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Energy-conserving methods have recently gained popularity for the spatial discretization
of the incompressible Navier–Stokes equations. In this paper implicit Runge–Kutta meth-
ods are investigated which keep this property when integrating in time. Firstly, a number
of energy-conserving Runge–Kutta methods based on Gauss, Radau and Lobatto quadra-
ture are constructed. These methods are suitable for convection-dominated problems (such
as turbulent flows), because they do not introduce artificial diffusion and are stable for any
time step. Secondly, to obtain robust time-integration methods that work also for stiff
problems, the energy-conserving methods are extended to a new class of additive Run-
ge–Kutta methods, which combine energy conservation with L-stability. In this class, the
Radau IIA/B method has the best properties. Results for a number of test cases on two-stage
methods indicate that for pure convection problems the additive Radau IIA/B method is
competitive with the Gauss methods. However, for stiff problems, such as convection-
dominated flows with thin boundary layers, both the higher order Gauss and Radau IIA/
B method suffer from order reduction. Overall, the Gauss methods are the preferred
method for energy-conserving time integration of the incompressible Navier–Stokes
equations.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Advantages of energy-conserving methods

In this work we address the time integration of flows governed by the incompressible Navier–Stokes equations. In case of
inviscid flow with periodic or no-slip boundary conditions these continuous equations possess a number of properties, also
called symmetries or invariants, see e.g. [1]. Such inviscid flows are of interest because many flows of practical importance are
convection-dominated. In this paper we focus on one important invariant of inviscid incompressible flows, namely the ki-
netic energy. Upon discretizing the continuous equations in space and/or time this invariant is often not conserved. There
are, however, several (related) reasons to have a discretization conserving energy in a discrete sense. Firstly, from a physical
point of view, an energy-conserving scheme is free of numerical diffusion. This is important for turbulent flow simulations
with DNS or LES, because it prevents numerical diffusion from overwhelming the molecular diffusion (in case of DNS) or the
effect of the sub-grid model (in case of LES), so that the energy spectrum is not affected. Energy-conserving discretizations
guarantee that all diffusion is modeled (laminar and/or turbulent), and not artificial. This is why energy-conserving schemes
. All rights reserved.
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are seen as a necessity for DNS and LES by different researchers, see e.g. [2–8]. Energy-conserving methods necessitate the
use of central schemes for the convective terms. Upwind schemes, typically used in RANS simulations of turbulent flows, are
robust because they introduce numerical diffusion, but should for this reason not be used in LES or DNS. Even high-order
upwind methods can damp turbulence fluctuations and mask the effects of the sub-grid scale models used in LES [9–11].
Although central schemes do not have numerical diffusion, they introduce dispersive errors; these were found to be less det-
rimental than diffusive errors, at least in the simulation of turbulent channel flow [12]. Secondly, from a more mathematical
point of view, discrete energy conservation provides a non-linear stability bound to the solution (see e.g. [13]). Flow simu-
lations are then stable for any mesh and any time step, so that these parameters can be chosen purely based on accuracy
requirements. This is especially important for simulating turbulent flows that involve large time and/or length scales, like
weather prediction [14]. Lastly, energy-conserving methods are important when dealing with coarse grids and large time
steps. Simulations of turbulence with DNS and LES are computationally very expensive and mesh sizes are kept as large
as possible in practice, even under-resolved. On the other hand, the order of a discretization scheme is defined for vanishing
mesh sizes and time steps, and on coarse grids it is not obvious whether the order of a method is still a good measure of
accuracy and whether a formally higher order method is preferred over a formally lower order method [15,16]. Energy-con-
serving methods are of particular interest then, because they lead to well-posed discrete operators and as a consequence to
well-behaved global errors.

One application of energy-conserving methods that we have in mind is wind-turbine wake aerodynamics, a situation in
which turbulent flow structures travel over large distances while mixing with the atmospheric boundary layer [17]. This is
an example in which one cannot resolve the small scale turbulent fluctuations in detail; we believe that preserving their total
energy and dissipation rate is then of utmost importance.

Discrete energy conservation requires an appropriate spatial discretization and an appropriate temporal discretization
method. The focus of this paper is on the latter, but in order to provide a background for the reader, we will summarize exist-
ing work on both spatial and temporal energy conservation.

1.2. Overview of spatially energy-conserving schemes

The first energy-conserving scheme for the incompressible Navier–Stokes equations is probably Harlow and Welch’s stag-
gered grid method [18]. The staggering of the variables leads to a method that conserves mass, momentum, energy and vor-
ticity, and strongly couples pressure and velocity, making it the method of choice for simulating incompressible flows on
Cartesian grids [19]. Ham et al. [20] extended the method to retain these properties on non-uniform grids. In order to sim-
ulate flows around complex geometries, Wesseling et al. [21,19] extended the method to general structured grids that can be
described by a Cartesian grid in computational space. On unstructured meshes staggered methods have been investigated by
Perot and co-workers [3,22]. Mahesh et al. [2] also consider energy-conserving methods for unstructured meshes and for-
mulate a second order staggered method for tetrahedral elements, but propose a non-staggered formulation for elements
of more general shape. This results in a formulation that is not fully energy-conserving, because the pressure gradient con-
tributes to the kinetic energy.

In fact, the contribution of the pressure gradient to the kinetic energy is intrinsic to non-staggered layouts [23,12]. Felten
and Lund [12] show that this energy error makes staggered schemes superior to collocated schemes in case of inviscid sim-
ulations and in case of viscous simulations with relatively coarse meshes. However, operators on collocated meshes can be
‘shifted’ to obtain operators for staggered meshes, as shown by Hicken et al. [24]. This elegant approach can be seen as a
generalization of the work of Perot to general meshes [3], including locally refined ones. Numerical experiments show that
on anisotropic Cartesian grids, where the local truncation error of the gradient is inconsistent (zeroth order), it is still pos-
sible to have a first order accurate solution, emphasizing the positive influence of energy-conserving methods on global dis-
cretization errors.

High-order energy-conserving methods have been addressed for finite difference methods by Morinishi et al. [23] and
Vasilyev [25], who indicate how to obtain any (even) order of accuracy on uniform grids based on Richardson extrapolation.
On non-uniform grids strict conservation and (local) order of accuracy cannot be obtained simultaneously. Verstappen and
Veldman [8,7] employ a finite volume method and construct a fourth order accurate method on non-uniform grids that re-
tains all properties of the Harlow and Welch scheme. They call their method ‘symmetry-preserving’, because it is based on
mimicking symmetry properties of continuous operators in a discrete sense, instead of on minimizing the local truncation
error. Preserving these symmetries leads to energy conservation. Again, it should be stressed that the global order of accu-
racy cannot be derived from the local truncation error alone; the discretized operator is at least of equal importance, and it is
indeed the energy-conserving schemes that lead to a discretized operator that is well-posed, even on coarse meshes.

Another way to obtain higher order methods is to use compact (implicit) schemes, either in finite difference or finite vol-
ume context (see e.g. [26,27] for references). Implementation of boundary conditions is easier due to their smaller compu-
tational stencil, and furthermore they have better resolution of high wave numbers than explicit schemes. Knikker [26]
obtains energy conservation with a fourth order compact finite difference scheme with the nonlinear terms in skew-sym-
metric form, Hokpunna and Manhart [27] mention that energy conservation for compact finite volume methods is still an
open issue.

Lastly, this section would be incomplete without mentioning the recent review article of Perot [28] and the work on ‘mi-
metic’ methods, like the support-operator method by Shashkov [29], Hyman et al. [30], the work on summation-by-parts
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operators initiated by Kreiss and Scherer [31] and the dual-mesh methods of Nicolaides [32], Subramanian and Perot [33]
and Mullen et al. [34].

1.3. Energy-conserving time-integration methods

Most of the above cited work focuses on energy conservation for the spatial discretization only. Time-integration methods
used in conjunction with the energy-conserving methods from the previous paragraph are typically explicit methods, like
multi-stage Runge–Kutta (RK) or multi-step Adams–Bashforth (AB), possibly with an implicit Crank–Nicolson (CN) scheme
for the diffusive term in case of wall-bounded flows. The divergence-free constraint is imposed with a fractional step ap-
proach, that decouples the treatment of velocity and pressure when marching in time. Examples are Wray’s RK3 method
(with or without CN) [23,26,35,36], AB2 (with or without CN) [2,37] or a generalization of AB2 [7]. The AB2 method is unsta-
ble for pure convection problems, and the explicit Runge–Kutta methods of order higher than 2 usually add a small amount
of dissipation, because their amplification factors are smaller than unity inside the linear stability domain on the imaginary
axis. In general such explicit methods are efficient if the time step is dictated by accuracy, and not by stability. In that case
the errors associated with the spatial discretization are typically much larger than the errors associated with the temporal
discretization [16].

Relatively little research has been performed on the use of energy-conserving methods for the Navier–Stokes equations.
One example is the work of Ham et al. [20], who employ the implicit midpoint method and solve pressure and velocity
coupledly. They find that the statistics of the DNS of turbulent channel flow are much less sensitive to the time step than
results obtained by Choi and Moin [38] (who use a Crank–Nicolson scheme with a fractional step method), although the
CFL number was still limited to approximately 4 in order to have solutions that were accurate enough. Mullen et al. [34] also
apply the implicit midpoint rule and indicate how to accelerate the solution of the non-linear system. It is found that the
Crank–Nicolson method is not exactly energy-conserving, but oscillates around the initial energy. Simo and Armero [39] rec-
ognized that it is possible to conserve energy in time (and therefore obtain non-linear stability) with a linear implicit scheme,
since the time level of the convecting quantity does not affect the secondary conservation properties of the convected quan-
tity. For the laminar flow over a circular cylinder it is shown that the linear implicit scheme is as accurate as the non-linear
implicit scheme. Mullen et al. [34] take a similar approach in their hybrid time integration, taking vorticity evaluated at the
previous time level. Turek [40] also discusses such linear implicit schemes, but not in conjunction with energy conservation.

A possible drawback of these energy-conserving methods is that they are necessarily implicit, leading to a higher com-
putational cost per time step as compared to explicit methods (namely the solution of a non-linear saddle point problem
at each time step instead of a Poisson equation for the pressure). A common view is that the time step for the simulation
of turbulent flows is dictated by accuracy, and not by (convective) stability, so that an implicit treatment of the convective
terms is not efficient. This, however, depends on the specific flow problem [16]. For example, Verstappen et al. [41] argue
that in many turbulent flows the time step imposed by the convective stability limit can be much smaller than the charac-
teristic time-scale of the smallest resolved eddies. Similarly, Vreman [42] mentions that the time step determined by the
stability restriction of the numerical scheme is considerably smaller than the shortest turbulent time-scale. Consequently,
the truncation errors from the spatial discretization method are more important than truncation errors resulting from the
discretization in time, when using explicit methods. This opens the perspective for efficient application of implicit methods.
Turek [40] also suggests to use implicit methods, for both convection and diffusion, to allow for larger time steps.

Another potential drawback of energy-conserving methods is that they are not well-suited for stiff problems. Methods
like implicit midpoint and Crank–Nicolson are not L-stable, meaning that they hardly damp stiff components (arising for
example from initial and/or boundary conditions), and oscillatory solutions can result. One of the matters we address in this
paper is the construction of new methods that are both energy-conserving and L-stable.

Related to energy conservation is the time-reversibility property of the inviscid equations, since both properties are de-
stroyed as soon as viscosity is introduced. These properties can therefore be used to assess if a discretization introduces
numerical diffusion, as suggested by Duponcheel et al. [43], although in fact no fully reversible time integration methods
are used in that work. A time-reversibility test was performed by Ham et al. [20], showing that the implicit midpoint method
is time-reversible in the inviscid limit, until round-off errors contaminate the solution. However, questions such as ‘are there
energy-conserving methods which are not time-reversible?’, ‘are there time-reversible methods which are not energy-con-
serving?’, and ‘is one of these properties more important than the other for fluid simulations?’ have apparently not yet been
assessed for the incompressible Navier–Stokes equations.

