an iron and steel integrated plant either from the combustible
process gases or flue gases coming from combustion of process gases and other fuels. The fuel mixes of
the mills can vary significantly therefore it is very difficult to provide typical flue gas compositions and
impurity levels. Some indicative values are however reported in Tab. 1.

Tab. 1 Indicative characteristics of the gas streams relevant for CO, capture in an integrated iron and steel mill. Data from [18-20].

Relevant streams Concentration of carbon Other component and impurities % of total emissions
species, % v/v
Power plant flue gas * Boiler: 15-25 0,, Ny, SO, 10-30ppm, NO, 30-60ppm 40-70
Combustion turbine: 7-12
Hot Stoves flue gas CO;: 15-25 0,, N,, SOk 10-30ppm, 30-60ppm 15-30
Lime kiln CO,: 20-30% 05, Ny, low NOy, low SO, 2-5
Coke plant flue gas CO»: 15-25% 05, Ny, high NO 15-20
Sinter plant CO,: 5-10% 0O,, Ny, Dust, SO,, Dioxins, Heavy 5-20
metals, NO,
Blast furnace gas CO,: 20-25 H,, Ny, dust -
CO: 20-25
CiHn: <1
Coke oven gas CO,: 2-5 Hy, N, -
CO: 4-7
CuHim: 20-50
Basic oxygen furnace gas CO,: 10-18 H,, N», dust, -
CO: 55-80

* Normally the power plants use a mixture of fuels, often including imported natural gas. Therefore, the variability of the power
plant flue gas is particularly large.

3.1. Potential application of CO, capture technologies

The conventional post-combustion capture technologies are in general suitable for capture of CO, from
steel industry installations. The varying characteristics of different gas streams pose a challenge for
installation of capture units. SO,, NO, and dust can require additional gas cleaning before the capture
unit. Also the varying sizes, composition and location of different streams challenge the installation
aiming at high CO, capture levels. Advanced post-combustion processes may however be successfully
applied on steel mills flue gases, especially if requiring low regeneration heat and showing a high
tolerance toward the impurities in the stream to be treated.

In addition to the post-combustion capture technologies, pre-combustion capture techniques can also
be applied on fuel gases to produce a H,-based gas to be used in the power plant and the main process
heaters (hot stoves and coke plant). In particular, pre-combustion processes may provide higher carbon
capture rates in the power plant. As a matter of fact, due to the high carbon content and the low heating
value of the BFG (by far the main fuel typically used in the power plant), the steam produced in an
advanced combined cycle may not be sufficient for high capture levels. Thus, the advanced pre-
combustion technologies for CO, separation (e.g. SEWGS, CO, membranes) can have interesting
potential in this application [21]. Conversely, pre-combustion technologies featuring H, separation (e.g.
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H, membranes) are not suitable for application on BFG, which is a N,-rich gas and would hence leave a
highly diluted CO, stream.

In addition to processes which does not affect the blast furnace, several options changing the blast
furnace process have also been considered. All of these are resulting with gas stream with higher
concentration of CO, than conventional blast furnace. The CO, will further have to be separated e.g. with
PSA or with adsorption process, but with a smaller cost, due to the high partial pressure of CO,. Oxygen
blast furnace is one of the improved blast furnace processes with the CO, separation phase needed, in
order to maintain a high utilization ratio of carbon input. When considering capture of CO,, oxygen blast
furnace and Top Gas Recycling (TGR) are ways to increase the CO, partial pressure in the off gas [22].
The capture of CO, from the off gas can be done e.g. with PSA or chemical adsorption.

Advanced oxygen production processes like OTM may be successfully employed in integrated
steelworks with TGR configuration. However, it must be highlighted that TGR configuration reduces the
availability of fuel gas, so that a gas turbine cycle integrating OTM should use a fuel provided externally
from the steelworks, which should be properly decarbonized to avoid additional emissions.

Steelmaking processes, alternative to blast furnace, are also under investigation [22]. Direct reduced
iron (DRI) is an alternative iron making processes based on the direct reduction of iron by a H, and CO-
based reducing gas, making CO, capture a part of the process enhancement measures. DRI is currently
utilized without CO, capture in smaller installations generally using large amounts of scrap iron as raw
material instead of iron pure ore. Pre-combustion technologies can be here integrated for CO, capture.
FINEX, an advanced smelting technology and Hlsarna are also new types of processes replacing
conventional blast furnace. FINEX process utilizes iron ore and non-coking coal instead of coke with
multiple circulating fluidized beds. The CO, capture is based on pure oxygen feed and a flue gas
circulation, with CO, removal step. The Hlsarna process removes the need for producing pig iron in a
blast furnace prior to the production of steel.

4. Refineries

Refineries are characterized by a number of unit processes and by a variety of possible configurations
and levels of complexity. As a consequence, in refineries there are typically many emission points
scattered over wide areas, each flue gas stream characterized by quite different compositions in terms of
CO,, 0,, SO,, NO, and other contaminants content. As shown in Tab. 2, most of the CO, emissions
derive from fuel combustion in process heaters, utility boilers and power generation plants, followed by
FCC and hydrogen plant. Other CO, emission sources are present in refineries (e.g. sulfur recovery
processes, flaring), but their contributions account for a very small fraction of the total emissions share.

