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Electron energy-loss spectroscopy (EELS) is used to study p-doped layers in n-i-p amorphous thin
film Si solar cells grown on steel foil substrates. For a solar cell in which an intrinsic amorphous
hydrogenated Si (a-Si-H) layer is sandwiched between 10-nm-thick n-doped and p-doped a-Si:H
layers, we assess whether core-loss EELS can be used to quantify the B concentration. We compare
the shape of the measured B K edge with real space ab initio multiple scattering calculations and
show that it is possible to separate the weak B K edge peak from the much stronger Si L edge fine
structure by using log-normal fitting functions. The measured B concentration is compared with
values obtained from secondary ion mass spectrometry, as well as with EELS results obtained from
test samples that contain ~200-nm-thick @-Si:H layers co-doped with B and C. We also assess
whether changes in volume plasmon energy can be related to the B concentration and/or to the
density of the material and whether variations of the volume plasmon line-width can be correlated
with differences in the scattering of valence electrons in differently doped a-Si:H layers. © 2013

American Institute of Physics. [http://dx.doi.org/10.1063/1.4793587]

INTRODUCTION

The roll-to-roll production of n-i-p thin film Si solar
cells is a promising way to achieve large volume production
of cheap and efficient devices on lightweight, flexible sup-
ports, since the layers can be deposited directly onto opaque
substrates at low temperature. Both amorphous (a-Si:H) and
microcrystalline (uc-Si:H) hydrogenated Si solar cells are
currently grown on glass, plastic, and steel foil substrates,
both in the laboratory and on industrial scales.' For n-i-p so-
lar cells, the Si deposition sequence starts from n-doped Si,
followed by the intrinsic (i) and p-doped Si layers. The
i-Si:H layer is therefore sandwiched between ~10-nm-thick
n- and p-doped a-Si:H layers, which need to satisfy the two
opposing requirements of high conductivity and low carrier
recombination rate. In addition, the p-doped layer should be
as transparent as possible to reduce parasitic optical absorp-
tion. One approach that can be used to increase its transpar-
ency is to alloy it with C to increase its optical band gap.” It
is also important to confine the dopant to the p layer to limit
B contamination of the i-Si layer, which degrades the carrier
mobility> and the local atomic order* and weakens the
strength of the electric field in the i-layer near the p/i inter-
face resulting in a lower carrier collection efficiency.” On
flat thin film Si solar cells, Kroll et al. showed a clear corre-
lation between degradation of solar cell performance and B
contamination of the i-Si:H layer by using secondary ion
mass spectrometry (SIMS).” The impact of boron-oxygen-
related recombination centres has been studied extensively
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for B-doped Czochralski-grown Si,° as they ultimately limit
the carrier lifetime.” For all of these reasons, it is important
to be able to measure the B concentration in p- and i-doped
a-Si:H layers with nanometre spatial resolution and to corre-
late these measurements with solar cell performance.

Our preliminary measurements of B concentration using
core-loss electron energy-loss spectroscopy (EELS) in the
transmission electron microscope (TEM), which are reported
elsewhere,® required the use of a long acquisition time to
detect low B concentrations in ¢-Si:C:H and a-Si:H layers
and careful analysis to extract the B K edge from the Si L, 3
fine structure. Other attempts in the literature to measure low
B concentrations using EELS have reported detection limits
for B of 0.2% with 10% accuracy in B-doped C.,° 0.5% in
NizAl (Ref. 10), and 1% in Si (Ref. 11). In a recent study,
Asayama et al. managed to detect 0.2.% B in a p-type Si de-
vice using a spherical aberration corrected scanning TEM
(STEM).'? The difficulty of such measurements results in
part from the fact that the energy-loss near-edge structure
(ELNES) from the Si L edge, caused by scattering of inner-
shell electrons to the conduction band, extends from 99 to
300eV and interferes with the B K edge at 188 eV. In addi-
tion, the Si L, 3 edge cross-section is five times larger than
that of the B K edge. When combined with the fact that the
B concentration is only a few percent, the Si peak intensity is
hundreds of times larger than that of the B K edge.