1.4. Outline of paper

In this paper we will investigate the use of Runge–Kutta methods for high-order, energy-conserving time integration of the
incompressible Navier–Stokes equations. To the author’s knowledge, the application of these methods to the incompressible
Navier–Stokes equations is new. Runge–Kutta methods can combine high-order with good stability and efficiency, they allow
easy adaptive step size selection and are self-starting; multi-step methods, although less costly, do not have these properties,
and it is questionable if they can be energy-conserving [44]. We start with the general framework for Runge–Kutta methods
for incompressible flows as developed in [45]. We investigate higher order methods that are energy-conserving and/or
time-reversible. Subsequently we propose a new class of additive Runge–Kutta methods that combine energy-conservation
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properties with L-stability. A unified approach for obtaining a high-order accurate pressure then concludes the theoretical
analysis. Numerical experiments on different test cases are carried out to show the performance of the methods.

2. Spatial discretization

The governing equations for incompressible flow are those describing conservation of mass and momentum:
r � u ¼ 0; ð1Þ
@u
@t
þ ðu � rÞu ¼ �rpþ mr2u; ð2Þ
defined on a domain X and supplemented with suitable initial conditions and boundary conditions. Sometimes we will make
an explicit distinction between the convecting quantity cðx; tÞ and the convected quantity uðx; tÞ (see e.g. [23,27]), and write
the non-linear convective term as ðc � rÞu. The equation for kinetic energy k ¼ 1

2 juj
2 is, for incompressible flows, derived

from the momentum equation and as such expresses secondary conservation. Upon integration over the entire domain
one obtains, with periodic or no-slip boundary conditions,
dK
dt
¼ �mðru;ruÞ; ð3Þ
where the total kinetic energy is defined by K ¼
R

X kdX ¼ 1
2 ðu;uÞ, and the inner product is denoted by ða;bÞ ¼

R
X a � bdX. For

tensors this is extended by defining ðA;BÞ ¼
R

X tr½AT B�dX. Since ðru;ruÞP 0, this equation shows that the total energy of
the flow can only decrease, due to viscous dissipation:
KðtÞ 6 Kðt0Þ; t P t0: ð4Þ
If Eq. (3) or (4) can be satisfied in a discrete sense, then the discrete solution is bounded, independent of grid layout or time
step.

In deriving the continuous energy equation in integral form, Eq. (3), a number of mathematical operations are performed,
such as application of Gauss’ divergence theorem and application of the product rule. For a method to conserve energy these
operations should be mimicked on a discrete level. An example of such a method is the second-order method of Harlow and
Welch in finite volume form on staggered Cartesian grids [18], which we will employ here; other examples of suitable
schemes are e.g. [7,20,23]. This leads to the semi-discrete representation of Eqs. (1) and (2) (method of lines):
MuðtÞ ¼ r1ðtÞ; ð5Þ

X _uðtÞ ¼ �CðcðtÞ;uðtÞÞ þ mDuðtÞ � GpðtÞ þ r2ðuðtÞ; tÞ: ð6Þ
The explicit t-dependence of uðtÞ (=cðtÞ) and pðtÞwill be left out in what follows. For more information on notation see [45]. X
is a matrix with the finite volume sizes on its diagonal. We take the discrete inner product ðu;vÞX ¼ vTXu, with a correspond-
ing energy norm K ¼ 1

2 ðu;uÞX ¼ 1
2 kuk

2
X. This choice of inner product is consistent with the numerical method for the convec-

tive terms. The discrete operators satisfy (when r1ðtÞ ¼ 0 and r2ðtÞ ¼ 0)
ðGp;uÞX ¼ �ðp;MuÞX; ð7Þ

ðCðc;uÞ;uÞX ¼ 0; ð8Þ

ðDu; vÞX ¼ ðu;DvÞX; ðDu;uÞX 6 0: ð9Þ
The first property is the relation between the divergence and gradient operator. The second property indicates that the con-
vective terms do not change the total energy of the flow (if Mc ¼ 0). The third property shows that the diffusive terms dis-
sipate energy. Note that in the remainder we will leave out the subscript X when denoting the inner product. The time-
reversibility of the incompressible, inviscid Navier–Stokes equations (defined here as invariance under the transformation
ðt; x;u; pÞ ! ð�t; x;�u; pÞ) is kept for the spatial discretization if the semi-discrete equations are invariant when changing
u to �u and t to �t. The discrete convection operator arising from the discretization of Harlow and Welch is indeed time-
reversible because Cð�c;�uÞ ¼ Cðc;uÞ. This property is easier to satisfy than the energy conservation property: the class
of discrete time-reversible convective operators is much larger than the class of discrete energy-conserving convective
operators.

3. Runge–Kutta methods for the incompressible Navier–Stokes equations

3.1. Introduction

We shortly summarize the introduction given in [45]. Eqs. (5) and (6) represent a differential–algebraic equation (DAE)
system of index 2:
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0 ¼ Mu� r1ðtÞ; ð10Þ
_u ¼ Fðu; tÞ � Gp; ð11Þ
where F ¼ �Cðc;uÞ þ mDuþ r2ðu; tÞ and X�1 is absorbed in the definition of C;D;G and r2. Applying the divergence-free con-
straint to the momentum equations results in the pressure Poisson equation:
Lp ¼ MFðu; tÞ � _r1ðtÞ; ð12Þ
where L ¼ MG is the Laplace operator, which should be invertible for a proper index 2 system. The initial conditions at t ¼ t0

should be consistent with Eqs. (10) and (11):
Mu0 ¼ r1ðt0Þ; ð13Þ

Lp0 ¼ MFðu0; t0Þ � _r1ðt0Þ: ð14Þ
Eq. (14) expresses that the initial pressure cannot be chosen freely, but has to be calculated based on u0.
The exact solution to the semi-discrete equations at time tn, uðtnÞ, pðtnÞ, will be approximated by the fully discrete solu-

tion un, pn by means of a Runge–Kutta method. A general Runge–Kutta method applied to the index 2 DAE (10) and (11) reads
[46,45]:
Ui ¼ un þ Dt
Xs

j¼1

aijðFj � GwjÞ; MUi ¼ r1ðtiÞ; ð15Þ

unþ1 ¼ un þ Dt
Xs

i¼1

biðFi � Gwnþ1Þ; Munþ1 ¼ r1ðtnþ1Þ; ð16Þ
with ti ¼ tn þ ciDt and s is the number of stages. ‘The classical’ order of the method (when applied to non-stiff ODEs) is called
p (from the context confusion with the pressure will be avoided). The set of coefficients aij; bi and ci will be denoted collec-
tively by A and can be written in compact form using a Butcher tableau:
ð17Þ
with the convention
ci ¼
Xs

j¼1

aij; ð18Þ
not to be confused with the convecting velocity in (6). The pressure-like variable w is introduced to explicitly distinguish it
from p, since w generally does not satisfy (12).

Similar to [45], we rewrite (15) and (16) as
U ¼ un þ DtAF � DtCpG/; ð19Þ
with / defined by
CpL/ ¼ AMF � r1 � r1ðtnÞ
Dt

; ð20Þ
and Cp ¼ diagðc1; . . . ; csÞ. This gives / ¼ AðCpÞ�1w. We have used the following notation:
U ¼
U1

..

.

Us

0BB@
1CCA; F ¼

F1

..

.

Fs

0BB@
1CCA; / ¼

/1

..

.

/s

0BB@
1CCA; r1 ¼

r1ðt1Þ
..
.

r1ðtsÞ

0BB@
1CCA; ð21Þ
and we have written M instead of Is �M, G instead of Is � G, etc. The size of these matrices should be clear from the context.
In this way Eq. (20) resembles Eq. (12), and the total gradient matrix is block-diagonal. In terms of / a single Lagrange mul-
tiplier /i makes each velocity field Ui divergence-free, while in terms of w a sum of Lagrange multipliers would be required.

We note that, in contrast to the explicit methods discussed in [45], implicit methods can have c1 ¼ 0 (e.g. the methods
based on Lobatto quadrature) so that Cp is singular. In that case we define a new pressure-like variable q ¼ Cp/ and Eqs.
(19) and (20) can be written without the c coefficients.
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Once the stage values Ui are determined, unþ1 follows by introducing the Lagrange multiplier /nþ1 and rewriting Eq. (16)
as the following equivalent uncoupled system:
ûnþ1 ¼ un þ Dt
Xs

i¼1

biFi; ð22Þ

L/nþ1 ¼
Xs

i¼1

ðbiMFiÞ �
r1ðtnþ1Þ � r1ðtnÞ

Dt
; ð23Þ

unþ1 ¼ ûnþ1 � DtG/nþ1: ð24Þ

This projection of ûnþ1 onto the space of divergence-free velocity fields is known as a projected Runge–Kutta method [47,46].
It leads to the ‘classical’ order of accuracy of the Runge–Kutta method (the accuracy for ODEs), as will be detailed in the next
section. An alternative to this projection step is described by Jay [48], but requires the solution of a larger system of coupled
non-linear equations, and is therefore not considered here.

There are two important cases for which the additional projection step can be avoided, making the solution of the Poisson
equation (23) unnecessary:

� If the implicit method is stiffly accurate, i.e., asi ¼ bi and cs ¼ 1, then unþ1 ¼ Us, /nþ1 ¼ /s and the last projection step is
redundant. This is for example the case for the Radau IIA, Lobatto IIIA and IIIC methods.
� If A is invertible and the boundary conditions r1ðtÞ are not a function of time, /nþ1 can be expressed as a linear combina-

tion of /’s, so that a Poisson solve for /nþ1 (Eq. (23)) is not necessary. The equation for unþ1 then reads
unþ1 ¼ un þ bT A�1ðU � unÞ; ð25Þ

which satisfies the divergence-free constraint. In practice we therefore use formulation (25) instead of (22) and in case of
unsteady boundary conditions Eq. (25) should be read for ûnþ1 and the additional projection is performed. This formulation
also saves an additional evaluation of FðUiÞ when the nonlinear iterative process has converged.

Well-known examples of implicit Runge–Kutta methods are methods based on high-order quadrature formulas (like the
Gauss, Lobatto and Radau methods, see e.g. [49,46]), and (single) diagonally implicit Runge–Kutta ((S)DIRK) methods, which
have zeros in the upper triangle of the Butcher tableau. Each of these methods has certain advantages for integrating the
incompressible Navier–Stokes equations. The Gauss methods, for example, have the highest possible order (p ¼ 2s) given
a certain number of stages; a well-known member is the implicit midpoint method (s ¼ 1, p ¼ 2). On the other hand, certain
Lobatto and Radau methods have the advantage that they are stiffly accurate (asi ¼ bi), which is an important property for
differential–algebraic equations [47,46]: (i) it avoids the additional projection step mentioned above, and (ii) it leads to L-
stable methods (provided that A is non-singular). L-stable methods are robust, give stable results for problems at any Rey-
nolds number, and damp perturbations that originate from rough initial or boundary conditions. The (S)DIRK methods have
the advantage that the stages of the Runge–Kutta method can be solved sequentially. The advantage of energy-conserving
(and time-reversible) methods were already outlined in Section 1.1. In our opinion, an ideal method would combine all these
properties, resulting in a high-order, energy-conserving, time-reversible, stiffly-accurate/L-stable (S)DIRK scheme.

In the next sections we formulate the order conditions for implicit Runge–Kutta methods and the conditions for energy
conservation, time-reversibility and L-stability. The W-transformation of Hairer and Wanner [46] will appear frequently in
this context and is therefore summarized in Appendix A.

3.2. Order considerations

The order conditions for the local error of Runge–Kutta methods can be obtained by using Butcher’s analysis based on
trees [50,51]. For high-order methods, say order higher than 4, it becomes cumbersome to derive methods that satisfy these
(non-linear) conditions. For implicit Runge–Kutta methods one can fortunately make use of the following ‘simplifying
conditions’:
BðpÞ :
Xs

i¼1

bic
q�1
i ¼ 1

q
; q ¼ 1; . . . ;p; ð26Þ

CðgÞ :
Xs

j¼1

aijc
q�1
j ¼ cq

i

q
; i ¼ 1; . . . ; s; q ¼ 1; . . . ;g; ð27Þ

DðfÞ :
Xs

i¼1

bic
q�1
i aij ¼

bj

q
ð1� cq

j Þ; j ¼ 1; . . . ; s; q ¼ 1; . . . ; f; ð28Þ
and a theorem of Butcher [52]: if A satisfies BðpÞ, CðgÞ, DðfÞ with p 6 gþ fþ 1 and p 6 2gþ 2, then the method is of order p.
However, there are cases in which this ‘classical’ or ‘ODE’ order of accuracy is not obtained. We group these in three
categories.