Due to the variety of processes in refineries, the possible new integration opportunities should be
considered when assessing the application of CCS technologies for an optimal low emission and low
energy consumption configuration. As a matter of fact, by including new processes for CO, capture new
thermal integration options for waste heat recovery and new ways for the utilization of material streams
(e.g. the use of carbon-rich PSA off-gas in a CLC boiler) may arise. Many integration opportunities will
also arise between the refinery unit operations and the power plant. For example, the adoption of a
polygeneration plant based on fuel gasification, efficiently integrating units for the separation of hydrogen
and oxygen to be exported to other refinery processes, while producing decarbonized heat and power,
might provide important benefits.

In EU and most of the developed countries, it is expected that most of the CCS installations will
concern retrofitting applications. Therefore, the suitability of the new technologies for retrofitting is an
important point. However, new unit operations may also rise in existing refinery complexes. For example,
new hydrogen plants may be expected considering the increasing H, demand for hydrotreating and
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hydrocracking processes. Similarly, new advanced power plants may be built under proper conditions of
the power market (e.g. as happened with the four IGCCs fed with oil heavy residues recently built in Italy
[23]).

Tab. 2 Characteristics of the refineries streams relevant for CO, capture. Data from [24-27]

* electricity and steam generation

*# in case of solvent based purification

*#% if syngas from residue gasification, higher CO, concentrations, higher pressures, and also H,S and COS in syngas

Relevant streams CO; concentration, %v/v | Other component and impurities % of total
Process heaters and utilities* Gas-fired: 3-6 05 (2-6%vV/v), SO, (gas-fired: 10-20 Process heaters: 30-60
flue gas Oil fired: 7-12 ppmv, oil-fired: 50-600 ppmv), SOs, | Utilities: 20-50
NO,
Fluid catalytic cracker flue gas 8-12 0, (1-2%v/v), SO, (1000-15000 20-35

ppmv), catalyst dust, CO, SO3, NO,

H, production plants:

Syngas*** 15-35 (@ 20-30 bar) H,, CO, CH,4, N, -
PSA off-gas 40-50 H,, CO, CHy4, N, -
Regenerator off-gas** 95-99 Traces -
FTR furnace flue gas 5-20 0, (2-6%v/v), NO 5-20

4.1. Potential application of CO, capture technologies

All the three concepts (post-combustion, pre-combustion and oxyfuel) have been considered in the
literature for CO, capture form refineries [11,24,25,28,29], with MEA-based absorption as reference
technology. In all the studies, a centralized CO, capture plant has been considered for economic reasons,
requiring a large piping network and compression power on flue gas. Issues concerning the rather low
CO; concentration in flue gas, the degradation resulting from contact with O, and the need of flue gas
purification down to very low levels of SO, (below 20 ppm), NO4 and PM, contribute increasing capital
and operating costs. Further, most refineries' steam networks are constrained. Utilizing MEA-based
absorption technology would require a large steam consumption that would, in most cases, not be feasible
without a retrofit of the site utility system.

Innovative post-combustion processes, including advanced solvents, solid sorbents, CO, membranes,
may represent an alternative to MEA-based absorption. Potentially these have a lower regeneration heat
demand which would be a general benefit of these processes. Specific benefits in industrial processes may
be obtained when capture agent properties are tailored for specific feed gas and process characteristics,
such as composition or temperature levels (e.g. a specific solid sorbent or solvent may be developed for
capture from dry feed gas). Besides, when contaminants are present, alternative to MEA-based process
may be more attractive if they can handle and possibly remove he contaminants, for instance SOx.

Among the post-combustion processes, calcium looping (Cal) can be mentioned due to its peculiar
characteristics, which make it interesting if properly integrated with other unit operations. CaL process
does not need a desulfurization plant, since the CaO sorbent in the carbonator can remove most of the SO,
in the flue gas together with CO,. While capturing CO,, heat must be recovered in the carbonator,
indirectly provided by the additional fuel burned in the calciner under oxyfuel conditions. Thus, possible
integration opportunities with process heaters and the replacement of utility boilers should be considered.
One drawback of the technology is the need of large supply of fresh limestone makeup and purge, which
may be relevant especially in case of SO,-rich flue gases and high sulfur fuel burning in the calciner,
causing premature sorbent deactivation. This issue might however be limited if the CaO-rich purge is
used for S-removal in a coke or heavy oil fluidized bed boiler or gasifier.
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As far as oxyfuel is concerned, application on boilers seems easier than on process heaters, which pose
additional challenges, especially for retrofitting, due to the lower standardization and the need to carefully
control the flames heat release profiles [11,25]. In addition to boilers and heaters, the application in the
FCC regenerator is promising and is currently being tested in a pilot installation in Brasil [30]. Due to the
economies of scale of state-of-the-art cryogenic O, plants, such a concept would include a centralized
ASU and a high purity oxygen piping network.

