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Abstract
This letter provides an overview of the available measurement techniques for nitrous oxide (N2O)
flux measurement. It is presented to aid the choice of the most appropriate methods for different
situations. Nitrous oxide is a very potent greenhouse gas; the effect of 1 kg of N2O is estimated to
be equivalent to 300 kg of CO2. Emissions of N2O from the soil have a larger uncertainty
compared to other greenhouse gases. Important reasons for this are low atmospheric concentration
levels and enormous spatial and temporal variability. Traditionally such small increases are
measured by chambers and analyzed by gas chromatography. Spatial and temporal resolution is
poor, but costs are low. To detect emissions at the field scale and high temporal resolution,
differences at tens of ppt levels need to be resolved. Reliable instruments are now available to
measure N2O by a range of micrometeorological methods, but at high financial cost. Although
chambers are effective in identifying processes and treatment effects and mitigation, the future lies
with the more versatile high frequency and high sensitivity sensors.

Keywords: chamber methods, infrared analyzers, micrometeorological methods, eddy covariance

1. Introduction

Almost 90% of global N2O emissions are a result of
the microbial processes nitrification and denitrification (e.g.
Wrage et al 2001) in soils and waters. Emission and
production rates are governed by external drivers, principally
nitrogen availability, redox potential and temperature (Skiba
and Smith 2000). Consequently the agricultural sector, with its
high usage of nitrogen, is globally the largest anthropogenic
source of N2O (figure 1). Changes in land use, for example
switching from a forest to arable or grassland also affect
N2O emissions; and natural N2O emitters, such as forests,
aquifers, rivers and estuaries are enhanced by nitrogen leaking
and deposition mainly from diffuse agricultural sources (Reay
et al 2012, Skiba et al 2012).

Emission rates are typically very variable both in space
and time (e.g. Zhu et al 2013). Small scale heterogeneity of

Content from this work may be used under the terms of
the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

physical and chemical soil properties, seasonality (rainfall and
temperature) and agricultural management (e.g. fertilization,
plowing, irrigation) influence microbial production. In
particular grazed fields with urine and dung delivering
patches of concentrated nitrogen show large spatial variability
in emissions throughout the year (Lesschen et al 2011).
The temporal structure of the emission pattern is further
complicated by fertilizer spreading, the method of spreading
and the type of fertilizer used. Significant peaks in the
emission can typically occur between 0 and about 21 days
after spreading mineral nitrogen, often triggered by rain
(Skiba et al 2013). For organic compounds (manures,
slurries) peaks occur later and are longer lasting as microbial
decomposition must precede nitrification and denitrification
(e.g. Jones et al 2007).

This emission ‘scheme’, in combination with the
measurement methods available, leads to uncertain emission
estimates for the measured field. Extra uncertainty is added
in the process of upscaling to the national level. Upscaling
has to rely on the representativity of a limited set of measured
fields for other similar fields together with often insufficient
knowledge of the key driving variables that determine N2O
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Figure 1. The global anthropogenic N2O budget, grouped by
emission sectors and the continents. Data are from the Emission
Database for Global Atmospheric Research (EDGAR) for year 2008
European Commission, Joint Research Centre (JRC)/PBL
Netherlands Environmental Assessment Agency. ‘Energy’ includes
mobile and stationary fuel combustion, fossil fuel fires, aviation and
navigation. Note that the ‘Biomass burning’ sector for Africa is
larger than the agricultural sector. ‘Industry’ emissions are mainly
from adipic and nitric acid production plants. ‘Agriculture’ includes
categories: manure management, manure in pastures, ranges and
paddocks, direct soil emissions, diffuse emissions and atmospheric
N deposition of NO and NH3. ‘Waste’ includes solid waste, waste
water handling, incineration, other waste.

emission (e.g. soil texture, drainage, bulk density, carbon
content, pH, nitrogen availability, temperature, rainfall). Such
data is scarce, even in countries were national emission
inventories are supported by flux data for a wide range of
environments and well documented farm and environmental
records. For Europe (EU27) uncertainties of agricultural N2O
emissions were estimated at around 80% (Freibauer 2008) and
for a very well documented country as the Netherlands, the
contribution of N2O from fertilized agricultural fields to the
total GHG balance still has an uncertainty in the order of 50%
(Maas et al 2009).

The principal N2O measurement method is the static
chamber and has been used to measure N2O for almost

40 years. (e.g. Delwiche and Rolston 1976, Matthias et al
1978). It is the cheapest most versatile N2O measurement
method, but is not able to provide the high time and
spatial resolution required to improve our greenhouse gas
budgets and policy making. Technological advancements
of principally the laser technology, now enables high
temporal and spatial resolution measurements, mainly using
micrometeorological methods, at almost affordable prices.
The aim of this review is to describe the main chamber
and micrometeorological methods used to measure N2O,
identify their pros and cons and make recommendations on
appropriate use.