In addition to measurements of B concentration, it is
equally important to determine the proportion of B atoms
that is electrically active in the p-doped layer in an @-Si:H
solar cell. In the free electron model, the volume plasmon
energy is proportional to the square root of the valence elec-
tron density, while the line-width of the plasmon resonance

© 2013 American Institute of Physics
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is inversely proportional to the relaxation time of the plas-
mon oscillation.'® For high B concentrations (up to 24%), a
volume plasmon energy shift of 0.8eV has been measured
using X-ray photoelectron spectroscopy.*

In the first part of this paper, we describe the growth of
our a-Si:H layers using plasma-enhanced chemical vapour
deposition (PECVD). We then present a detailed explanation
of the methodology that we use to determine the B concen-
tration with core-loss EELS. Our measured B concentrations
are compared with SIMS measurements from the same sam-
ples. In the third part of the paper, variations in volume plas-
mon energy across the doped layers are measured and
discussed with reference to their local chemical and electri-
cal properties.

EXPERIMENTAL DETAILS

Layer deposition was carried out in a Flexicoat300
industrial pilot roll-to-roll system, which is used for PECVD
growth of doped and intrinsic Si layers on steel foils that
have widths of up to 300 mm using three in-line deposition
chambers (Fig. 1). Two of the chambers are equipped with
linear symmetric RF (13.56 MHz) sources'* that are suitable
for the deposition of amorphous or micro-crystalline doped Si
layers. The intrinsic Si:H absorber layers are deposited using
a linear very high frequency (VHF) plasma source (70 MHz).
The use of different chambers to deposit the differently-
doped layers minimises possible cross-contamination and
subsequent contamination of the intrinsic layer. Test samples
(10 x 2.5 cm? in size) were fixed onto a custom-made sample
holder, which was placed on the steel foil. Real solar cell
samples were grown directly on steel foil.

Samples were prepared for TEM observation using a
standard lift-out procedure in a dual-beam FEI Helios focused
ion beam (FIB) workstation. ~200nm of electron-beam-de-
posited Pt and ~1 pum of ion-beam-deposited Pt were used to
avoid degradation of the samples due to Ga®" implantation.
Coarse FIB milling was carried out using a 30kV ion beam,
while final milling was performed using a 1kV ion beam.
Each sample was cleaned at 500V using a focused Ar beam
in a Fischione Nanomill system to remove the Ga-
contaminated surface layer.

Core-loss EEL spectra were acquired in TEM diffraction
mode (image coupling to the spectrometer) at 120kV in an
FEI Tecnai microscope. We chose a collection semi-angle of
10 mrad using an objective aperture and a low camera length
to maximise the signal when using a 2 mm Gatan imaging fil-
ter (GIF) entrance aperture, while maintaining a reasonable
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signal-to-noise ratio. For core-loss measurements, the nano-
beam mode of the microscope and a small condenser aperture
were used to form a 50 nm parallel electron beam for the test
samples and to reduce the beam diameter to ~3 nm for meas-
urements from the p-doped layer in the real solar cell. For
long acquisition times (with a high number of counts), chan-
nel-to-channel gain variation in the GIF camera is the domi-
nant source of artefacts in the recorded spectra. We therefore
used an iterative averaging procedure, which is described in
detail elsewhere,10 to reduce channel-to-channel gain varia-
tion. The sample thickness was measured by applying the
“log-ratio method” to the low-loss EELS intensity and found
to be ~80nm. In order to check for the effect of plural scat-
tering, the Si ELNES from the ~80-nm-thick sample was
compared after Fourier deconvolution and with measure-
ments obtained from a ~20-nm-thick sample. Apart from a
small difference arising from the contribution of the volume
plasmon peak due to plural scattering, the same peaks were
present in the ELNES in each case. As the contribution from
the volume plasmon peak was small and in order to avoid
introducing additional noise in the spectra due to deconvolu-
tion, all of the results presented below were obtained from
~80-nm-thick TEM lamellae without performing any
deconvolution.