Oxyfuel processes may take advantage from the development of advanced O, production technologies.
Cryogenic air separation units (ASU) are at present the only mature technology capable of supplying
oxygen at the purity and scale required for oxyfuel process. Attempts to improve this 100 year old
technology are receiving increased attention [31]. Oxygen transport membranes, for example, might be
integrated with the power plant and separate the oxygen from the high pressure air from the combustion
turbine compressor. It must be noted that other non-CCS processes with O,-blown reactors (e.g. heavy
residue gasification, ATR) may take advantage from the development of oxygen membranes or other
innovative O, production technologies.

Among the oxyfuel technologies, CLC based on atmospheric dual fluidized bed system appears very
promising for process heaters and utility boilers. The level of development of such a system is also at a
rather advanced stage with respect to other long term technologies, since continuous operations have been
demonstrated in different pilot installations. An important advantage of this oxyfuel system is that it does
not require the production pure O,, eliminating issues associated to pure O, handling and delivery. It is
important to note that CLC has been proven at laboratory scale on gaseous fuels, while the CLOU process
for solid fuels oxidation is at an early stage of development and continuous operations still need to be
demonstrated. Also combustion of liquid fuels still needs to be proven, since only preliminary tests have
been carried out in few laboratory tests. The development of a process able to burn liquid fuels is of
primary importance for refineries, since a large fraction of the fuels burned in process heaters and utility
boilers is at the liquid state (typical gas to liquid fuel share in refineries ranges from 80/20 to 40/60%,
with higher liquid fuel shares in the most complex refineries [27]).

Pre-combustion capture technologies are natural candidates for H, production plants. Advanced
solvents, membrane reactors, SEWGS, SER, CLR may all be applied on H, plants. Technologies that, in
principle, shift the equilibrium favourably and thus allowing reducing the pieces of equipment needed for
fuel conversion (e.g.: H, membrane reactors, sorption enhanced reactors) and decreasing the reformer
operating temperature (e.g.: H, membrane reformers, sorption enhanced reformers) provide additional
benefits.

Processes producing high purity H, (e.g. dense membranes) are also favored since allow avoiding any
H, purification steps like PSA. Similarly, processes capable of producing high pressure H, (e.g.: SEWGS,
CO, membranes, some SER configurations, CLR) are also favored since they do not need the high power
consuming H, compression. However, no advanced technology seems to be capable of producing both
high purity and high pressure H, at the moment: H, membranes would require an abundant sweep steam
to keep high absolute pressures on the permeate side, while CO, sorbents and CO, separators are not able
to produce >99% purity H,. Nevertheless, it must be said that the downstream PSA purification unit
would benefit from a bulk CO, removal, since smaller flow rates would need to be treated and smaller
size vessels would hence be required. High temperature pre-combustion separation processes (SEWGS,
SER, CLR and high temperature H, and CO, membranes) potentially also lead to thermal integration
benefits, since a significant amount of heating and cooling is avoided and better heat integration can be
obtained.

Pre-combustion capture technologies have also been proposed for process furnaces and boilers, where
H, is produced in centralized plants and distributed as decarbonized fuel by a piping network. Again, for
an optimal overall efficiency, but also for safety reasons, integration with the power plant should be
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considered and the adoption of a high efficiency CHP H,-fired combined cycle generating decarbonized
power should be considered.

5. Conclusions

The characteristics of the main industrial CO, emission sources have been briefly reviewed in this
paper, considering the composition of the carbon-rich streams and their contribution to the total
emissions. The possible application of the main CO, capture technologies has been considered for each
source, with particular attention for mid-long term technologies today under development. A qualitative
summary of the potentiality of these technologies, reflecting the opinion of the authors, is reported in Tab.
3 and shows that many of the processes, whose development is primarily focused on power generation
applications, may be interestingly applied in other fields. Such an output can represent an input for better
investigation of these applications, for both technology developers and final users.

Tab. 3 Qualitative evaluation of the potential of advanced technologies in CO, capture from industrial sources. The evaluation
reflects the opinion of the authors and does not consider the level of maturity of the technologies, but assumes that a proper
development is possible. Some evaluations are conditioned to a proper configuration and integration with other processes, as
discussed in the text.

Technology Cement Iron & steel Refineries
Process heaters & FCC H, plant
boilers
Post-combustion
Advanced solvents + + + + -
Low temperature sorbents + + + + -
Ca-looping ++ + + + -
CO, membranes + + + + -
Oxyfuel
CLC -- - ++ +
OTM +/- +/- + ++ + (ATR/CPO)
Pre-combustion
Advanced solvents - + + (CHP) +
H, membranes - - ++ (CHP) +
SEWGS - + ++ (CHP) +
SER -- ++ (CHP) +
CLR - ++ (CHP) +
CO, membranes -- + ++ (CHP) +
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