2. Methods for measuring N2O emissions

The first step to obtain N2O emissions is to measure N2O
concentrations above atmospheric levels of approximately
0.32 µl l−1. With these data available N2O flux rates can
be derived using several different flux methods. Sensors and
methodologies are introduced below.

2.1. Concentration measurements

2.1.1. Gas chromatography. The principle of gas
chromatography is the separation of a compound into its
molecular constituents. For N2O the sample is injected
through a sample loop (typically 0.25–1 ml) into a carrier
gas stream of N2 (or He) of a gas chromatograph (GC)
fitted with an electron capture detector (Wang et al 2010,
Kelliher et al 2013). The volume of sample injected should
be at least two times larger than the size of the sample loop.
Analysis takes 2–10 min and in near background conditions
(around 310 µl l−1) an accuracy of 0.2 µl l−1 can be obtained
(e.g. Jones et al 2011). Regular (every 30 min) calibration
of the system is required to enable corrections for system
drift (figure 2) (Loftfield et al 1997, Smith and Conen 2004).

Figure 2. The left picture is an example of a typical GC fitted with an electron capture detector for N2O analysis and a flame ionization
detector for CH4 and CO2 analysis (left) linked to an autosampler containing the sample vials. Gas samples are usually collected by syringe
and stored in either pre-evacuated vials or, as shown in the right picture, by flushing a large sample volume through a small vial. As N2O is
a stable gas vials can be stored for several weeks before analysis.
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Figure 3. Infrared N2O sensors are robust field instruments. This
Quantum Cascade Laser spectrometer for CH4, N2O and NH3
(Aerodyne Instruments, Massachusetts) is deployed in an
intensively managed grasslands (NL).

Accuracy of GC measurements varies between laboratories,
instruments and operators (Venterea et al 2009, Kelliher
et al 2013). We would recommend that each operators perform
regular reproducibility tests to refine and establish accuracy.
It is also necessary to test all GC detectors for possible
contamination with O2 (Parkin and Venterea 2010) or CO2
(Zheng et al 2008).

2.1.2. Infrared techniques. Infrared detection (IR)
techniques exploit the ability of gases (e.g. H2O, CO2, CH4,
N2O and NH3) to absorb infrared light at unique wavelengths.
Sample gas is either pumped into a measurement cell where
the IR beam is illuminating the sample (closed path system)
or the IR beam can be used in the outside air (open path
system). To date, only closed path measurement systems
are used for N2O, although open path systems are currently
under development. Commonly used IR detectors are
(1) Fourier transform infrared spectrometers (FTIR), which
use a broadband thermal system to scan though the IR
spectrum, and thereby measure a whole suit of gases
simultaneously (Galle et al 1994, Schäfer et al 2011);
(2) photo-acoustic instruments, combining opto-acoustics
with a broadband IR source (Iqbal et al 2013); (3) laser-based
systems tuned to the unique absorption line of a specific trace
gas, such as tunable diode laser (TDL) (Mammarella et al
2010) or quantum cascade laser (QCL) spectrometers and
cavity ring-down systems (CRD) (Kroon et al 2007, 2010)
(figure 3).

2.1.3. Pros and cons of GC and IR systems. Gas chro-
matographs used for soil N2O flux measurements are easy to
use and affordable laboratory instruments. They require a con-
tinuous supply of high purity carrier gases and have a much
poorer detection limit than most IR systems. Gas samples can
be collected in small vials and shipped abroad for analysis, if
locally GC are not available (e.g. Hergoualc’h et al 2008).

Infrared systems are considerably more expensive than
GCs and require experienced maintenance. However, they

perform measurements at frequency up to 20 Hz at a
sensitivity >500 times better than by GC. For example
the CEH GC autochamber system has a detection limit
of 0.2 µl l−1 for N2O compared to a detection limit of
0.001 µl l−1 of the tunable diode laser (Jones et al 2011) and
of 0.000 03µl l−1 for a 2010 Aerodyne quantum cascade laser
(Famulari 2013).

2.2. Flux measurement methods

2.2.1. Chamber methods. Chamber measurements have
the main advantage that the concentration signal is amplified
significantly so that smaller emissions can be evaluated
with a given, low instrumental precision. Sensors used for
chamber measurements do not need to be fast response
sensors. Gas chromatographs and opto-acoustical instruments
(Innova, Bruel & Kjaer, DK) are universally used to measure
soil respiration rates, CH4 and N2O fluxes (e.g. Flechard
et al 2005). The term ‘fluxes’ describes both emission and
uptake; for N2O emissions tend to be more important. Manual
chambers are cheap to make, do not require electricity except
small batteries in some cases and are easily transported to
remote areas (figure 4). Some authors suggest that it is
essential to (i) mix air inside the chamber using a small fan,
(ii) install a vent hole or tube to avoid effects of pressure
differences between in- and outside conditions, (iii) a proper
sealing to the sub-surface is required and (iv) the temperature
and humidity inside the chamber should not be allowed to
increase too much; so insulation or water trapping inside the
enclosed chamber might be needed. Recommendations can be
found in Hutchinson and Mosier (1981), Parkin and Venterea
(2010), Christiansen et al (2011), Rochette (2011), Clough
et al (2013).