Low-loss EEL spectra were acquired at 120kV in STEM
mode using a dispersion of 0.02eV/pixel, while simultane-
ously collecting high-angle angular-dark-field (HAADF)
images in an FEI Titan probe-corrected TEM. The typical ac-
quisition time was ~1 s for each spectrum and the total num-
ber of spectra was ~500. Sample drift during acquisition was
taken into account by using cross-correlation of images
acquired every five spectra. The collection semi-angle of 10
mrad was defined by the objective aperture. The cut-off angle
for scattering from volume plasmons in Si is 6.5 mrad (for
higher angles, plasmons become highly damped as they can
transfer all of their energy to single electrons by the creation
of electron-hole pairs'?). A 10 mrad collection angle is there-
fore small enough to avoid too large a contribution to the
spectrum from single electron excitations, although contribu-
tions from different scattering angles will cause a slight
broadening of the plasmon peak and a shift in its energy
when compared to the plasmon peak energy expected for
completely free electrons.

A scanning electron microscope (SEM) image of a typi-
cal cross-sectional FIB-prepared solar cell is shown in Fig.
2(a). The layer sequence in the growth direction is: Ag back
contact, B-doped ZnO, n-doped a-Si:H, intrinsic «-Si:H,
B- and C-co-doped a-Si:H, indium tin oxide (ITO) front

take-up

intrinsicchamber
pay-off n-chamber

p-chamber] ®

FIG. 1. Schematic diagram of the PECVD roll-to-
roll deposition chambers used to grow thin film Si

solar cells on metallic foil. Each chamber is dedi-
cated to the deposition of a particular Si layer. From
left to right, P-doped, undoped, and B- and C-co-

coolin
g doped Si layers.

RF source

VHF source

RF source
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e-beam dep Pt

contact. The C concentration in the top layer is expected to
be ~20 at. %. We refer to this layer as p-doped a-Si:C:H. A
bright-field (BF) TEM image of the p-doped a-Si:C:H layer,
which is studied in detail below, is shown in Fig. 2(b). The
a-Si:H and p-doped a-Si:C:H regions have similar BF con-
trast and cannot be distinguished from each other in Fig. 2(b).
The total Si layer thickness is ~400nm while the expected
thickness of the p-doped a-Si:C:H layer is ~15nm. The
~5nm roughness of the p-doped «-Si:C:H/ITO interface
reduces the depth resolution of SIMS measurements of the B
concentration. For such a thin layer, a TEM beam diameter
that is smaller than the layer thickness must be used, while
optimizing the beam current density and acquisition time to
limit irradiation damage. Due to these limitations, two addi-
tional test samples were prepared to provide complementary
EELS measurements. The layer structure in test sample 1
(Fig. 2(c)) is: a-Si:H (i), p-doped a-Si:H with a B concentra-
tion similar to that of the p-doped layer in the solar cell (p)
and a-Si:H deposited using twice the diborane concentration
(p ). Test sample 2 is identical to test sample 1, but all of the
Si layers are alloyed with C in the same proportion as in the
p-doped layer in the real solar cell. The thickness of each
layer in the test samples is ~200 nm.

MEASUREMENT OF B CONCENTRATION USING
CORE-LOSS EELS

Background-substracted EEL spectra recorded at the
position of the Si L, 3 edge from the three layers with differ-
ent B concentrations (undoped, lightly doped, and highly
doped) in the two test samples (a-Si:C:H and a a-Si:H) are
shown in Fig. 3. The shoulder at 284 eV is attributed to the C
K edge for the ¢-Si:C:H sample and is not observed for the

J. Appl. Phys. 113, 093513 (2013)

FIG. 2. (a) Secondary electron SEM image of a
FIB-prepared cross-sectional TEM sample of a solar
cell. From the bottom to the top: Ag back contact
reflector deposited on steel substrate (not shown),
Zn0O, a-Si:H, ITO, e-beam, and i-beam deposited
Pt. (b) Bright-field TEM image of the B-doped
a-Si:C:H (p)/ITO interface in the solar cell sample
shown in (a). (c) Bright-field TEM image of a-Si:H
test sample 1.