Firstly, in case of very stiff ODEs order reduction occurs if a method is not stiffly accurate [46,51,53]. The stage order g of
the method then determines the convergence of the error, instead of the classical order, and the value of the linear stability
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function RðzÞ at infinity is of importance. If Rð1Þ ¼ 0 (L-stable methods) or Rð1Þ ¼ �1 (e.g. Gauss with s odd), the global er-
ror behaves as OðDtgþ1Þ, whereas for methods with Rð1Þ ¼ 1 (e.g. Gauss with s even) the global error behaves as OðDtgÞ [51].
This effect will be illustrated in Section 7.3.

Secondly, order reduction can occur if index 2 DAEs are considered instead of ODEs. In some sense this is related to the
order reduction for very stiff ODEs, by regarding the divergence-free constraint (5) as an infinitely stiff equation. For explicit
methods we showed, based on an analysis with trees, that no order reduction occurs for the velocity, up to and including
order 4, if the mesh is not moving in time [45]. For the implicit methods under consideration here such an analysis is not
necessary; no order reduction occurs according to a number of theorems for which we refer to Hairer and Wanner [46] (The-
orems 4.12, 5.10, and 5.13). On the other hand, the pressure suffers in general from order reduction. This will be detailed in
Section 5. Convergence of the global error follows from Theorems 4.4 and 4.9 in [54], which require invertibility of the A-ma-
trix and consistency of the initial values.

We note here that recently implicit Runge–Kutta methods have been applied to the incompressible Navier–Stokes equa-
tions by Montlaur et al. [55]. In that work the Gauss methods are dismissed as useful ‘because they present higher order
reduction [than Radau] when applied to DAEs with respect to ODEs’. This is a misconception: the Gauss methods keep their
ODE accuracy when projected Runge–Kutta methods are used [46]. In Section 7 this will be supported by numerical experiments.

Thirdly, order reduction can occur upon simultaneously refining mesh and time-step combined with time-dependent
inflow boundary conditions, due to so-called ‘space–time errors’. This phenomenon will not be investigated here (for the
same reasons mentioned in [45]).

3.3. Energy conservation

In this section we derive conditions for the coefficients of the Butcher tableau such that the resulting Runge–Kutta meth-
od is energy-conserving. In all cases we consider inviscid flow (m ¼ 0) and periodic boundary conditions. The monotonicity
property of the fully continuous equations, Eq. (4), is shared by the semi-discrete system of Eqs. (10) and (11):
kuðtÞk 6 kuðt0Þk; t P t0; ð29Þ
due to properties (7)–(9). Equality holds in case m ¼ 0. For the fully discrete equations, this monotonicity or energy-conser-
vation property is investigated by taking the inner product of the fully discrete momentum equation, Eq. (16), with itself.
First we write Eq. (16) with r1 ¼ 0 as
unþ1 ¼ un þ Dt
Xs

i¼1

biPFi; ð30Þ
where P ¼ I � GL�1M is a projection operator that projects velocity fields onto the space of divergence-free velocity fields.
Taking the norm of unþ1 and substituting the equation for the stages leads to
kunþ1k2 ¼ kunk2 þ 2Dt
Xs

i¼1

biðPFi;UiÞ � Dt2
Xs

i;j¼1

ðbiaij þ bjaji � bibjÞðPFi; PFjÞ: ð31Þ
Conservation of energy requires that the two last terms vanish. The term ðPFi;UiÞ, is zero if ðCðUi;UiÞ;UiÞ ¼ 0; the presence of
the projection operator P does not influence the energy as long as MUi ¼ 0. For the last term to be zero the coefficients A and
b from the Runge–Kutta tableau should satisfy
eij � biaij þ bjaji � bibj ¼ 0: ð32Þ
In the literature Runge–Kutta methods that satisfy E ¼ ðeijÞ ¼ 0 are known as symplectic, since this condition is obtained
when applying a Runge–Kutta method to symplectic systems and requiring that the symplectic structure is preserved. In
general, symplectic methods are not conserving energy, but in the case of the incompressible Navier–Stokes equations
the energy is a quadratic invariant. Every Runge–Kutta method that preserves quadratic invariants is a symplectic method
[44]. If a method satisfies Eq. (32), ðCðUi;UiÞ;UiÞ ¼ 0 and MUi ¼ 0, then the total kinetic energy is exactly conserved for invis-
cid flows:
kunþ1k2 ¼ kunk2
: ð33Þ
For viscous flows the second term in (31) also contains the viscous contribution ðDUi;UiÞ 6 0, so Eq. (31) reads (with E ¼ 0)
kunþ1k2 ¼ kunk2 þ 2Dt
Xs

i¼1

biðDUi;UiÞ; ð34Þ
assuming MUi ¼ 0. This is the discrete equivalent of Eq. (3). Note that we define the energy ‘pointwise’ in time; at n, nþ 1,
etc. Other definitions, such as the average value over a time step, can also be employed and are the subject of future work. Eq.
(31) reveals that methods which have a nonnegative definite E and nonnegative b coefficients lead to energy-stable time-
integration, for any time step (and mesh size). Using terminology from [46] methods that satisfy these conditions are called
algebraically stable; algebraic stability is equivalent to B-stability as long as the c-coefficients are all distinct.



Table 1
Examples of energy-conserving methods.

Table 2
Examples of time-reversible methods.
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The energy-conservation condition (32) cannot be satisfied by explicit methods. Implicit energy-conserving Runge–Kutta
methods can be constructed with the W-transformation of Hairer and Wanner [46], explained in Appendix A, in particular
condition (A.6). This transformation shows that the Gauss methods are the methods with the highest possible order (p ¼ 2s)
that satisfy (32). For one order lower, p ¼ 2s� 1, a one-parameter family of methods results, of which the Radau IB and IIB
methods [56] are two examples. For p ¼ 2s� 2 a two-parameter family of methods results, which includes the Lobatto IIIE
methods (also denoted by IIID) [57,58]. Some examples are shown in Table 1. Of particular interest are diagonally-implicit
energy-conserving methods. For s ¼ p ¼ 2 there is a one-parameter family which reads
ð35Þ
with c1 2 ð0; 1
2Þ to keep the b coefficients positive (for c1 ¼ 0 or 1

2 we have implicit midpoint). This family is recognized as the
implicit midpoint applied twice over intervals of size 2c1 and 1� 2c1, and is limited to second order; we call it DIRK E. As is
indicated in Appendix B, it is not possible to construct algebraically stable or A-stable symplectic DIRK methods with p > 2.

An alternative for constructing energy-conserving methods with the W-transformation is to use the following transfor-
mation [59]
A� ¼ EðAÞ; ð36Þ
where E is such that
a�ij ¼
1
2

aij þ bj 1� aji

bi

� �� �
; b�i ¼ bi; c�i ¼

X
j

a�ij: ð37Þ
In this way an energy-conserving method can be obtained from any existing Runge–Kutta method. This does not necessarily
lead to useful methods, because E is a non-linear transformation, which in general changes the order of the method. How-
ever, in case the original method A satisfies simplifying conditions BðpÞ, CðgÞ and DðfÞ, then the transformed method EðAÞ
satisfies BðpÞ, CðnÞ and DðnÞ, with n ¼minðg; fÞ [59]. The transformation E relates certain quadrature methods. For example,
the Radau IIB methods follow by applying E on the Radau IIA methods and the Lobatto IIIE methods follow from the Lobatto
IIIC methods. These relations will be used to construct additive Runge–Kutta methods in Section 4.

In Table 3 we list a number of energy-conserving methods, together with other properties that will be discussed in sub-
sequent sections.



Table 3
Properties of implicit Runge–Kutta methods investigated in this work.

Type Energy-conserving Time-reversible Stiffly accurate L-stable Algebraically stable Order (ODE & DAE) g f

Gauss Y Y N N Y 2s s s
Radau IIA N N Y Y Y 2s� 1 s s� 1
Radau IIB Y N N N Y 2s� 1 s� 1 s� 1
Lobatto IIIA N Y Y N N 2s� 2 s s� 2
Lobatto IIIB N Y N N N 2s� 2 s� 2 s
Lobatto IIIC N N Y Y Y 2s� 2 s� 1 s� 1
Lobatto IIIE(D) Y Y N N Y 2s� 2 s� 1 s� 1
DIRK E Y Y N N Y 2 1 1
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3.4. Time reversibility

Time reversibility is investigated by changing unþ1 to �un, un to �unþ1 and Ui ¼ unþci
to �unþ1�ci

in Eqs. (15) and (16) and
checking if the resulting equations are equivalent to the original ones. This leads to the following conditions [60,44]:
aij þ asþ1�i;sþ1�j ¼ bj; ð38Þ

bi ¼ bsþ1�i; ð39Þ

ci ¼ 1� csþ1�i: ð40Þ
Runge–Kutta methods satisfying these conditions are called symmetric. In terms of the permutation matrix bP they are writ-
ten as Aþ bPAbP ¼ ebT , bPb ¼ b, bPc ¼ e� c, where e ¼ ð1; . . . ;1ÞT . Like the symplecticity condition, explicit Runge–Kutta meth-
ods cannot satisfy the symmetry conditions.

Implicit methods, on the other hand, can satisfy the symmetry conditions. For s ¼ 1 there is one solution to these condi-
tions, being the 1-stage Gauss method (better known as the implicit midpoint method), see Table 1(a). For s ¼ 2 condition
(39) fixes the b-coefficients: b1 ¼ b2 ¼ 1

2. Examples are the Gauss, Lobatto IIIA, IIIB and IIIE methods, shown in Tables 1(a), (b),
(d) and 2(a), (b). The 2-stage Lobatto IIIA method is better known as the trapezoidal rule or Crank–Nicolson method. General
(higher order) symmetric methods can be constructed with the W-transformation in a similar way as the energy-conserving
methods, now by satisfying condition (A.8). Table 3 lists for some methods whether they are symmetric or not.

The symmetry conditions do not imply stability, so it is of interest which symmetric methods are algebraically stable, i.e.,
have a nonnegative definite E matrix and b P 0. By using the X-matrix, introduced in Appendix A, algebraic stability requires
that
Y ¼ X þ XT � e1eT
1 is nonnegative definite: ð41Þ
From the W-transformation we know that symmetric methods have an X-matrix with a zero diagonal (except for x1;1 ¼ 1
2). As

a result Y is a symmetric matrix with a zero diagonal, and consequently it cannot be nonnegative definite, except if it is com-
pletely zero. Since Y ¼WT EW this implies that only energy-conserving ðE ¼ 0Þ symmetric methods are algebraically stable. A
similar conclusion was drawn in [43], where it was stated that energy conservation is a practical requirement for schemes
to be time-reversible. However, algebraic stability is a strong stability requirement and in many situations A-stability suf-
fices, so this ‘practical’ requirement might be too restrictive. An important example of an A-stable time-reversible method
which is not energy-conserving is the Crank–Nicolson method (member of the Lobatto IIIA family). In fact this method is
conserving another quantity (see e.g. [61]),
kunþ1k2 þ 1
4

Dt2kPFnþ1k2 ¼ kunk2 þ 1
4

Dt2kPFnk2
; ð42Þ
with PFn ¼ Fn � GL�1MFn ¼ Fn � Gpn (and similarly for nþ 1). This statement is however not as strong as energy conserva-
tion, because kunþ1k2 can grow in time due to the contribution of kPFnk2.

3.5. Other properties

In the previous sections we derived the conditions for energy conservation and time reversibility and we mentioned some
high-order methods that satisfy these conditions, see Table 3. Other desirable properties, such as L-stability and algebraic
stability have also been listed in this table. The table reveals that all energy-conserving or time-reversible method are not
stiffly accurate or L-stable (with the exception of the Lobatto IIIA methods which have singular A). This is not a coincidence.
It can be shown that energy-conserving and time-reversible methods have R ¼ 1 on the imaginary axis of the stability
domain by applying them on a linear test equation. Since the stability function RðzÞ is a rational function, it attains the same
value when approaching infinity on either the negative real axis or the imaginary axis, and consequently jRð1Þj ¼ 1.
Energy-conserving or time-reversible methods can therefore not satisfy the condition Rð1Þ ¼ 0, necessary for L-stability.
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An alternative way of seeing this, which provides insight in how to construct L-stable methods, is to write the stability func-
tion as
Table 4
Propert

Type

Gaus
Rada
Loba
DIRK
RðzÞ ¼ DetðI � zQÞ
DetðI � zAÞ ; ð43Þ
where Q ¼ A� ebT . L-stable methods require Q to be singular. Energy-conserving and time-reversible methods have
Q ¼ �B�1AT B and Q ¼ �bPAbP (B ¼ diagðb1; . . . ; bsÞ), respectively, meaning that in both cases the eigenvalues of Q are �1	
the eigenvalues of A. The degree of the numerator and denominator of RðzÞ are therefore the same, so such methods cannot
be L-stable.