Chamber fluxes (F) are calculated from the increase
in concentration (dC) during chamber closure (dt) and the
volume of the chamber (V) enclosing surface area (A).

F = dC/dt · V/A.

Most chamber studies in the past assumed a linear
increase in concentration over time, however, assuming
linearity may underestimate fluxes by 20–40% (Kroon et al
2008, Kutzbach et al 2007). Calculating fluxes from several
concentration measurements (3–5) during chamber closure
using non-linear or best-fit-model approaches (Pedersen et al
2010, Levy et al 2011, Venterea et al 2013) would reduce
some of the uncertainty.

With chambers a small area (<m2) of the ecosystem can
be studied without interference from other sources. Measured
flux rates can be linked to environmental variables measured
at the same location and time, for example soil temperature,
nitrate availability, water table depth or pH, which facilitates
the development of process models. Chamber measurements
do, however, have a problem covering the fast temporal
and spatial inhomogeneity (figure 5) of, for example, N2O
emissions from a grazed field (Velthof et al 1996, Flechard
et al 2007). Chamber studies are in danger of missing
main peak events after rainfall or fertilization, because the
experimentalists are not in the field on a particular day and
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minutes

Figure 4. Chamber measurement methods measure the increasing (or decreasing) concentration inside a chamber, preferably a number of
times after closing the chamber. The photo on the left is of a low cost static manual chamber, made from commercially available drainpipe
(40 cm diameter), flange and an aluminum lid and used for manual sampling of the air into glass vials for subsequent analysis by gas
chromatography (figure 2). The schematic diagram on the right shows a chamber connected to a photo-acoustic analyzer, the air is
re-circulated between analyzer and instrument, and the increase in N2O concentration is measured once a minute. CO2 and H2O have to be
scrubbed from the gas flow in order to get useful N2O data.

Figure 5. Spatial and temporal variability of N2O fluxes measured
by eight static chambers (C1–C8) from a grazed grassland in the
UK (Skiba et al 2013). The arrows denote dates of N fertilizer
application (52 kg N ha−1 yr−1 in March, May, June, July,
69 kg N ha−1 yr−1 in April and 35 kg N ha−1 yr−1 in August). The
onset and magnitude of fertilizer induced N2O emission peaks was
different for each chamber and each fertilizer event.

chambers can only be sealed a limited number of times per
day in order not to alter the microclimate inside. Some of these
issues can be resolved by using automated chamber systems,

capable of flux measurements every few hours (figure 6)
(e.g. Smith and Dobbie 2001, Grace et al 2013). However,
spatial coverage is likely to be even smaller than for manual
chambers, due to their much higher costs.

The combination of chambers with a fast response
infrared sensor can help to significantly increase the number
of measurements that can be one on a single field (Hensen
2012). The fast chamber method uses 10 Hz instruments
for this application so that, in general, chambers only need
to be enclosed for a few minutes. Air is re-circulated
between chamber and TDL or QCL and fluxes are calculated
from concentration increases recorded every second. Such
high frequency records of N2O accumulation allow a much
more accurate flux calculation than possible from the 3–5
points available for GC analysis. With this method, a high
temporal resolution of the emission landscape can be obtained
(figure 6).

2.2.2. Micrometeorological methods. Micrometeorological
methods have some advantages over enclosure methods:
measurements are on a larger scale, they do not interfere
with the micro-environment, and they have a very high

Figure 6. Two chamber methods setups used to overcome the spatial and temporal variability problems associated with soil N2O fluxes.
The fast chamber method (left), using the TDL or QCL as a sensor, allows many measurements at different locations in a short period of
time. On the right the automatic chamber that alternates between two positions and is connected to a GC and enables many measurements
from the same locations throughout a day.
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Figure 7. Eddy covariance flux measurements at Zegveld (NL) over a manured field. Left: mast with an ultra-sonic anemometer and
sample inlet line. Right: the sample line is connected to a TDL housed inside the electrically powered mobile laboratory.

temporal resolution. These methods integrate fluxes over large
plots (>10 m2) up to regional scales. There are however
disadvantages to micrometeorological methods as well: they
require large, uniform surfaces, and fast response infrared
sensors, which are often expensive; they are introduced
below. The data capture for these methods is also constrained
by the atmospheric stability, which can sometimes affect
measurements during night time, for example; overall,
a micrometeorological system will have better temporal
coverage than any enclosure system.