a-Si:H sample. Elemental Si and C concentrations were
determined from the spectra by subtracting the background
from the Si L, 3 and C K pre-edge regions using standard
inverse power laws and integrating the resulting signals over
an energy range between 5 and 20 eV beyond the edge onset.
Cross-sections were determined using the Hartree-Slater
model'’ and are given in Table I. Although the measured
concentrations should be independent of the width of the
integration window, variations result from errors in back-
ground subtraction and in the calculated cross-sections. An
average of the C concentrations measured using different
integration windows provides a value of 15.2% = 1% for the
a-Si:C:H layers (Table I).

The B K edge has a much smaller cross-section than the
Si L edge (see Table I) and lies on an oscillating background
arising from the fine structure of the Si L, 3 and L, edges,
making it difficult to determine the origin of the peaks
observed in this energy range. In the present study, interpre-
tation of the recorded spectra was facilitated by comparing
results obtained from differently doped specimens and by
removing the background under the B K edge in stages.
First, the contribution of the structure of the Si L, 5 edge to
the background below the Si L; edge was removed from the
background-substracted Si L, ; edge spectra by using a log-
normal function of the form:

where E is energy loss and the constants A, g, Eq are fitted
over a chosen energy range using a least-squares fitting
method implemented in Gnuplot software.'® A similar

e | SiL,

()]

FIG. 3. Background-subtracted EEL spec-

£

tra acquired near the Si L, 5 edge for three
different B concentrations labelled i, p,
and p* in the (a) a-Si:C:H and (b) a-Si:H
test samples. The spectra have been offset
from each other vertically for clarity. The

Counts [a.u.]
N w

-
T

corresponding B concentrations measured
using SIMS are given in Table I. The orig-
inal spectra from the highly B-doped

™ layers before background subtraction are

100 150
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o
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shown as insets.
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—
()
-~
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TABLE I. B and C atomic concentrations measured using core-low EELS from the a-Si:H and a-Si:C:H test samples. The hydrogen concentration is not taken
into account for the calculation of the atomic concentrations. The concentrations measured using SIMS assume an atomic density of 5 x 10%% cm 3. Cross-
sections are calculated using the Hartree-Slater model (Ref. 15). Calculation errors in cross-sections are estimated to be ~20% (Ref. 2).

Calculated cross-section (Barns) Si:C:H Si:H
Integration window (eV) BorC Si i P pt i P pt
C (at. %) 10 898 15 869 14.22 15.34 16.35
20 1669 32837 13.73 17.29 14.25
B (at. %) 5 1242 6881 0 1.75 3.57 0 1.19 3.87
10 2333 15 869 0 1.12 6 0 1.05 4.96
20 4209 32 837 0 0.5 5.24 0 0.49 2.55
Average 0 1.1 £0.5 49+ 1 0 0.9 +0.3 38=+1
B (at. %) measured using SIMS 3.107° 0.6 3.04 3.107° 1.4 6

approach was used by Poe et al. to remove contributions to
the atomic continuum after the Si K and L, 5 edges to exam-
ine mixed Si coordination compounds varying in Si*":Si'V
ratios.'” The resulting background-substracted Si L, edge
spectra are shown in Fig. 4 for the two test samples. The
effect of the presence of C on the local structure of the
amorphous material can be seen in the form of differences
between Figs. 4(a) and 4(b), which result from the different
atomic coordinations and interatomic distances of Si atoms
when they are surrounded by C instead of Si. The Si-Si and
Si-C bond lengths have been computed and measured
experimentally for a-SiC:H compounds to be 0.23 and
0.19nm, respectively.18 The B K edge at 188eV is now
more visible for the two highly doped (p") layers. For the
lightly doped (p) samples, the B K edge is not as clearly
visible on the Si L edge fine structure.