This negative result leads us to consider additive Runge–Kutta methods, where the convective and diffusive terms are
treated with different tableaux, in order to arrive at methods that possess energy-conservation, time-reversibility and L-
stability.

4. Additive Runge–Kutta methods

The conditions for energy conservation and time reversibility are derived by considering time integration of the non-lin-
ear convective terms. As such, it is not surprising that these methods do not have ideal properties for integrating the diffusive
terms. It seems therefore logical to take two different Runge–Kutta methods for the convective and the diffusive terms. We
propose to use additive Runge–Kutta methods (ARK), a class of methods that includes the well-known implicit-explicit (IMEX)
Runge–Kutta methods [62]. In implicit-explicit methods stiff terms (such as diffusion terms) are handled implicitly, whereas
other terms (such as non-linear convective terms) are handled explicitly, both with a different Butcher tableau. Here we use
the idea of two different Butcher tableaux, A and bA, but we take all terms implicitly, resulting in an ‘implicit-implicit’
method:
Ui ¼ un þ Dt
Xs

j¼1

ðaijPFj þ âijPbF jÞ þ GL�1ðr1ðtiÞ � r1ðtnÞÞ; ð44Þ

unþ1 ¼ un þ Dt
Xs

i¼1

ðbiPFi þ b̂iPbF iÞ þ GL�1ðr1ðtnþ1Þ � r1ðtnÞÞ: ð45Þ
The diffusive terms are denoted by F and the convective terms by bF . We require that the Butcher tableau for the convective
terms, Â, is energy-conserving, so that in case m ¼ 0 no artificial viscosity is introduced. The Butcher tableau for the diffusive
terms, A, is chosen such that an L-stable method results, so that stiff problems are damped sufficiently. A natural way to
obtain such properties is to use an algebraically stable and stiffly accurate method for A and its energy-transformed coun-
terpart Â ¼ EðAÞ for the convective terms. From an implementation point of view, the solution of Eqs. (44), (45) is not more
expensive than for the ‘standard’ Runge–Kutta method (which is a special case of an ARK with A ¼ bA), except that in case of
steady boundary conditions for the continuity equation we cannot employ formulation (25); we always need an additional
Poisson solve to make unþ1 divergence-free.

In the next sections we will investigate the order conditions and stability properties of such ARK methods, and subse-
quently we will propose three new classes of methods: one based on Radau quadrature, one based on Lobatto quadrature,
and one which is of DIRK type (see Table 4).

4.1. Order conditions

The transformation E leaves the b-coefficients unchanged, leading to b ¼ b̂. It is also desirable that the c-coefficients re-
main unchanged. Firstly, having b ¼ b̂ and c ¼ ĉ means that no additional order conditions (so-called coupling conditions)
appear for orders less than four [63,64], and for higher orders the number of additional order conditions is much smaller
than for the case c – ĉ and b – b̂. Secondly, c ¼ ĉ is required to evaluate the divergence-free constraint MUi ¼ r1ðtiÞ. We
use the following theorem to show when c ¼ ĉ.

Theorem 4.1. If a Runge–Kutta method is transformed into an energy-conserving method according to (37), then the c-
coefficients remain unchanged if the original method satisfies Dð1Þ.
ies of some implicit additive Runge–Kutta methods.

Energy-conserving Time-reversible L-stable Algebraically stable Order

s Y Y N Y 2s
u IIA/B Y N Y N 2s� 1
tto IIIC/E Y Y Y N 2s� 2
L/E Y Y Y N 2
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Proof. Let the original method be given by A, and the transformed method by bA ¼ EðAÞ. Then we have
ĉi ¼
Xs

j¼1

âij ¼
1
2

Xs

j¼1

aij þ
1
2

Xs

j¼1

bj 1� aji

bi

� �
¼ 1

2
ci þ

1
2
� 1

2
1
bi

Xs

j¼1

bjaji; ð46Þ
which can be written as
Xs

j¼1

bjaji ¼ bið1þ ci � 2ĉiÞ: ð47Þ
Condition Dð1Þ can be written as
Xs

j¼1

bjaji ¼ bið1� ciÞ: ð48Þ
Therefore, if a method satisfies both (47) and (48), then ci � 2ĉi ¼ �ci, so ĉi ¼ ci. h

By considering an additive Runge–Kutta method as a partitioned Runge–Kutta method (see [62]), the order of the pair is
[46,59]
minðp;2nþ 1Þ; ð49Þ
where n ¼minðg; fÞ, and g and f correspond to methodA. It remains to be proven that the order of the additive Runge–Kutta
method is not affected when the method is applied to DAEs instead of ODEs. This seems to be an open question, but theo-
retical [65] and numerical results, e.g. [36], indicate that, like for the standard Runge–Kutta methods, no order reduction oc-
curs for the velocity in case of the incompressible Navier–Stokes equations. We will also confirm this with numerical
experiments in Section 7.
4.2. Stability

The algebraic stability properties of this new class of methods are investigated by assessing the energy conservation prop-
erties of the method, similar to Eq. (31). Although both A and Â are chosen to be algebraically stable, their combination in an
ARK method requires additional conditions to be satisfied. The expression for kunþ1k2 reads, after employing Eqs. (44) and
(45) with b ¼ b̂:
kunþ1k2 ¼ kunk2 þ 2Dt
Xs

i¼1

biððUi; PFiÞ þ ðUi; PbF iÞÞ � Dt2
Xs

i;j¼1

eijðPFi; PFjÞ þ
Xs

i;j¼1

êijðPbF i; PbF jÞ þ 2
Xs

i;j¼1

~eijðPFi; PbF jÞ
 !

; ð50Þ
where eij is given by (32), êij is given by (32) with a replaced by â, and ~eij is given by
~eij ¼ biâij þ bjaji � bibj: ð51Þ
Since Â is energy conserving we have bE ¼ 0. In Appendix C.1 we proof that as a result the additive Runge–Kutta method can-
not be algebraically stable – even though the two constituents that form the method are in itself algebraically stable.

We therefore investigate a weaker (linear) stability concept by applying an additive Runge–Kutta method to the linear
scalar test equation [62]
_u ¼ ðkþ k̂Þu; ð52Þ
where k is an eigenvalue of the diffusion operator (k 2 R, k 6 0), and k̂ an eigenvalue of the (linearized) convection operator
(k̂ 2 iR). When an additive Runge–Kutta method is applied to (52), the expression for the amplification factor R becomes
[63,66]:
Rðz; ẑÞ � unþ1

un
¼ DetðI � zA� ẑbA þ ðzþ ẑÞebTÞ

DetðI � zA� ẑbAÞ ¼ Nðz; ẑÞ
Dðz; ẑÞ ; ð53Þ
where z ¼ kDt, ẑ ¼ k̂Dt, I is the s	 s identity matrix and e is ð1; . . . ;1ÞT . The requirement for linear stability, which we will
loosely call ‘A-stability’, is
jRðz; ẑÞj 6 1 for z 6 0: ð54Þ
As for algebraic stability, A-stability cannot be concluded from the A-stability of the two methods, and has to investigated
for each method separately. On the other hand, the L-stability of A is inherited by the additive Runge–Kutta method, see
Appendix C.2.
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4.3. Radau IIA/B pair

The Radau IIA methods are a suitable choice for A, because they give the highest possible order (2s� 1) combined with
stiff accuracy (and therefore L-stability). For Â we then use EðAÞ, the Radau IIB methods, and their combination results in a
method that has many of the required properties (Table 4 and 5) : it is of order 2s� 1, energy-conserving, L-stable, and has
c ¼ ĉ and b ¼ b̂. We note that, instead of using Eq. (49) it is also possible to evaluate the additional order conditions origi-
nating from the use of additive methods; for s ¼ 2 there are no additional order conditions, for s ¼ 3 there are 16 additional
conditions, and they are indeed satisfied by the Radau IIA/B pair.

Evaluating (53) for the new scheme results in
Rðz; ẑÞ ¼ 12þ 6ẑþ 4zþ zẑþ ẑ2

12� 8z� 6ẑþ 2z2 þ 3zẑþ ẑ2
: ð55Þ
This amplification factor is shown in Fig. 1(b). A-stability can be proven as follows. Let ẑ ¼ ai, z ¼ b, then the requirement for
A-stability can be written as
jRðb;aiÞj2 6 1 for b 6 0; ð56Þ
which becomes
�bðb� 6Þðb2 � 2bþ a2 þ 12Þ < 0: ð57Þ
This expression is indeed satisfied for all a and b < 0 and we can conclude that the two-stage Radau IIA/B method is A-stable.
For pure convection problems we have z ¼ 0 and (55) reduces to
Rðz ¼ 0; ẑÞ ¼ 12þ 6ẑþ ẑ2

12� 6ẑþ ẑ2
; ð58Þ
so jRðz ¼ 0; ẑÞj ¼ 1, and there is no damping on the imaginary axis, as expected. One recognizes the stability function for Ra-
dau IIB which is in fact the same as the stability function for the two-stage Gauss method. Consequently, the Radau IIB meth-
od is fourth order accurate for linear equations, instead of third order. For diffusion dominated problems where ẑ! �1, we
find (for fixed ẑ):
lim
z!�1

Rðz; ẑÞ ¼ 0: ð59Þ
For the fifth order, 3-stage method, A-stability can be proven in a similar way.
Table 5
Energy-conserving, L-stable, 2-stage, 3rd order Radau IIA/B pair.

Table 6
Energy-conserving, time-reversible, L-stable, 2-stage, 2nd order, Lobatto
IIIC/E pair.
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Fig. 1. Stability regions jRðb;aiÞj 6 1.

Table 7
Energy-conserving, time-reversible, L-stable, 2-stage, 2nd order DIRK pair.
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4.4. Lobatto IIIC/E pair

Another additive Runge–Kutta method combining stiff accuracy and energy conservation can be constructed by applying
the transform E on the Lobatto IIIC methods, leading to the IIIE methods. These are of lower order (2s� 2) than the Radau
pair, but keep the time-reversibility property for inviscid flows. We will investigate numerically if this additional property
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outweighs the loss in order compared to the Radau pair. From the one-parameter family of stiffly accurate Lobatto methods
that are of order 2s� 2 [58], the Lobatto IIIC method is the only one that satisfies Dð1Þ for s ¼ 2 (necessary for c ¼ ĉ according
to Theorem 4.1). The degree of the numerator of the stability function R is at most s� 2 for the Lobatto IIIC method [46],
leading to a very fast decay along the negative real axis of the stability domain, and making them very suitable for stiff prob-
lems. Table 6 shows the Butcher tableaux for the 2-stage methods.

A-stability for the 2-stage method follows by calculating the stability function as before:
Rðz; ẑÞ ¼ 4þ 2ẑþ ẑ2 þ zẑ
4� 4z� 2ẑþ 2z2 þ 3zẑþ ẑ2

; ð60Þ
shown in Fig. 1(c). jRðb;aiÞj2 6 1 leads to
�bð�2þ bÞðb2 � 2bþ a2 þ 4Þ 6 0; ð61Þ
which is indeed satisfied for b 6 0. For the 3-stage method, A-stability follows in a similar fashion.
We note that, apart from the Lobatto IIIC/E method, other combinations of Lobatto methods can lead to interesting meth-

ods. For example, the Lobatto IIIA/B pair has the property that eE ¼ 0, but is not energy-conserving in the inviscid limit. We
refer to [67] for an extensive discussion on additive Lobatto methods.