2.2.2.1. Eddy covariance (EC). The eddy covariance (EC)
method is widely used since a few decades (e.g. Aubinet et al
2000, Baldocchi 2003); the emission/deposition flux (FC) of
a gas is defined as the covariance between the vertical wind
speed (w) and the gas concentration (C) itself measured at one
point as follows:

FC = w′ · C′.

Eddies very efficiently mix high concentration air from
nearby sources with background air, and a correlation (or
anti-correlation) between vertical wind and concentration
indicates up- or down-ward transport of the gas (e.g. Stull
1988). To apply EC, fast sensors are required for both wind
(ultra-sonic anemometers) (e.g. Kaimal and Gaynor 1991)
and concentrations (see section 2.1): this means the costs for
equipment and expertise are relatively high.

Eddy covariance measurements of N2O were made possi-
ble by the development of fast response laser instruments, the
tunable diode lasers, which have mostly been superseded by
quantum cascade laser, as these are more robust, easier to use
and have higher sensitivity. Examples of measurements for
N2O with TDL’s are described in Jones et al (2011) or Laville
et al (1997) and of QCL measurements including a discussion
on uncertainties in EC measurements can be found in Kroon
et al (2007, 2010). EC measurements have been mainly used
to study fieldscale N2O fluxes from agricultural fields, see
figures 7 and 8 (Wienhold et al 1994, Laville et al 1997, Kroon
et al 2007, Neftel et al 2010), and for above canopy N2O flux
measurements in forests (Shaw et al 1998, Pihlatie et al 2005).

Figure 8. An example day of mixing ratios (1 ppb = 1 ng l−1) of
N2O, CO2 and H2O recorded at 10 Hz by the QCL (three bottom
traces), and calculated N2O fluxes (top trace). These measurements
were made from a grassland in England fertilized with slurry.

2.2.2.2. The relaxed eddy accumulation (REA) method. REA
is a conditional technique (Businger and Oncley 1990) that
has been widely used in the past two decades for a range
of gases, including N2O (e.g. Pattey et al 2006); unlike
EC it allows slow response concentration analyzers. In that
sense, REA is the ‘cheap version’ of EC: it uses the same
sonic anemometer to measure the vertical wind speed w, but
sampling air into updraft and downdraft reservoirs (e.g. Tedlar
bags for non-reactive gases), at constant flow rate, based on
the sign of w. The flux is expressed as:

F = βσw(cup − cdn)

where β is an empirical proportionality coefficient (generally
in the range 0.3 ± 0.8), σw is the standard deviation of w, and
cup and cdn are the average concentrations (over 30 min) of the
trace gas in the updraft and downdraft reservoirs, respectively.
The gas samples of N2O can then be analyzed by GC, or IR.
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Figure 9. Mobile plume measurements: the van houses a fast N2O
sensor and sonic anemometer and travels at a constant speed
downwind of N2O plumes originating from various farm source.

2.2.2.3. Aerodynamic gradient method (AGM). This tech-
nique has been widely applied on a large variety of gases
in the past fifty years, as it can rely on slower sensors than
EC. Vertical profiles of temperature, wind speed and trace
gas concentration (C) are used to calculate the flux (FC),
according to:

FC = KC
∂C

∂z

where z is the height above the ground; the term KC
represents the eddy exchange coefficient, and it is derived by
similarity from the vertical profiles of wind and temperature
(see e.g. Fowler and Duyzer 1989, Dyer and Hicks 1970,
Wagner-Riddle et al 1996). In a very turbulent atmosphere
(e.g. strong winds or convection during sunny days) the
surface layer is well mixed and the gradients will be small.
In a very stable atmosphere with hardly any turbulence (e.g.
during nights with low wind speed) the differences between
the measurement heights will be much larger.

2.2.2.4. Mass balance and plume methods. For source areas
that have a clear border (a manure heap, a housing system, a
test field), spatial integrating measurements are possible with
either mass balance or plume measurement techniques.

Similar to the gradient technique, the mass balance
technique has been used widely in the past few decades
also for N2O (e.g. Denmead 2000): it uses concentration (C)
measurements versus height, in combination with the vertical
gradient of wind (U). The flux is calculated as U · C for all
heights and integrated horizontally (e.g. Fowler and Duyzer
1987, Denmead et al 1998). This method is applied for finite
sources that only stretch out about 4–5 times the height of
the measurement tower in the upwind direction, and it is the
bridge between micrometeorological techniques and plume
measurements that rely on advection as well.