In order to complete the separation of the B K edge
from the Si fine structure, a conventional power law back-
ground subtraction was performed on the spectra shown in
Fig. 4 and both the B K edge and the remaining Si fine struc-
ture at ~225 eV were fitted to log-normal functions (Eq. (1)).
Figure 5 shows the best-fitting functions overlaid on the ex-
perimental spectra and compared with the results of real-
space ab initio calculations of the B K edge performed using
FEFF9 9.05 code'? for the experimental values of accelera-
tion voltage and collection angle. The calculation was per-
formed for 5 at. % B in a disordered cluster, with core hole
effects included by using the random phase approximation
and the Hedin-Lundqvist self-energy to take inelastic losses
into account. A reasonable match is obtained between the

fitted and calculated B K edge shapes, although the fitted
log-normal function has a slightly larger width. The concen-
tration of B relative to that of Si was estimated from the
areas under the log-normal functions for 5, 10, and 20eV
energy windows from the onset of the B K edges at 188¢V,
making use of the Hartree-Slater cross sections' given in
Table 1. The observed variation in B concentration with
energy window size is likely to result primarily from differ-
ences between the calculated and fitted edge shape, from the
use of simple log-normal fitting functions that do not take
the fine structure of the edge into account and from errors in
background subtraction. In the present study, we simply
averaged the results obtained using the different energy win-
dow sizes to determine final values for the measured B con-
centrations of 4.9 = 1% and 3.8 = 1% for the highly doped
a-Si:C:H and a-Si:H layers and 1.1 =0.5% and 0.9 £ 0.3%
for the lightly doped a-Si:C:H and a-Si:H layers, respec-
tively (Table I). These values are within a factor of two of
the SIMS measurements, which are also given in Table I.
For the highest B concentrations (>1 at. %), the discrepancy
between the two measurement techniques may be explained
by matrix effects when high concentrations are measured
using SIMS.*°

The same procedure was used to measure the B concen-
tration across the p-doped layer of the real solar cell from a
linescan of EEL spectra acquired using 3 nm probe and step
sizes. Figure 6 shows individual spectra after background
subtraction of the Si L, 5 edge. The C K edge is visible in the
C-rich p-doped layer. At the same time, a variation in the
fine structure of the Si L; edge is visible before the onset of

SiL; BK pr— SiL

. B Kedge
FIG. 4. Background-subtracted EEL spec-

I

tra acquired near the Si L; edge for three
different B concentrations labelled i, p,

and p* in the (a) a-Si:C:H and (b) a-Si:H
test samples. The spectra have been offset

Counts [a.u.]
w

N

-
T

from each other vertically for clarity. The
corresponding B concentrations measured

using SIMS are given in Table 1.

150 170 190 210 150
(a) Energy loss [eV] (b)
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w >

Counts [a.u.]
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T S S

H

190 210 230 250
(a) Energy loss [eV]

1% 210 230 250
(b) Energy loss [eV]

FIG. 5. Black lines: Background-subtracted EEL spectra acquired near the B K edge for three different B concentrations labelled i, p, and p™ in the
(a) a-Si:C:H and (b) a-Si:H test samples. Coloured dotted lines: Log-normal fits of the EXELFS peak centred at ~225¢eV and of the B K edge. Different col-
ours correspond to different B concentrations. Black lines with crosses: calculated B K edge for two different B concentrations. The corresponding B concen-
trations measured using SIMS are given in Table I. The spectra have been offset from each other vertically for clarity.

the B K edge. The relative B concentration was extracted
from Fig. 6 using a 5 eV energy window and is plotted in
Fig. 7 alongside SIMS measurements obtained using two dif-
ferent ion energies. (The best depth resolution is obtained
using the lower ion energy at the expense of increased acqui-
sition time). The shaded areas show the interfaces between
the ITO and the p-doped a-Si:C:H layers on the left side and
between the p-doped a-Si:C:H and a-Si:H layers on the right
side. Further details about the sources of error for SIMS and
core-loss EELS quantification are discussed elsewhere.? The
results suggest that it is possible to use core-loss EELS to
measure the concentration of B in the p-doped layer in real
solar cells for a concentration of ~1 at. % with a spatial reso-
lution of ~4 nm.