4.5. DIRK pair

We mentioned before that the maximum order for an energy-conserving DIRK method is two, and for a two-stage method
there is one free parameter c1, see Eq. (35). We combine this method with a two stage, second order L-stable DIRK method to
arrive at an additive Runge–Kutta method of DIRK type which combines energy conservation, time reversibility and L-sta-
bility. Again, we look for a method with c ¼ ĉ, which implies b ¼ b̂ due to the second order coupling condition. When we
furthermore adhere to convention (18), the condition for L-stability (namely a singular Q-matrix), leads to the following fam-
ily of L-stable DIRK methods:
ð62Þ
In contrast to the previous tableaux for the diffusive terms, A is not algebraically stable, because E is not nonnegative def-
inite. It is not possible to choose c1 such that both the convective and diffusive tableau are of SDIRK type. In the sequel we
take c1 ¼ 1

4, so that for pure convection problems the method is of SDIRK type; the tableaux are then given in Table 7. Note
that here Â – EðAÞ. The amplification factor is given by
Rðz; ẑÞ ¼ 48þ 20zþ 24ẑþ 3zẑþ 3ẑ2

ð�4þ zþ ẑÞð�12þ 4zþ 3ẑÞ ; ð63Þ
and is shown in Fig. 1(d). The method is A-stable, because
�bð�12þ bÞðb2 � 2bþ 24þ a2Þ 6 0 ð64Þ
is satisfied for b 6 0.

4.6. Summary

To summarize, we have a hierarchy of methods, listed in Table 4. The Gauss methods have highest possible order, p ¼ 2s,
but lack L-stability. Sacrificing one order, p ¼ 2s� 1, leads to the additive Radau IIA/B methods, which have both energy con-
servation and L-stability. Sacrificing another order, p ¼ 2s� 2, leads to the additive Lobatto IIIC/E methods, which have en-
ergy conservation, time reversibility and L-stability. Dropping the requirement on algebraic stability of the diffusive tableau
leads to an additive DIRK L/E method, also energy-conserving, time-reversible and L-stable. These methods will be numer-
ically tested in Section 7, together with the Lobatto IIIA (Crank–Nicolson) method, because this is a widely used method and
an example of a method which is time-reversible but not energy-conserving.

All these methods are two-stage methods, with the exception of the 1-stage Gauss method. The stability domains of the
methods, jRðb;aiÞj 6 1, are shown in Fig. 1(a)–(d). The stability domain of the 2-stage Lobatto IIIA method (Crank–Nicolson)
coincides with the Gauss 1-stage method (implicit midpoint) and can be found in any standard textbook, e.g. [46]. One can
observe that the proposed methods satisfy both jRj ¼ 1 on the imaginary axis and jRj ¼ 0 for b! �1. However, when com-
pared with the exact stability function (Fig. 1(e)), or with a stiffly accurate method such as Radau IIA (Fig. 1(f)), the proposed
methods possess a much slower decay of R to zero along the negative real axis.

We note that all additive methods considered here have a region jRj < 1 in the right half of the complex plane. For exam-
ple, Eq. (57) is also satisfied for b P 6, and Eq. (64) for b > 12. This is an undesirable property when one wants to integrate
physically ‘unstable’ phenomena, such as the transition from laminar to turbulent flow. However, compared to the ‘original’
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stiffly accurate/L-stable methods, such as the Radau IIA method depicted in Fig. 1(f), the behavior is much better. From the
methods considered here the Gauss methods are the only ones that have jRj > 1 in the entire right half of the complex plane.
5. The accuracy of the pressure

The velocity at the new time step follows from the sequence (22)–(24). The ‘pressure’ /nþ1 necessary to obtain a diver-
gence-free unþ1 is only a first order approximation to pnþ1 [45]. A higher order accurate pnþ1 can be computed by solving an
additional Poisson equation, Eq. (12), at tnþ1:
Lpnþ1 ¼ MFnþ1 � _r1ðtnþ1Þ: ð65Þ
The resulting pressure has the same temporal accuracy as the velocity field unþ1. If _r1ðtÞ is not available or not well-defined,
or to avoid the additional Poisson equation, one can construct higher order approximations by making linear combinations of
the stage values /i. For the Runge–Kutta methods based on Gauss, Radau and Lobatto quadrature we apply the techniques
mentioned in [46,54] to the Navier–Stokes equations, and subsequently we extend and unify these techniques in a new ap-
proach for additive Runge–Kutta methods proposed in [45]. In contrast to what is reported for explicit methods in that work,
for implicit methods and steady boundary conditions for the continuity equation it is not possible to obtain a pressure of the
same order as the velocity field without the additional Poisson solve mentioned above.

5.1. Radau IIA, Lobatto IIIC

If A is non-singular one can write [46]:
pnþ1 ¼ pn þ
Xs

i;j¼1

bixijðwj � pnÞ ¼ Rð1Þpn þ
Xs

i;j¼1

bixijwj; ð66Þ
where w ¼ A�1Cp/ and xij are the entries of A�1. For the Radau IIA and Lobatto IIIC methods this gives an approximation of
order s and s� 1, respectively, corresponding to their stage orders. They both feature stiff accuracy and a non-singular A,
leading to Rð1Þ ¼ 0, so pnþ1 is not depending on pn and the global error equals the local error. Furthermore
bT ¼ 0 . . . 0 1ð ÞA; ð67Þ
and we have
pnþ1 ¼ ws ¼
Xs

i¼1

xsici/i: ð68Þ
In case of Lobatto IIIC ci/i is replaced by qi since c1 ¼ 0.

5.2. Gauss

For the Gauss methods jRð1Þj ¼ 1 and (66) gives an approximation of order s� 1 (s odd) or s� 2 (s even), which is unsat-
isfactory, especially for the 1- and 2-stage methods under consideration. An alternative is to construct a polynomial vðtÞ that
interpolates the wi values. Evaluating vðtÞ at tnþ1 then gives an s-th order approximation to the pressure [46,68]:
pnþ1 
 vðtnþ1Þ ¼
Xs

i¼1

wi

Ys

j¼1;j–i

1� cj

ci � cj
: ð69Þ
With this expression the pressure pnþ1 is independent of pn, like for L-stable methods, and the global error is therefore the
same as the local error.

5.3. Lobatto IIIA

Although the Lobatto IIIA methods are collocation methods, they have c1 ¼ 0, so the approach for the Gauss methods can-
not be applied. Furthermore, A is singular, hence the approach for the Radau IIA and Lobatto IIIC methods also fails. However,
since the method is stiffly accurate and satisfies c1 ¼ 0, we can take pnþ1 ¼ ws. By defining eA ¼ A2:s;2:s (which is non-singular)
and ~xij ¼ ðeA�1Þij the entries of its inverse, w can be written in terms of q as
wi ¼
Xs

j¼2

~xijðqj � aj1w1Þ; ð70Þ
where w1 ¼ pn. In this case pnþ1 depends on pn and the order is s (s even) or s� 1 (s odd) [54].
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5.4. Additive Runge–Kutta methods: a unified approach

Applying any of the approaches outlined above to an additive Runge–Kutta method leads to the central question ‘which
matrix to choose for A�1?’. Here we circumvent this question by using the approach outlined for explicit methods in Sanderse
and Koren [45]. This method is based on the reconstruction of the point value pnþ1 from the average pressure values /i. If a
Runge–Kutta method has at least g stages that satisfy CiðgÞ, then it is possible to obtain an OðDtgÞ accurate approximation to
pðtnþ1Þ by combining the /i values. For the implicit methods under consideration we have CðgÞ (holding for all stages), with
g ¼ s or s� 1 (except the DIRK methods), so such a construction is always possible. pnþ1 then follows as [45]:
pnþ1 ¼
X
k2K

/kckDt _‘kðtnþ1Þ; ð71Þ
where
‘kðtÞ ¼
Y

j2eK ;j–k

t � tj

tk � tj
; ð72Þ
and eK ¼ f0;Kg. The set K consists of (at least) g stages, which have to be chosen such that the ck are distinct and nonzero.
Eq. (71) appears to be equivalent to the formulations above for the Radau and Gauss methods:

� The Gauss methods satisfy CðsÞ, so g ¼ s and K ¼ f1;2; . . . ; sg. First we evaluate our approach, Eq. (71), for s ¼ 2:
pnþ1 ¼ /1
2� c2

c1 � c2
þ /2

c2 � 2
c1 � c2

: ð73Þ
Secondly, we rewrite (69) by interpreting CðsÞ, see Eq. (27), as an equation for the a-coefficients in terms of the c-coefficients.
w ¼ A�1Cp/ can then be completely expressed in terms of the c-coefficients, and when evaluating the resulting expression,
Eq. (73) is obtained. This also holds for s ¼ 3, and we conjecture that our approach, Eq. (71), is equivalent to Eq. (69) for any s.
� For the Radau methods we proceed in a similar way. We evaluate (73) for cs ¼ 1 and compare with (68), evaluated with

CðsÞ and cs ¼ 1. Both formulations are again identical for s ¼ 2 and s ¼ 3.

For the Lobatto IIIC methods our approach (71) differs from (68). Since Cðs� 1Þ and c1 ¼ 0 are satisfied, we take
K ¼ f2; . . . ; sg, and (71) boils down to the following first order approximation:
pnþ1 ¼
q2

c2
; ð74Þ
while (68) gives
pnþ1 ¼ x21q1 þx22q2; ð75Þ
which is also of first order. It turns out, somewhat surprisingly, that x22 ¼ 1
c2

. The presence of the q1 term in (75) is therefore
not necessary to obtain the required order of accuracy. For s ¼ 3 a similar phenomenon occurs.

Lastly, we compare the pressure update for the Lobatto IIIA method with our approach. Eq. (70) reads, for s ¼ 2:
pnþ1 ¼
1

a22
ðq2 � a21pnÞ; ð76Þ
which is a second-order accurate approximation. This is the only method where pn appears in the formulation, and the only
method for which our approach gives a lower order: first order instead of second order for s ¼ 2.

5.5. Extension to ARK methods

With our unified approach, (71) can be directly applied to the additive Runge–Kutta methods, because it only depends on
the c-coefficients, which are the same for the convective and diffusive tableaux. Table 8 summarizes the different methods.
Although the Radau IIA/B method satisfies only Cðs� 1Þ instead of CðsÞ, we still take the same approach as for Radau IIA, so
Table 8
Computation of the pressure for implicit (additive) Runge–Kutta methods.

Type s ¼ 2 General s Order

Gauss, Radau IIA (73) (71) s
Radau IIA/B (73) (71) s� 1
Lobatto IIIC/IIIE (74) (71) s� 1
Lobatto IIIA (76) (70) s=s� 1 (even/odd)
DIRK (77) – 1
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that the Radau IIA method is simply a special case of the Radau IIA/B method. For the Lobatto IIIC/E pair we can directly use
the formulation for Lobatto IIIC. The DIRK pair satisfies Cð1Þ and the pressure is therefore limited to first order; we simply
take
pnþ1 ¼ /2: ð77Þ
6. Implementation issues

6.1. System of equations

Eq. (15) represents a full, implicit system of nonlinear equations. Introducing the iteration counter k we write for the stage
values
Ukþ1 ¼ Uk þ DUk: ð78Þ
One iteration of Newton’s method leads to the following linear system of equations:
Tk DtCpG

M 0

" #
DUk

D/k

" #
¼ dk where dk ¼

dk
u

dk
/

" #
¼ un � Uk þ DtAFk � DtCpG/k

�MUk þ r1

" #
; ð79Þ
and
Tk ¼ I � DtAJk
; Jk ¼ @F

@U
ðUkÞ: ð80Þ
J represents the Jacobian of the system. With full Newton the exact Jacobian is evaluated at each iteration step. We stress
again that by using / instead of w;M and G are block-diagonal matrices (Is �M, Is � G). At each time step the non-linear sys-
tem is solved until an absolute tolerance da or relative tolerance dr on the residual is satisfied:
kdkk1 6 da or kdkk1 6 drkd1k1: ð81Þ
The presence of the convective terms in the Jacobian leads to an asymmetric system, which moreover changes every iter-
ation, making the solution of the system expensive. A possible method to solve the system is the Newton–Krylov method
proposed by Pereira et al. [69]; a general overview of methods is given in [70]. In the results presented in this work we have
used small test problems for which the use of a direct solver was most efficient. However, to make the approach suitable for
large-scale computations, we will give some directions for improvement.

One can use simplified Newton instead of full Newton: take the Jacobian at the start of each time step and keep it constant
during the iterative process. If a direct method is used, one can even compute the LU-decomposition of I � DtAJðU0Þ and use it
for all iterations. The convergence of the residual, given a sufficiently accurate starting value, is linear instead of quadratic. A
starting value can be obtained by fitting a polynomial of degree sþ 1 through the values of Ui of the previous time step and
then extrapolate this to the stages of the new time step [46]. This provides in general an OðDtgÞ approximation to Uk.