The plume method evaluates the concentration plume
that originates at the source and is transported by the wind
(Czepiel et al 1996, 2003, Trégourès et al 1999, Hensen
and Scharff 2001). Typical distances between source and

Figure 10. Typical trace of mobile plume measurements in an
agricultural area using a TDL to detect N2O fluxes at 10 Hz
recorded in spring on a 33 ha flat region in UK, containing crops, a
small poultry farm, dung heaps and an organic farm. The average
concentration increase was 2.6 ± 2.7 ppb (1 ppb = 1 ng l−1).
Results suggest that for this period the N2O emission rate was
290 ng N2O m−2 s−1.

measurement transects are 50 m−2 km (figure 9). Wind
speed, wind direction, turbulent parameters are needed to
calculate the emission flux using a transport model. The plume
technique can either use a mobile measurement system or an
array of stationary samplers. Examples of a mobile system are
shown in figures 9 and 10.

Both the plume and mass balance method can use
relatively low cost sampling systems. With a focus on relevant
sources (high emitters) relatively slow opto-acoustical sensors
or GC analyses can provide the concentration data. In addition
these methods require meteorological instrumentation. A
dispersion model is needed to translate the measured
concentration levels into emission levels. This can be a
Gaussian model, but new backward Lagrangian models are
now available that bring improvement on the modeling part of
this type of emission evaluations (Loubet et al 2010).

No model is required when a tracer release is used
(Scharff and Hensen 2009), provided that the tracer source
distribution can sufficiently mimic the actual N2O source
distribution.

2.2.2.5. Tall tower measurements. High resolution measure-
ments at a single site with elevation over 100 m on a
tower, a high building or a mountain can also be used to
evaluate emissions. The measurements detect N2O passing
the tower. Concentration peaks above background contain
information on the sources upwind. With inverse modeling
techniques, wind fields can be used to calculate the backward
trajectories of air parcels that show where the air mass
originated. On the European scale this technique is already
used to evaluate country scale emissions these are then
compared to the standard ‘bottom up’ method of emission
inventories. Bergamaschi et al (2010) discuss how already
national emission data has been updated based on this kind
of analyses.

2.2.2.6. Boundary layer budget approach. Polson et al
(2011) showed how the N2O budget for the UK can be
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evaluated using measurements from an airplane that flew
around the UK, sampled airflow entering and exiting the
country. During the flight air samples were collected into
Tedlar R© gas sample bags, to be analyzed when back on
the ground for a range of gases, including N2O by TDL.
Fluxes were calculated using inverse modeling techniques
and compared to the UK national emission inventory. Smaller
fluxes were reported by the bottom up inventory compared
to the aircraft measurements for N2O, implying that the
UK’s annual N2O emission inventory using the International
Panel on Climate Change methodology (IPCC 2006) may
underestimate emissions.

3. Different research questions require different
methods and sensors

The data produced by the observational systems described
above are required to determine (i) which sources are
important; (ii) the relative contribution of these sources;
(iii) where and how to mitigate; (iv) how to extrapolate to the
regional, national scale. It is important that appropriate tools
are selected to address the above knowledge items.

Ecosystem or km2 scale budget studies aim to show what
the large sources are and what their relative importance is
(addressing (i) and (ii)). Comparison of source systems is
based on annual area integrated data. The spatial integrating
methods can provide this information.

In order to mitigate N2O emissions however insight is
required into the processes that lead to or affect N2O exchange
patterns (iii).

In order to understand the drivers of emission for
example chambers are well suited. They can be used to
evaluate different treatments in the field (e.g. Jones et al
2007) and in controlled environment laboratory studies
(e.g. Sánchez-Martı́n et al 2008). Key is that all possible
variables likely to influence the N2O flux are measured at
the same time. Mechanistic models are data hungry and it is
advisable to discuss data requirements with the modeler at the
experimental design stage. High quality comprehensive data
sets are the panacea for sensible model outputs. Widely used
mechanistic models for N2O are DNDC (Li et al 1992) and
DAYCENT (Parton et al 2001).

Upscaling to the national scale can be done in
several ways. The most basic method to calculate annual
N2O emissions from agricultural soils, the Tier 1, IPCC
emission factor approach, is universally applicable, but with
an uncertainty of >400% (IPCC 2006). The tall tower
measurements linked with inverse modeling can provide a
means for emission verification in an independent way. Across
Europe a network of tall towers for GHG flux measurements is
currently emerging in order to provide long-term observations
of GHG and monitor change (Integrated Carbon Observation
Systems (ICOS) www.icos-infrastructure.eu/).

Figure 11 shows how different measurement methods
provide data on different spatial and temporal scales. The
available measurement methods provide the knowledge at
these different scales in time and space.

Figure 11. The role of different methods used in view of the spatial
and temporal variability.

4. Final remarks and recommendations

In the scientific arena, in Europe, North America or new
Zealand/Australia there is a clear trend towards the use of
space integrating EC technique. This technique however need
not be the first option for countries starting a programme
of N2O research, or may not even be appropriate, as large
uniform fields may not be characteristic of the agricultural
landscape. When the starting point is a minimum in available
research infrastructure, low cost techniques are certainly the
first option.