CHARACTERIZATION OF p-DOPED a-Sl:H USING
VOLUME PLASMON MEASUREMENTS

The position and the width of the volume plasmon peak
depends on the local chemical and electrical properties of a
material. Here, we assess whether variations in plasmon

Si L; edge

[«2)

[$))

N

Counts [a.u.]
w

N

0™ 60 200 240
Energy loss [eV]

FIG. 6. Background-subtracted EEL spectra acquired near the Si L; edge at
different positions on the sample near the a-Si:H/p-doped a-Si:C:H interface
for the real solar cell sample. The red arrow indicates where the linescan
was acquired in the bright-field TEM image shown as an inset. The scale bar
in the bright-field TEM image is 50 nm.

energy with B concentration can be measured in the two test
samples. The energy dependence of the inelastically scat-
tered intensity is proportional to S[—1/¢(E)], where ¢ is the
dielectric function and can be approximated, in the free-
electron model,'? by the expression

=17 Ej(Eh/7)
> [@} T (B —E) + (En/x)

2

where E,, is the plasmon energy and 7 is the plasmon relaxa-
tion time. The full width at half maximum of this function is
given by AE,=//t. In the free electron model, the valence
electron density (n) is related to the volume plasmon energy
by

ne?

— 3

E,=h
r eomq’

where 7, e, ¢y, and m are the reduced Planck constant, elec-
tron charge, permittivity of free space and electron mass,
respectively. In order to determine values for E, and 7, we

° ' EELS —e—
SIMS 5keV -eereere
5 SIMS 5006V ==--=--

N

N

a-Si:H

Boron concentration [%]
= w

20
Depth [nm]

%

FIG. 7. Boron concentration in the p-doped a-Si:C:H layer in the real solar
cell measured using core-loss EELS and SIMS. The B concentrations deter-
mined using core-loss EELS are extracted from the spectra shown in Fig. 6.
The bright-field TEM image in the background shows the ITO/p-doped a-
Si:C:H/a-SiH layer sequence from which EELS linescan was recorded.
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FIG. 8. Volume plasmon peaks measured from the a¢-Si:H and a-Si:C:H test
samples doped with different B concentrations (see Table I). The small black
vertical lines indicate the plasmon peak energies determined using Eq. (3),
which lie slightly to the right of each peak maximum. The data points are
measured values, while the continuous lines are fitted curves. For clarity, the
plots are offset from each other vertically. A typical original spectrum,
showing zero-loss and plasmon peaks, is shown in the inset.

fitted volume plasmon peaks measured using EELS to the
function

aF
(E? — E2)* + (EAE,)

Ieps(E) = 5 +bE+c, 4)

in which the last two terms are included to take into account
the unknown background contribution to the EELS signal,
using a least-squares fitting method implemented in Gnuplot
software.'® For each recorded spectrum, the fits were used to
obtain values for E, and AEP, as well as the fitting error in
each parameter. In order to determine as precise a measure-
ment of Ej as possible, the zero-loss peak (ZLP) was always
recorded in the same spectrum as the volume plasmon peak
and its position was determined by fitting a Lorentzian func-
tion to it. The values of E, and AE,, were typically obtained
with precisions of ~0.1%. Examples of volume plasmon
spectra measured from the two test samples are shown in