6.2. Splitting

Another technique which can significantly reduce computational costs is splitting the solution of velocity and pressure.
Such a splitting can be seen as a block LU-decomposition of matrix (79) [71]:
Tk G

M 0

" #
¼ Tk 0

M �MðTkÞ�1G

" #
I ðTkÞ�1G

0 I

" #
; ð82Þ
so one iteration of the nonlinear method is equivalent to the following sequence:
TkDbUk ¼ dk
u; ð83Þ

MðTkÞ�1GD/k ¼ MDbUk � dk
/; ð84Þ

DUk ¼ DbUk � ðTkÞ�1GD/k: ð85Þ
This factorization does not introduce a splitting error yet. Although the large original matrix is not present in the formula-
tion, the explicit computation of ðTkÞ�1, necessary in the second equation (note that M and G are not square), makes the ap-
proach unattractive in practice. When ðTkÞ�1 in (84) and (85) is replaced by an approximation ðbT kÞ�1 one obtains an
approximate factorization as proposed by Perot [71]. The simplest choice is to take the first order approximation Tk ¼ I,
which leads to a scheme similar to fractional step or projection methods. Higher order methods follow by more accurate
approximations of ðTkÞ�1, but result in a matrix MðTkÞ�1G which is not a Laplacian anymore. In any case, a splitting error
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is introduced, which destroys the energy-conserving property of the method (if present). This is due to the fact that the inter-
mediate velocity field bU does not satisfy the divergence constraint and therefore contributes to the kinetic energy. Further-
more, the unconditional stability of methods associated with the energy conservation property is lost (although a weaker
type of stability can still be proven [72]).

To retrieve the original conservation and stability properties we can proceed as follows. Taking ðTkÞ�1 ¼ I one can repeat-
edly solve (83)–(85) until (81) is satisfied – the iterative method is now used to remove both linearization and splitting er-
rors. From our experience it is most efficient to solve the linear problem (83) at each iteration k and to not introduce a
subiteration to solve the nonlinear system at each k. A slightly better approximation to ðTkÞ�1 is to take ðdiagðTkÞÞ�1 [34],
but this only leads to a positive definite matrix MðTkÞ�1G if the time step is small enough. In any case, the quadratic or linear
convergence of ‘full’ or ‘simplified’ Newton is lost.

A completely different approach is the exact fractional step method developed in Chang et al. [73] for staggered mesh
methods, by applying a discrete rotation operator to the system of equations. This leads to a system of size approximately
Np 	 Np (2D) or Nu 	 Nu (3D). Since there is no splitting error involved, the same number of iterations as for the original sys-
tem is required. The matrix to be solved has similar properties as matrix Tk, so the same (iterative) technique normally ap-
plied to that matrix can be used. The solution of the saddle-point system is avoided. For future work on large-scale problems
this will be the method of choice.
6.3. Linearization

The energy-conservation property (33) has been derived for Runge–Kutta methods assuming the convective terms are
given by CðUi;UiÞ. However, property (8) shows that ðCðci;UiÞ;UiÞ ¼ 0 holds independent of the time level of c as long as
Mc ¼ 0 (see e.g. [39,7,74]): the time level of the convecting quantity is not important for the conservation of the norm of
the convected quantity. This means that instead of taking ci ¼ Ui one can approximate ci by using previous time levels,
and then only a linear system has to be solved in order to achieve conservation of energy. For example, for the 1-stage Gauss
method, a second order approximation is ~c1 ¼ 3

2 cn � 1
2 cn�1. The extension to higher order methods is straightforward.

If linearization is combined with the splitting of Chang et al. [73] no iteration is required. Although the total work in-
volved at each time step is obviously higher than the solution of a simple Poisson equation (as done in fully explicit meth-
ods), the reduction in number of necessary iterations [73] and increase in allowable time step can make this approach
competitive with explicit methods.
7. Results

A number of test cases are considered to evaluate the practical performance of the (additive) Runge–Kutta methods pre-
sented in this paper, which were summarized in Section 4.6. It is interesting to compare the additive methods with the two
methods by which they are formed (such as Radau IIA and IIB in case of IIA/B). In the last test we leave out the Lobatto IIIC/E
method, because it will turn out not to be competitive. We consider 1-stage (Gauss 2) and 2-stage methods (all others). We
have also numerically verified the orders of accuracy of the 3-stage variants of these methods. These will not be presented
here, because the 2-stage methods are a better compromise between order of accuracy and computational cost. Note that we
leave out the DIRK E method, because it is simply the Gauss 2 method but then applied to a time step twice as large.
Fig. 2. Error in velocity as function of time step.



Fig. 3. Error in pressure as function of time step.
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7.1. Order of accuracy study: Taylor–Green vortex

We use the Taylor–Green vortex to numerically verify the order of accuracy of the developed methods. This is an exact
solution to the Navier–Stokes equations, given by:
uðx; y; tÞ ¼ � sinðpxÞ cosðpyÞe�2p2t=Re; ð86Þ
vðx; y; tÞ ¼ cosðpxÞ sinðpyÞe�2p2t=Re; ð87Þ

pðx; y; tÞ ¼ 1
4
ðcosð2pxÞ þ cosð2pyÞÞe�4p2t=Re: ð88Þ
The domain on which we define the solution is the square ½14 ;2 1
4� 	 ½14 ;2 1

4� with time-dependent Dirichlet boundary condi-
tions. The initial condition at t ¼ 0 for the velocity field is given by the exact solution (86) and (87), and the initial condition
for the pressure is obtained by solving (14). The Reynolds number is Re ¼ 1=m ¼ 100, the number of volumes is 20	 20 and
we integrate from t ¼ 0 to t ¼ 1. For details on the spatial accuracy of the method and results obtained with explicit Runge–
Kutta methods we refer to [75,45]. The nonlinear system of equations is solved with full Newton, with a trivial initial guess
and da ¼ dr ¼ 10�14. For the largest time step, Dt ¼ 1=10, this requires 2 or 3 nonlinear iterations (depending on the method);
for the smallest time steps 1 iteration suffices.

Figs. 2 and 3 show the temporal error in the u-velocity and pressure for all methods:
eu ¼ ku� uDt!0k1; ep ¼ kp� pDt!0k1: ð89Þ
The error in the v-velocity component and the error measured in the L2-norm give almost identical results and are not shown
here. The methods are split over two figures to keep the presentation as clear as possible. All methods achieve their theoretical
order of accuracy. The third order methods of the Radau family are almost indistinguishable, and similarly the second order
methods of Lobatto and DIRK type are close. The results for the pressure error show that only Gauss 4, Radau IIA and Lobatto
IIIA reach second order convergence, as predicted by Table 8. The Lobatto IIIA stands out since it is the only method that
achieves the same order in velocity and pressure, and its pressure error is much lower than Gauss 2. Although this corresponds
to the theoretical results, it is still surprising considering that both methods are so closely related: implicit midpoint (Gauss 2)
and trapezoidal rule (Lobatto IIIA), which are identical for linear equations. We remark that in all cases a pressure with the
same temporal order as the velocity can be obtained at the expense of solving the additional Poisson equation (65).

7.2. Energy conservation and time reversibility: inviscid shear layer roll-up

7.2.1. Introduction
In order to study the energy conservation and time reversibility properties of the different Runge–Kutta methods we sim-

ulate the roll-up of a shear layer governed by the inviscid incompressible Navier–Stokes equations, see e.g. [76,26,27]. The
domain is ½0;2p� 	 ½0;2p� with periodic boundary conditions. The initial condition is
u ¼
tanh y�p=2

d

� �
; y 6 p;

tanh 3p=2�y
d

� �
; y > p;

8><>: v ¼ e sinðxÞ; ð90Þ



0 1 2 3 4 5 6
0

1

2

3

4

5

6

−4

−3

−2

−1

0

1

2

3

4

0 1 2 3 4 5 6
0

1

2

3

4

5

6

−4

−3

−2

−1

0

1

2

3

4

Fig. 4. Vorticity field of shear layer roll-up at different time instances, computed with a uniform grid with 402 volumes. Iso-contours �4 . . . 4 with steps 0.5.
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with d ¼ p=15, e ¼ 0:05 taken from [26]. Due to the perturbation of the v-velocity the shear layer starts to roll-up. Impres-
sions of the flow field at t ¼ 2 and t ¼ 8 are given in Fig. 4, which have been computed with 402 volumes and Dt ¼ 10�3. For
qualitative flow field pictures at finer meshes we refer to [26]. Significant noise (‘wiggles’) can be observed in the solution at
t ¼ 8, which is due to dispersive and aliasing errors and the absence of viscosity to damp the smallest scales. The associated
‘bursts’ in vorticity lead to an increase in the enstrophy. However, in contrast to what is mentioned in Brown and Minion
[76], such oscillations do not lead to ‘catastrophic blowup’ with the energy-conserving time-integration methods under
investigation (in fact, they cannot blow up due to their unconditional stability properties). Time-reversibility errors will
be investigated by reverting the simulation at t ¼ 2 or t ¼ 8: we change Dt to �Dt and march back to t ¼ 0. Since we solve
the inviscid Navier–Stokes equations, the additive methods reduce to their energy-conserving part: Radau IIA/B is Radau IIB,
Lobatto IIIC/E is IIIE and DIRK L/E is DIRK E.

We define the following error measures. The error in the energy of the flow at any time instant t is defined as
ekðtÞ ¼
KðtÞ � Kðt ¼ 0Þ

Kðt ¼ 0Þ ; ð91Þ
Fig. 5. Influence of solver tolerance, Gauss 2, Dt ¼ 10�1.



Fig. 6. Energy and enstrophy errors for Gauss 4 applied to shear-layer problem.
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where K is the total discrete energy,
K ¼ 1
2

X
i;j

Xu
iju

2
ij þ

1
2

X
i;j

Xv
ijv

2
ij: ð92Þ
Xu and Xv are the sizes of the u- and v-centered finite volumes;
P

ijX
u
ij ¼

P
ijX

v
ij ¼ ð2pÞ2. To express the error in time revers-

ibility of a method we compare the velocity fields at the start and the end of the simulation:
et ¼ kVðtendÞ � Vðt ¼ 0Þk1: ð93Þ
Finally, it is common for this test case to study the total enstrophy of the flow,
E ¼ 1
2

X
i;j

Xx
ij x

2
ij; ð94Þ
with Xx the sizes of the vorticity-centered finite volumes. The enstrophy is a quadratic quantity which is conserved by the
continuous inviscid, incompressible, two-dimensional Navier–Stokes equations, but not by the spatial discretization that we
employ [18]. The corresponding error,
eeðtÞ ¼
EðtÞ � Eðt ¼ 0Þ
Eðt ¼ 0Þ ; ð95Þ
Fig. 7. Energy and enstrophy errors for Radau IIA applied to shear-layer problem.



Fig. 8. Energy, enstrophy and time-reversibility errors at t ¼ 2.

Fig. 9. Corner flow.
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can be used to investigate temporal errors of the methods that have no energy and time-reversibility errors. It gives an indi-
cation of how well the flow field is resolved. The enstrophy error defined by (95) consists of both spatial and temporal errors.
When performing order studies this spatial error is removed by subtracting a simulation at a very fine time step.

All simulations are performed with full Newton and da ¼ 10�14. We do not perform the additional pressure solve (65), but
noticed that it helps to obtain a better initial guess for the next time step. However, extrapolating the velocities from the pre-
vious time step as prescribed in Section 6 leads to more iterations of the Newton process if t > 4, especially for higher order
methods (p > 2). This is attributed to the under-resolution of the simulation: the flow field becomes noisy when the shear layer
starts to roll up (see Fig. 4(b)). For well-resolved simulations this issue will not occur, but in any case it can be solved by using
the trivial initial guess. In order to investigate the sensitivity of energy conservation to the tolerance of the nonlinear method
we performed a simulation with different tolerance levels, da ¼ 10�12, 10�8 and 10�4. In Fig. 5 the behavior of the energy error
and the number of iterations are shown for the case of Gauss 2 with t ¼ 10�1. The fact that the flow field is more ‘difficult’ after
t ¼ 4 manifests itself in the number of iterations (for tol ¼ 10�8) or in an increase in energy error (tol ¼ 10�12). After an initial
increase the error stays approximately constant and remains on the order of the specified tolerance. This is important, since it
shows that the energy conserving methods are robust with respect to convergence of the nonlinear iteration, and keep their
stability properties for larger tolerances. For smaller time steps or higher order methods the error levels are lower.