Chamber, plume and gradient methods can be done
low cost and can provide emission data on different source
systems. Chambers are the most obvious choice to start with,
they provide valuable information on N2O fluxes when used
properly. It is important to follow guidelines on chamber
design, sampling, flux calculation, replication in space and
time etc.

Chamber and mass balance technique seem so simple that
there is a danger to miss some of the warning signs that can
be found in literature. Taking the latest recommendations for
these methods into account however, might rapidly increase
the price of the low cost setup and available budget might
impose a limit on what is possible.

Chambers allow for off line sample analyses by GC,
which can even be done abroad when conditions would not
allow having a N2O monitor on the site or within the country.
However, having an analyzer close to the measurement site
would provide much faster information of temporal changes in
flux rates and allows optimization of the measurement strategy
(e.g. length of chamber closure, frequency of chamber
measurements) in response to changed environmental or
management conditions.

The most recent laser systems, top end of the market, are
definitely the best option in terms of performance: stability,
precision, accuracy. They will allow both for chamber and
the much more demanding eddy covariance or tall tower
observations to be carried out. Even though the initial price
of latest generation IR systems (circa 100 kEuro) is about a
factor of two above a complete GC system. However, they
are becoming more competitive as the lower operational costs
may pay back in the long run. With the laser spectrometers
there is no need for carrier gases and only limited need for
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calibration gases. The latest laser spectrometers no longer
need liquid nitrogen, and do not have the safety limitations
of the radioactive GC–ECD sensors. Important is the need to
use inlet filters since optical systems and especially the highly
reflective mirrors in the measurement cell can get damaged by
particles.

A limitation for field deployment of IR laser spectrom-
eters will be power requirements. Small air samples (∼1 l)
can be collected manually into gas tight bags or vials using
a large syringe or small vacuum pump from chambers, mass
balance, gradient or stationary plume measurements. For eddy
covariance however, the measurement cell has to be flushed
at a high flow rate whilst maintaining low pressure in the
cell. In practice that requires 1–4 kW pumps to be used.
Running these systems on, for example, solar or wind power
can be a problem. It is to be expected that in the coming
years low power open path systems will be developed that can
circumvent these limitation.

In fact the choice what to do right now is not so
much what instrument to use but what method to use.
That mainly depends on the questions asked. For a regional
emission validation, use the tall tower (for example a
telecommunication tower) with inverse modeling technique.
For process understanding small chambers and for field scale
evaluation or multiple plot emission surveys the mass balance,
gradient, plume or eddy covariance methods are suitable
approaches.

With the current speed of developments in optical
measurement techniques low cost versions of the laser
systems will become available that might cost 5–20 kEuro
but have a 10 or 100 fold reduction of the resolution in
concentration. These systems would be able to do chamber
measurements or mass balance/plume measurements close to
high emitters, but not allow for the micromet or tall tower
techniques.

Acknowledgments

We wish to thank our national funding authorities (Natural
Environment Research Council (NERC) and—Department
for Environment, Food and Rural Affairs (DEFRA) in the
UK and government funding in the NL) for support through
several contracts over the years; and the EU for financing
collaborative research through the FP7 integrated projects
CarboEurope IP, Nitroeurope IP and before that GreenGrass
and Midair.

References

Aubinet M, Moncrieff J and Clement R C 2000 Estimates of the
annual net carbon and water exchange of forests: the
EUROFLUX methodology Adv. Ecol. Res. 30 113–75

Baldocchi D 2003 Assessing the eddy covariance technique for
evaluating carbon dioxide exchange rates of ecosystems: past,
present and future Glob. Change Biol. 9 479–92

Bergamaschi P et al 2010 Inverse modeling of European CH4
emissions 2001–06 J. Geophys. Res. 115 D22309

Businger J A and Oncley S P 1990 Flux measurement with
conditional sampling J. Atmos. Ocean. Technol. 7 349–52

Christiansen J R, Korhonen J F J, Juszczak R, Giebels M and
Pihlatie M 2011 Assessing the effects of chamber placement,
manual sampling and headspace mixing on CH4 fluxes in a
laboratory experiment Plant Soil 343 171–85

Clough T J, Rochette P, Thomas S M, Pihlatie M, Christiansen J R
and Thorman R E 2013 Global Research Alliance on
Agricultural Greenhouse Gases: Nitrous oxide chamber
methodology guidelines, Version 1.0 ed C de Klein and
M Harvey, chapter 2 (Chamber Design) (www.
globalresearchalliance.org/research/livestock/activities/
nitrous-oxide-chamber-methodology-guidelines/)

Czepiel P, Shorter J H, Mosher B, Allwine E, McManus J B,
Harriss R C, Kolb C E and Lamb B K 2003 The influence of
atmospheric pressure on landfill methane emissions Waste
Manag. 23 593–8