J. Appl. Phys. 113, 093513 (2013)

Fig. 8 for different B and C concentrations, with experimen-
tal data points shown using symbols (only one point out of
ten is shown for clarity). The plasmon energies obtained by
fitting each spectrum to Eq. (4) are indicated by vertical
black lines and are slightly higher in energy than the maxi-
mum peak positions, in agreement with theory (Eq. (4)).
Plots of measured plasmon energy and peak width
derived from linescans of spectra acquired across the p™, p,
and i layers in the Si:C:H and Si:H test specimens are shown
in Fig. 9, alongside SIMS profiles measured from the same
layers. The similarity between the plots is remarkable, espe-
cially the correlation between the decrease in the B concen-
tration and the plasmon energy in the p* layers. Slight
differences are measured at the p/i and i/contact layer interfa-
ces which may be related to charge accumulation. The meas-
ured plasmon energies are ~17.3, ~17.23, and ~17.2eV for
the p*, p, and i Si:C:H layers (Fig. 9(a)) and ~17.25,
~17.13, and ~17.1eV for the p*, p, and i Si:H layers
(Fig. 9(b)), respectively. All of the experimental values are
higher than that reported for crystalline Si (16.5eV). This dif-
ference may have resulted from contributions to the spectra
from different scattering vectors in the 10 mrad collection
angle, or from the fact that H atoms have a lower ionization
energy (1312kJ mol ") than Si (786 to 4355 kJ mol ' for the
4 outer shell electrons), such that electrons provided by H
atoms can contribute to the valence electron cloud. These
effects are partly compensated by the decrease in atomic den-
sity of a-Si:H by ~0.827 compared to that of crystalline Si.*'
On the assumption that the volume plasmon energy

varies linearly with doping concentration C, in the form*
dE
E,(C.) = E,(0) + C,—L. 5
o(C) = E0) + €5 )

Table II gives average values of dE,/dC, measured from the
experimental data points shown in Fig. 9 for different B con-
centrations in the ¢-Si:H and «-Si:C:H samples. The varia-
tion in plasmon energy with B concentration is likely to
result from a variation in (i) atomic density (B and Si have
different covalent radii), (ii) electron density (B and Si have
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TABLE II. Parameters measured from volume plasmon spectra from the i,
p, and p" layers of the a-Si:C:H and a-Si:H test samples (see text for
details). E, is the average plasmon peak energy (Fig. 8) and dE,/dC is
the change in average plasmon energy with B concentration. For each layer,
Cg.ggLs and Cp_spvs are the average concentrations measured using EELS
and SIMS, respectively (see Table I) and Cg_4 is calculated using Eq. (6).

Compound  dE,/dCpgers (€V)  dEp/dCpsmvs (€V)  dE,/dCg_cac (€V)
a-Si:C:H 23+£0.3 41=*03 4
a-Si:H 3.5+02 2.1 0.2 4.6

different numbers of valence electrons), (iii) effective elec-
tron mass, and/or (iv) hydrogen concentration between the
layers. For plasmon oscillations, the electron mass in vac-
uum typically provides reasonably accurate values of plas-
mon energy for many solids,'® suggesting that variations in
effective electron mass with B concentration may be
neglected. Assuming for the moment that there is no signifi-
cant change in hydrogen concentration, the effects of
changes in valence and density can be considered in the form

dE, E, Nyai, Va
~=2 (R, ) ), 6
dCoy 2 ( I(ngs,, T ©

Isi

where V,,, and V,, are the volumes of Si and B atoms
derived from their covalent radii (84 and 111 pm, respec-
tively), Nyq, and N, are the valences of Si and electri-
cally activated B atoms (4 and 3, respectively, assuming
that no electrically active B atoms are passivated by H
atoms) and R, is the fraction of B that is electrically active
(see Appendix).

Table II also gives values of dE,/dCy calculated on the
assumption that R, takes a representative value for 1% B dop-
ing of ~10%,>*** that the covalent radius of a C atom is
70 pm and that the average valence of a-Si:C:H is 4. The cal-
culated dE,/dCg values reflect the lower rate of increase in
plasmon peak energy for a-Si:C:H compared to «-Si:H,
resulting primarily from the smaller average radius of the
C-containing compound. Nevertheless, a-Si:H is a complex
system and many approximations and assumption have been
made in this calculation. In particular a larger covalent radius
may be appropriate in a-Si:H for both Si and B (Ref. 21) and
a value for the valence of Si atoms of ~2.4 has been reported
for a-Si.*