7.2.2. Comparison
To show the beneficial effect of energy conservation we compare the behavior of ek and eE for the Gauss 4 method

(Fig. 6(a) and (b)) and the Radau IIA method (Fig. 7(a) and (b)). Time reversal occurs at t ¼ 8. The Gauss methods behave
as expected: energy is conserved until machine precision and the simulation is exactly time-reversible. Enstrophy is not con-
served by the spatial discretization, as can be seen in Fig. 6(b). The enstrophy error is dominated by the spatial errors, even
for large time steps; at Dt ¼ 1 the CFL number is almost 10. Radau IIA has a small energy error (1–2% of the initial energy),
but for longer time periods it will continue to grow in time; eventually smoothing and damping the entire flow. The sign of
the error is negative, so the energy of the flow strictly decreases, as was expected based on the theoretical analysis from Sec-
tion 3.3. When the time step is reversed to �Dt, expression (31) still predicts a decrease in the total energy (kunþ1k2

6 kunk2),
which is in accordance with the results presented here. In contrast to Gauss 4, the (temporal) enstrophy error of Radau IIA,
Fig. 7(b), is approximately the same order as the spatial error. A much smaller time step is necessary to achieve results that
are of the same quality as the Gauss methods. The errors in energy, enstrophy and time reversibility of all methods have been
collected in Fig. 8(a) and (b) (time reversal at t ¼ 2). Fig. 8(a) shows that all energy-conserving methods (Gauss, Radau IIB,
Lobatto IIIE) have an error in energy which stays at machine precision, as expected. The error in the non-energy-conserving
schemes (Radau IIA, Lobatto IIIC and DIRK) decreases upon time-step refinement according to the order of the method, ex-
cept for Lobatto IIIC, which shows third order instead of second order. Similarly, Fig. 8(b) shows that the enstrophy error at
t ¼ 2 converges according to the order of the method, except for Lobatto IIIC, which shows again a higher order convergence
rate. Most importantly, the energy-conserving methods have a much lower error constant than their non-energy-conserving
counterparts. The order of accuracy alone is therefore not decisive. Fig. 8(c) shows the time-reversibility error, which de-
creases with third order for all time-irreversible methods (Radau IIA, Radau IIB, Lobatto IIIC and DIRK) – this can probably
be explained by fortuitous error cancellations in the backward simulation of the second order methods. Comparing Fig. 8(a)
to (c) reveals that Radau IIB is energy-conserving but time-irreversible, and Lobatto IIIA (Crank–Nicolson) is time-reversible,
but not energy-conserving. Although Crank–Nicolson is conceptually close to the implicit midpoint method, we see here that
the energy-conserving properties of the implicit midpoint method make it clearly superior in predicting the enstrophy of the
flow. Furthermore we see that the time-reversibility property of Lobatto IIIE (which was obtained by sacrificing one order
compared to Radau IIB) is unimportant for accurate enstrophy prediction. Therefore, we conclude that energy conservation
is more important than time-reversibility. We disagree with the conclusions stated by Duponcheel et al. [43], who mention
that a ‘crucial factor for time-reversibility is the accuracy of the time-stepping scheme and its interaction with the space-
discretization’. The time-reversibility of a method is not depending on its accuracy; we clearly see that second-order meth-
ods like Crank–Nicolson or Gauss 2 can be time-reversible, while a third-order method like Radau IIA is not. For Runge–Kutta
methods, time-reversibility is completely determined by satisfying conditions (38) and (40). The only relation between time-
reversibility and order is that time-reversible schemes are of even order.

At t ¼ 8 similar conclusions can be drawn. The absolute error values are much higher than at t ¼ 2, which is attributed to the
lack of smoothness of the flow field compared to t ¼ 2. Furthermore, the enstrophy errors at t ¼ 8 are more irregular than at t ¼ 2,
and not all methods are in the range of asymptotic convergence. Still, the energy-conserving methods show the best performance.

In practice, the choice for a method depends on efficiency: accuracy versus computational costs. Gauss 2 and Lobatto IIIA
are the ‘cheapest’ methods, having roughly the same cost, DIRK is about twice as expensive, and all other methods are much
more expensive. For this test case the Gauss 2 or DIRK methods are favorable if second-order accuracy is sufficient. For highly
accurate computations the Gauss 4 method is to be preferred, followed closely by the Radau IIB method. The Lobatto IIIC/E
methods are not competitive for this test case due their high computational costs and relatively low accuracy.

7.3. Corner flow

In this section we investigate the performance of the different time-integration schemes for problems with varying stiff-
ness and the role of L-stability for such problems. We consider a test case from van Kan [72]: unsteady flow through a corner,
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featuring unsteady inflow conditions on the top, no-slip conditions on the left and bottom, and outflow conditions on the
right (Fig. 9). Although the flow in the lower-left corner is similar to the flow in lid-driven cavities, we deliberately do
not compute that test case here, because it features steady boundary conditions for the continuity equation. Unsteady inflow
conditions are a more severe test for methods to show the correct convergence order in both velocity and pressure (see the
discussion in [45]). Boundary layers develop on the solid walls, and the stiffness of the problem can be controlled by varying
the mesh size and Reynolds number (and as such the thickness of the boundary layers).

We perform the five different test cases listed in Table 9. In each case one of the parameters (Nx=Ny, Re, domain or grid) is
varied with respect to the previous case. The cosine grid is given by transforming a uniform grid n according to
Table 9
Settings

Case

1
2
3
4
5

x ¼ Lx 1� cos
p
2

n
Lx

� �� �
; ð96Þ
and similarly in y-direction. This transformation results in a fine grid near the solid walls x ¼ 0 and y ¼ 0. For case 5 the

transformation in y-direction is changed to y ¼ Ly=2 1� cos p n
Ly

� �� �
in order to have a fine grid at both y ¼ 0 and y ¼ 1.

Qualitative pictures of the flow field are shown in Fig. 11(a) for case 1 (2 and 3 are similar), Fig. 11(b) for case 4, and Fig. 12
for case 5. In cases 1–3 the flow is diffusion-dominated and the mesh Péclet condition is satisfied in the entire domain. In
cases 4 and 5 the flow is convection-dominated and the mesh Péclet condition is satisfied only near the walls, where the
largest gradients appear. Inspection of the flow field did not show any significant wiggles.

Fig. 13(a)–(d) show the error in velocity for the different time-integration methods. The error is calculated with respect to
a simulation with a very small time step, and the infinity norm is displayed. The error in pressure is left out, because it does
not provide new insights with respect to the Taylor–Green test case. The Lobatto IIIC, C/E and E methods have been left out
because their accuracy was again comparable to Gauss 2 and Lobatto IIIA, but at much higher computational costs. To inter-
pret the convergence plots we will use the eigenvalues of the linearized operator (Jacobian) �CðuÞ þ mD at t ¼ 1. Fig. 10
shows for each case the largest magnitude eigenvalue in the complex plane (they lie on the real axis) and the amplification
factor of each method for Dt ¼ 1. These eigenvalues scale as k � 1

Re
1

h2, with h the smallest mesh size and Re ¼ 1=m the Rey-
nolds number. If h is (locally) of the order as required by the mesh Péclet condition (h � 2=Re), the eigenvalues scale as
k � Re.

In case 1 the mesh is coarse and the position of the eigenvalues reveals that the problem is not very stiff. All methods
obtain the theoretical rate of convergence, as was the case for the Taylor–Green vortex. Radau IIA/B is, somewhat surpris-
ingly, less accurate than Radau IIB. Intuitively one might think that Radau IIA/B should lie in between Radau IIA and IIB,
but this is not necessarily the case. The local truncation error of Radau IIA/B can be higher due to the presence of error terms
that result from the additional order conditions.

Upon refining the mesh, case 2, the problem becomes stiffer and the eigenvalues shift away from the imaginary axis.
Gauss 4 still attains its theoretical convergence order, but shows a reduced order (namely 2) at large time steps, and is only
more accurate than Radau IIA for sufficiently small time steps. Radau IIA/B is slowly converging towards its asymptotic rate,
but is not more accurate than the second order methods over the range of time steps considered here.
for corner flow.

Nx 	 Ny tend Re Domain (Lx 	 Ly) Grid

20	 20 1 10 1	 1 Uniform
80	 80 1 10 1	 1 Uniform
80	 80 1 10 1	 1 Cosine
80	 80 1 1000 1	 1 Cosine

200	 100 40 1000 2	 1 Cosine

Fig. 10. Largest magnitude eigenvalues on the real axis and corresponding amplification factors for cases 1–4.



Fig. 11. Contour lines of velocity magnitude at t ¼ 1.

Fig. 12. Contour lines of velocity magnitude, case 5 at t ¼ 40.
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In case 3, the mesh is refined near the walls and the problem becomes very stiff. The ratio of the smallest mesh size be-
tween the uniform and cosine grid is approximately 65, and the eigenvalues shift with this factor from case 2 to case 3 as is
observed in Fig. 10. All methods now converge according to the orders for stiff problems mentioned in Section 3.2; Gauss 2:
OðDtgþ1Þ ¼ OðDt2Þ, Gauss 4: OðDtgÞ ¼ OðDt2Þ, Radau IIB: OðDtgÞ ¼ OðDtÞ, Radau IIA/B: OðDtgþ1Þ ¼ OðDt2Þ, DIRK L or L/E:
OðDtgþ1Þ ¼ OðDt2Þ. Radau IIA and Lobatto IIIA are stiffly accurate and obtain their classical order p. Not surprisingly, Radau
IIA is superior to Gauss 4. Radau IIA/B is now more accurate than Radau IIB (which has very poor behavior due to Rð1Þ ¼ 1
and g ¼ 1), but it is not more accurate than Gauss 4 for the range of time steps considered here. Although Radau IIA/B is L-
stable, its lower stage order compared to Gauss 4 prevents it to be more accurate. The second order methods all behave very
similarly, making Gauss 2 and Lobatto IIIA most attractive due to the lowest computational cost. We stress once more that
the observed order reduction is not a consequence of the fact that we are dealing with DAEs instead of ODEs, but a result of
‘ordinary’ stiffness that would also lead to order reduction if ODEs were considered.

A practically more important example of a convection-dominated flow, where the mesh spacing is close to ‘physical’
requirements, is obtained by increasing the Reynolds number to 1000, while keeping the grid fixed: case 4. The eigenvalues
shift back towards the imaginary axis by a factor of 100. Lobatto IIIA loses its advantage over Gauss 2 compared to cases 1–3,
where it was more accurate than Gauss 2. Fig. 13(d) indicates that Gauss 4 and Radau IIA/B perform much better than in case
3. A ‘hump’ in the curves of Radau IIB and Gauss 4 around Dt ¼ 10�2 indicates a transition from stage order to classical order
(a similar hump appeared in case 2 at a roughly ten times larger Dt, corresponding to the ratio of eigenvalues of case 2 and 4).
When increasing the Reynolds number further, with the mesh locally satisfying the Péclet condition, the eigenvalues will
shift again away from the imaginary axis, increasing the stiffness of the problem. We expect therefore that for high Reynolds
number flow the order reduction as observed in case 3 is likely to occur again. For practical computations it might be worth-
while to detect stiffness during running. For example, one can estimate the largest eigenvalue kmax of the Jacobian by Gersh-
gorin’s theorem and compute the associated value of the stability function jRðkmaxDtÞj. If this value is larger than some
predefined threshold Rmax, e.g. Rmax ¼ 0:999, then a code could switch to a stiffly-accurate method such as Radau IIA.