Czepiel P M, Mosher B, Harriss C, Shorter J H, McManus J B,
Kolb C E, Allewine E and Lamb B K 1996 Landfill methane
emissions measured by enclosure and atmospheric tracer
methods J. Geophys. Res. 101 16711–9

Delwiche C C and Rolston D E 1976 Measurement of small nitrous
oxide concentrations by gas chromatography Soil Sci. Soc. Am.
J. 40 324–7

Denmead O, Leuning R and Griffith D W T 2000 Nitrous oxide
emissions from grazed pastures: measurements at different
scales Chemosphere: Global Change Sci. 2 301–12

Denmead O T, Harper L A, Freney J R, Griffith D W T, Leuning R
and Sharpe R R 1998 A mass balance method for non-intrusive
measurements of surface–air trace gas exchange Atmos.
Environ. 32 3679–88

Dyer A J and Hicks B B 1970 Flux gradient relationships in the
constant flux layer Q. J. R. Meteorol. Soc. 96 715–21

Famulari D 2013 personal communication
Flechard C, Neftel A, Jocher M, Ammann C and Fuhrer J 2005

Bi-directional soil/atmosphere N2O exchange over two mown
grassland systems with contrasting management practices
Glob. Change Biol. 11 2114–27

Flechard C R et al 2007 Effects of climate and management
intensity on nitrous oxide emissions in grassland systems
across Europe Agric. Ecosyst. Environ. 121 135–52

Fowler D and Duyzer J H 1989 Micrometeorological techniques for
the measurement of trace gas exchange Exchange of Trace
Gases Between Terrestrial Ecosystems and the Atmosphere
ed M O Andreae and D S Schimel (New York: Wiley)
pp 301–12

Freibauer A 2008 Designing an observation strategy for N2O
The Continental-Scale Greenhouse Gas Balance of Europe
(Ecological Studies vol 203) ed A J Dolman and
R Valenti (New York: Springer) pp 135–51

Galle B, Klemedtsson L and Griffith D W T 1994 Application of a
Fourier transform IR system for measurements of N2O fluxes
using micrometeorologicaml ethods, an ultralarge chamber
system, and conventional field chambers J. Geophys. Res.
99 16575–83

Grace P, van der Weerden T J, Kelly K, Rees R M and Skiba U M
2013 Global Research Alliance on Agricultural Greenhouse
Gases: Nitrous Oxide Chamber Methodology Guidelines,
Version 1.0 ed C de Klein and M Harvey, chapter 5
(Automated Greenhouse Gas Measurement in the Field)

Hensen A 2012 Methods for observation and quantification of trace
gas emissions from diffuse sources PhD Thesis VU Amsterdam

Hensen A and Scharff H 2001 Methane emission estimates from
landfills obtained with dynamic plume measurements Water
Air Soil Pollut. 1 455–64 (Focus)

Hergoualc’h K, Skiba U, Harmand J-M and Henault C 2008 Fluxes
of greenhouse gases from Andosols under coffee in
monoculture or shaded by Inga densiflora in Costa Rica
Biogeochemistry 89 329–45

Hutchinson G L and Mosier A R 1981 Improved soil cover method
for field measurement of nitrous oxide fluxes Soil Sci. Soc. Am.
J. 45 311–6

8

http://dx.doi.org/10.1046/j.1365-2486.2003.00629.x
http://dx.doi.org/10.1046/j.1365-2486.2003.00629.x
http://dx.doi.org/10.1029/2010JD014180
http://dx.doi.org/10.1029/2010JD014180
http://dx.doi.org/10.1175/1520-0426(1990)007<0349:FMWCS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(1990)007<0349:FMWCS>2.0.CO;2
http://dx.doi.org/10.1007/s11104-010-0701-y
http://dx.doi.org/10.1007/s11104-010-0701-y
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://dx.doi.org/10.1016/S0956-053X(03)00103-X
http://dx.doi.org/10.1016/S0956-053X(03)00103-X
http://dx.doi.org/10.1029/96JD00864
http://dx.doi.org/10.1029/96JD00864
http://dx.doi.org/10.1016/S1465-9972(00)00035-0
http://dx.doi.org/10.1016/S1465-9972(00)00035-0
http://dx.doi.org/10.1016/S1352-2310(98)00091-0
http://dx.doi.org/10.1016/S1352-2310(98)00091-0
http://dx.doi.org/10.1002/qj.49709641012
http://dx.doi.org/10.1002/qj.49709641012
http://dx.doi.org/10.1111/j.1365-2486.2005.01056.x
http://dx.doi.org/10.1111/j.1365-2486.2005.01056.x
http://dx.doi.org/10.1016/j.agee.2006.12.024
http://dx.doi.org/10.1016/j.agee.2006.12.024
http://dx.doi.org/10.1029/94JD00264
http://dx.doi.org/10.1029/94JD00264
http://dx.doi.org/10.1007/s10533-008-9222-7
http://dx.doi.org/10.1007/s10533-008-9222-7
http://dx.doi.org/10.2136/sssaj1981.03615995004500020017x
http://dx.doi.org/10.2136/sssaj1981.03615995004500020017x