The plasmon peak width AE,, is inversely proportional to
the plasmon relaxation time (see Eq. (2)). The measured val-
ues of AE, shown in Fig. 9 increase with decreasing B con-
centration, taking values between 4.7 and 5.4eV, compared
to a value of 3.7 eV calculated for crystalline Si for a low col-
lection angle.> The 10 mrad collection angle used in the
present study may contribute to the broadening of the plas-
mon peak. The number of oscillations that occur during the
plasmon relaxation time E,/(2rAE,) is 0.7 for crystalline
Si.'* In our samples, the lower number of oscillations
(approximately 0.5-0.6) is attributed to the amorphous struc-
ture and the presence of hydrogen, which may act as a scat-
tering centre and contribute to ionized impurity scattering.*
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We find that the relaxation time increases with increasing B
concentration. Although this trend is not understood, it sug-
gests that B atoms introduced by doping do not act as strong
scattering centres. It has been reported that a direct effect of
plasmon scattering is a reduction in mobility*’ (in the doping
range 5 X 10" to 5 x lOlgcm_3, which corresponds to the
typical B concentration measured in our solar cells). The
lower plasmon width in the B-doped layer or in a-Si:H com-
pared to @-Si:C:H may therefore be related to different
mobilities.

CONCLUSIONS

We have demonstrated that core-loss EELS can be used
to measure B concentrations in p-doped layers in @-Si:H and
a-Si:C:H n-i-p solar cells. A fitting procedure is used to sepa-
rate the B K edge contribution from the Si fine structure. B
concentrations as low as 1 at. % are measured using EELS
and compared with SIMS measurements made on the same
samples. Low-loss EELS is used to measure changes in vol-
ume plasmon peak energy and peak width with B concentra-
tion. The plasmon energy is observed to increase by 0.1 eV
with increasing B concentration, while the peak width is
observed to decrease by ~0.2¢eV. Possible explanations for
these changes are discussed.
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APPENDIX: DERIVATION OF EQUATION (6)
The derivation of Eq. (6) is as follows:

If V4, and V,,, are the covalent volumes of Si and B atoms,
Ny, and Ny, are the numbers of atoms of Si and B con-
tained in volume V/,

N¢ is the number of electrically active B atoms in volume
Vo,

Nyay, and N, are the valences of Si and electrically active
B atoms (with no electrically active B atoms passivated by H
atoms),

Cuty = Nug s the atomic concentration of B,

Nt//s,’
C,y= 1\7,] is the concentration of electrically active B,
atgi
R, = A’/\"" = CC“’ is the ratio of electrically active to total B,

which is’assumed to be independent of B concentration and

VO = Vats,‘Nals,‘ + VatBNaIB = ats; (Vats,‘ + CatB Va13>'

Then for undoped a-Si:H the electron density

NowtNare Nowse 4 o
Nog, = valgi* ' atg; — vals; ~ ~ 61023 e /Cm 37

a
Vo Varg gn(117 pm)

and for B-doped a-Si:H the electron density
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Nva/g,» (Nars,- + (NWB
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- Nel)) + NvalgNel

Ne

. Na[s,‘ (Nvalg, (l + CaIB

- Cel) + Nvalg Cel)

N, ats; (VIIISf + Catg VatB )

Nva
1 + CatB + Celfactg <—IB - 1>

_ NWllSi NV(ZIS[
Ve Vi
tsi 1 + Catg Wt:j
Ny
l + CﬂfB + C()I—g('[B (]V—IB - 1)
_ valg;
o 14 Cypy Lt
atp szt
Nva
14 Cu, (Rel (’B - 1) + 1)
—n NWIZSI’
s Va .
1+ Cypy 2
ats;

It follows that

dn,

vals;

N\)ﬂ a
Rel( ly —1) +1 Vo

N, valg
i <1 + Catg <Rel (le& -

)+1))

= ne
dCa]B 5 VatH

N, 1%
Mey = (Re,(—‘”ﬂ— 1) +1 —L’B).
N, vals; Vatg,-
The dependence of plasmon energy on B concentration

is then obtained by making use of the expression derived
from Eq. (3)

dE, _ E,
dn, 2n,

where we assume that n, ~ n,, i.e.,

dE, _dE, dne E, (, (N,
dCyy  dnedCuy 2 \"“\Nyay,

Vai
1)+ __B).
) Vdfs,
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