Environ. Res. Lett. 8 (2013) 025022 A Hensen et al

IPCC 2006 IPCC Guidelines for National Greenhouse Gas
Inventories, Prepared by the National Greenhouse Gas
Inventories Programme ed H S Eggleston et al (Hayama:
IGES)

Iqbal J, Castellano M J and Parkin T B 2013 Evaluation of
photoacoustic infrared spectroscopy for simultaneous
measurement of N2O and CO2 gas concentrations and fluxes at
the soil surface Global Change Biol. 19 327–36

Jones S K, Famulari D, Di Marco C F, Nemitz E, Skiba U,
Rees R M and Sutton M A 2011 Nitrous oxide emissions from
managed grassland: a comparison of eddy covariance and
static chamber measurements Atmos. Meas. Tech. Discuss.
4 1079–112

Jones S K, Rees R M, Skiba U and Ball B C 2007 Influence of
organic and mineral N fertiliser on N2O fluxes from a
temperate grassland Agric. Ecosyst. Environ. 121 74–83

Kaimal J C and Gaynor J E 1991 Another look at sonic
thermometry Bound.-Lay. Meteorol. 56 401–10

Kelliher F M, Sherlock R, Clough T J, Premaratne M, Laughlin R J,
McGeough K L, Harvey M J, McMillan A M S, Reid A and
Saggar S 2013 Air sample collection, storage and analysis
Global Research Alliance on Agricultural Greenhouse Gases:
Nitrous Oxide Chamber Methodology Guidelines, Version 1.0
ed C de Klein and M Harvey, chapter 4

Kroon P S, Hensen A, Jonker H J J, Ouwersloot H G,
Vermeulen A T and Bosveld F C 2010 Uncertainties in eddy
covariance flux measurements assessed from CH4 and N2O
observations Agric. Ecosyst. Environ. 150 806–16

Kroon P S, Hensen A, Jonker H J J, Zahniser M S, van ’t Veen W H
and Vermeulen A T 2007 Suitability of quantum cascade laser
spectroscopy for CH4 and N2O eddy covariance flux
measurements Biogeosciences 4 715–28

Kroon P S, Hensen A, van den Bulk W C M, Jongejan P A C and
Vermeulen A T 2008 The importance of reducing the
systematic error due to non-linearity in N2O flux measurements
by static chambers Nutr. Cycl. Agroecosyst. 82 175–86

Kutzbach L, Schneider J and Sachs T E A 2007 CO2 flux
determination by closed-chamber methods can be seriously
biased by inappropriate application of linear regression
Biogeosciences 4 1005–25

Laville P, Henault C, Renault P, Cellier P, Oriol A, Devis X,
Flura D and Germon J C 1997 Field comparison of nitrous
oxide emission measurements using micrometeorological and
chamber methods Agronomie 17 375–88

Lesschen J, van den Berg M, Westhoek H, Witzke H and Oenema O
2011 Greenhouse gas emission profiles of European livestock
sectors Anim. Feed Sci. Technol. 166/167 16–28

Levy P E, Gray A, Leeson S, Gaiawyn J, Kelly M P C,
Cooper M D A, Dinsmore K J, Jones S K and Sheppard L J
2011 Quantification of uncertainty in trace gas fluxes measured
by the static chamber method Eur. J. Soil Sci. 62 811–21

Li C, Frolking S and Frolking T A 1992 A model of nitrous oxide
evolution from soil driven by rainfall events: I. model structure
and sensitivity J. Geophys. Res. 97 9759–76

Loftfield N, Flessa H, Augustin J and Beese F 1997 Automated gas
chromatographic system for rapid analysis of the atmospheric
trace gases methane, carbon dioxide, and nitrous oxide
J. Environ. Qual. 26 560–4

Loubet B, Génermont S, Ferrara R, Bedos C, Decuq C, Personne E,
Fanucci O, Durand B, Rana G and Cellier P 2010 An inverse
model to estimate ammonia emissions from fields Eur. J. Soil
Sci. 61 793–805

Maas C W M et al 2009 Greenhouse Gas Emissions in the
Netherlands 1990–2007 (PBL Report 500080012/2009)
(Bilthoven: Planbureau voor de Leefomgeving)

Mammarella I, Werle P, Pihlatie M, Eugster E, Haapanala S,
Kiese R, Markkanen T, Rannik Ü and Vesala T 2010 A case
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