Finally we consider a similar grid as in case 4, but change the inflow condition to a periodic one:
vðtÞ ¼ � sinðpðx3 � 3x2 þ 3xÞÞe1�1=t4 1
2
þ sin2ðtÞ

� �
=2e; 0 6 x 6 1: ð97Þ



Fig. 13. Velocity errors corner flow for cases 1–4.
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After an initial transient of approximately 5 time units, the inflow becomes periodic with period p, average 0.5 and ampli-
tude 0.25. The domain is increased in size (see Fig. 9) to allow vortices to travel for some distance without being affected by
the outflow boundary conditions. Based on the results of case 4 we select the Gauss 2, 4, Radau IIA and Radau IIA/B methods.
In order to study the performance of the different methods, we look at the global kinetic energy K and the u-velocity com-
ponent in point (0.2,0.2) as function of time. The latter point lies inside an oscillating vortex and its value gives an indication
how well the small scales of the flow are resolved in time. In all cases we use a very large time step, Dt ¼ 1, meaning that
there are only 3 time steps to resolve a period of the oscillation. Fig. 14(a) and (b) shows K and uð0:2;0:2Þ for these methods,
together with reference results obtained at very small Dt. Surprisingly, even at this large time step, all methods agree rea-
sonably well with the reference solution. When zooming in on the results of Fig. 14(a), one finds that Gauss 4 is following the
exact solution perfectly, followed closely by Radau IIA/B and Radau IIA. The good behavior of Gauss 4 can be explained by the
fact that the problem is smooth in time, so that higher-order methods are effective. Gauss 2 is the least accurate, but this is
not surprising since it is only second order in time. These conclusions become more pronounced when studying the small
scale oscillations, Fig. 14(b), where Gauss 2 starts to deviate strongly from the reference solution, while Gauss 4 and Radau
IIA/B still perform very well. To obtain qualitatively similar results with Gauss 2 as with Gauss 4 the time step had to be
reduced to approximately Dt ¼ 1=4, increasing the number of time steps with a factor 4. Since the size of the matrix of
the non-linear problem to be solved for Gauss 4 is ð2ðNu þ NpÞÞ2 instead of ðNu þ NpÞ2, a factor of 4 is generally not enough
to offset the increase in computational costs, because the solution of the system is more expensive than OðNu þ NpÞ. Gauss 2
is then to be preferred. However, for a higher accuracy and smaller time steps this factor will rapidly increase and make
Gauss 4 competitive.



Fig. 14. Periodic inflow, case 5.
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8. Conclusions

In this paper we have investigated energy-conserving Runge–Kutta methods for the incompressible Navier–Stokes equa-
tions. Energy-conserving schemes are devoid of numerical viscosity, which is a favorable property for DNS and LES compu-
tations, where the Reynolds numbers are typically high and any viscosity should be as physical as possible. LES sub-grid
models can be tested without the interference of any artificial viscosity. Furthermore, the non-linear stability properties
associated with energy conservation make these methods very appropriate for integrating over long periods of time, possibly
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with large time steps. The Gauss methods stand out since they are energy conserving, time reversible and have the highest
possible order given the number of stages. Methods based on Radau and Lobatto quadrature can also be transformed into
energy-conserving methods (such as Radau IIB and Lobatto IIIE), but are of lower order.

The beneficial effect of energy conservation was shown by simulating the roll-up of an inviscid shear layer. The energy-
conserving methods gave an accurate prediction of the enstrophy of the flow; in particular the two-stage Gauss and Radau
IIB methods gave excellent results at very large time steps. Apparently, these methods have small error constants, which is at
least as important as the order of accuracy of the method. Classical methods, such as explicit Runge–Kutta or multi-step
methods, cannot combine high order with stability and inevitably add some artificial viscosity to the flow. The time-revers-
ibility property of a time integration method was found to be unimportant by comparing Gauss 2 (time-reversible and en-
ergy-conserving) with Crank–Nicolson (time-reversible but not energy-conserving) and Radau IIB (energy-conserving but
not time-reversible).

A disadvantage of all energy-conserving methods is that they lack L-stability, which makes them unsuitable if stiff com-
ponents (such as boundary layers) are present in the semi-discrete equations. This leads to order reduction for energy-con-
serving methods of order higher than 2. We have therefore proposed a new class of high-order Runge–Kutta methods, that
combine energy-conservation in the inviscid limit with L-stability in the stiff limit. We construct such methods by starting
from a stiffly accurate (L-stable) Runge–Kutta method, transforming it with the method of Sun [59], and using these together
to form a fully implicit additive Runge–Kutta (ARK) method. Although these new ARK methods lack the algebraic stability
properties of their two constituents, they possess A-stability, which was sufficient for the test cases considered here. The
highest possible order (p ¼ 2s� 1) ARK method with these properties is the Radau IIA/B method. Other additive methods
derived in this paper, being diagonally implicit or based on Lobatto quadrature, were not found to be competitive in terms
of accuracy versus computational cost. The Radau IIA/B method gave excellent results for long time integration of a convec-
tion-dominated problem with considerable stiffness, employing large time steps. However, order reduction still appears for
very stiff problems – not due to a lack of L-stability, but due to a lower stage order – and the asymptotic convergence rate is
only reached for sufficiently small time steps. As a consequence, the Radau IIA/B method does not outperform the Gauss
method in the test cases considered here. For very stiff problems the issue of order reduction persists, and only stiffly-accu-
rate methods perform well on such problems. The construction of an ‘all-round’ high-order (additive) Runge–Kutta method,
which is both energy-conserving and not suffering from order reduction for stiff problems, remains an open question.

In the end, the choice for a method depends on the problem at hand and on the desired accuracy. We believe the Gauss 4
method is very suitable for sensitive flow phenomena that require high accuracy, such as DNS studies of the transition from
laminar to turbulent flow, especially when long time intervals are considered. On the other hand, for many engineering prob-
lems second order is generally sufficient and then the Gauss 2 method is the best candidate for turbulent flow simulations in
which artificial viscosity should be avoided. This method has the additional advantage that it does not suffer from order
reduction when applied to stiff problems.

For future work on large turbulent flow computations it is important to solve the non-linear saddle-point problem effi-
ciently, which can be achieved by applying proper splitting and linearization techniques. Furthermore, it is crucial to perform
adaptive time-stepping in order to obtain efficient methods which adjust to the dynamics of the flow. This is not trivial, since
variable step sizes can considerably deteriorate the good properties of symplectic methods (see e.g. [77] for an example, and
[44] for remedies). Eventually, our goal is to combine the methods presented here with high-order spatial discretizations
such as [7]. It is expected that this leads to accurate simulation of turbulence, even with large time steps and coarse grids.
In future work we will address such turbulent flows and compare the efficiency of the methods analyzed in this paper with
the current state-of-the-art methods, such as the IMEX Runge–Kutta method from [35].
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Appendix A. W-transformation

Hairer and Wanner introduced the W-transformation in the study of the construction of high-order implicit Runge–Kutta
methods [46]. The s	 s matrix W is a Vandermonde matrix defined by
wij ¼ ePj�1ðciÞ; i ¼ 1; . . . ; s; j ¼ 1; . . . ; s; ðA:1Þ
where ePkðxÞ are the normalized shifted Legendre polynomials defined by
ePkðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþ 1

p Xk

j¼0

ð�1Þjþk k

j

� �
jþ k

j

� �
xj; k ¼ 0;1; . . . : ðA:2Þ
Application of W on the coefficient matrix A (the W-transformation) leads to a matrix, X�, with a special structure:
X� ¼W�1AW : ðA:3Þ
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This matrix can be related to the simplifying conditions CðgÞ and DðfÞ and is therefore linked to the order of the method ([46],
Theorem 5.11). The matrix X, defined by
X ¼WT BAW ¼ JX�; where J ¼WT BW; ðA:4Þ
is closely resembling X� and can be used to characterize symmetry, symplecticity and stability properties. In case the quad-
rature formula is of order P 2s� 1, then J ¼ I and X ¼ X�. The special structure of matrix X is especially evident for the Gauss
methods, for which it is denoted by XG:
XG ¼

1=2 �n1

n1 0 �n2

n2
. .

. . .
.

. .
.

0 �ns�1

ns�1 0

0BBBBBBBB@

1CCCCCCCCA
; ðA:5Þ
where nk ¼ 1

2
ffiffiffiffiffiffiffiffiffiffi
4k2�1
p . The conditions for symplecticity, algebraic stability and symmetry in terms of the X matrix read [57,46]:
X þ XT � e1eT
1 ¼ 0 symplectic; ðA:6Þ

X þ XT � e1eT
1 P 0 algebraically stable; ðA:7Þ

Xkl ¼ 0 for kþ l – 2 is even; bPc ¼ e� c; bPb ¼ b symmetric; ðA:8Þ
where bP is the permutation matrix with elements p̂ij ¼ di;sþ1�j, e ¼ ð1; . . . ;1ÞT and e1 ¼ ð1;0; . . . ; 0ÞT .
Appendix B. Energy-conserving (S)DIRK methods

We are interested in algebraically stable energy-conserving (S)DIRK methods, i.e., having E ¼ 0 and b P 0. Energy-con-
serving DIRK methods can be derived by employing the W-transform of the previous section, but for ‘low’ order methods
(say lower than 4) it is somewhat easier to take the following approach. Evaluating the symplecticity condition
biaij þ bjaji � bibj ¼ 0; ðB:1Þ
for DIRK methods (aij ¼ 0 for j > i) leads to a Butcher tableau with the following structure:
ðB:2Þ
A particular family which satisfies this form is given by bi ¼ 1=s (j < i), but it is limited to second order (it is simply repeated
application of the midpoint method). All high-order energy-conserving DIRK methods obtained in literature, e.g.
[78,79,56,80], have negative b-coefficients and are therefore not algebraically stable – they are only useful for pure
convective-type problems, where all eigenvalues lie on the imaginary axis. This is confirmed by Chan et al. [81], who
showed by using theory on order stars that all algebraically stable energy-conserving DIRK methods are limited to second order,
independent of s. This negative result also holds for the weaker concept of A-stability. For energy-conserving DIRK methods
the stability function reads (see Eq. (43))
RðzÞ ¼
Qs

i¼11þ 1
2 bizQs

i¼11� 1
2 biz

; ðB:3Þ
and its poles are given by z ¼ 2=bi. A-stability requires that all poles of the stability function RðzÞ lie in the positive half plane
Cþ [46]. The condition bi P 0 is therefore not only necessary for algebraic stability, but also for A-stability, when energy-con-
serving DIRK methods are considered.
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Appendix C. Stability of additive Runge–Kutta methods

C.1. Algebraic stability

Consider Eq. (50), repeated here for convenience:
kunþ1k2 ¼ kunk2 þ 2Dt
Xs

i¼1

biððUi; PFiÞ þ ðUi; PbF iÞÞ � Dt2
Xs

i;j¼1

eijðPFi; PFjÞ þ
Xs

i;j¼1

êijðPbF i; PbF jÞ þ 2
Xs

i;j¼1

~eijðPFi; PbF jÞ
 !

: ðC:1Þ
The second term on the right-hand side of this equation, 2Dtð. . .Þ, is zero for pure convection problems and negative if dif-
fusion is present, as long as bi P 0. The sign of the third term, �Dt2ð. . .Þ, depends on the matrices E; bE and eE. The entire term
can be written as
�Dt2
X2s

i;j¼1

�eijðxi; xjÞ; ðC:2Þ
by defining x ¼ ðPF1; . . . ; PFs; PbF 1; . . . ; PbF sÞT , and
E ¼ E eEeE bE
 !

: ðC:3Þ
Unconditional algebraic stability requires that E is nonnegative definite (nonnegative definiteness of the individual blocks is
not sufficient, see [82]). We now encounter the following negative result.

Theorem C.1 (Algebraic stability of additive Runge–Kutta methods). Consider an additive Runge–Kutta method (44) and (45)
with b ¼ b̂ and the Butcher tableau bA for the convective terms such that bE ¼ 0. Then the method cannot be algebraically stable,
except if it is trivial (i.e. A ¼ bA).
Proof. For algebraic stability E should be nonnegative definite. Given that bE ¼ 0 this leads to the requirement eE ¼ 0. How-
ever, bE ¼ BbA þ bAT B� bbT ¼ 0 leads to eE ¼ BbA þ AT B� bbT ¼ BðbA � AÞ, which is zero only in case bA ¼ A. h

In [82] it is shown (for general additive Runge–Kutta methods) how the term
2Dt
Xs

i¼1

biððUi; PFiÞ þ ðUi; PbF iÞÞ ðC:4Þ
can be used to obtain conditional algebraic stability, by requiring a more strict condition than ðFi;UiÞ 6 0, namely
ðFi;UiÞ 6 likFik2
; li < 0: ðC:5Þ
Such a condition permits one to add diagonal matrices to the diagonal blocks of E, and with a condition on Dt this can lead to
a nonnegative definite E. In our case, (C.5) cannot hold for the convective terms because ðCðUi;UiÞ;UiÞ ¼ 0, and consequently
the zero block in E caused by bE will remain zero. Conditional algebraic stability can therefore not be proven either.

C.2. Linear stability

Consider the expression for the amplification factor for an additive Runge–Kutta method, Eq. (53):
Rðz; ẑÞ � unþ1

un
¼ DetðI � zA� ẑbA þ ðzþ ẑÞebTÞ

DetðI � zA� ẑbAÞ ¼ Nðz; ẑÞ
Dðz; ẑÞ ; ðC:6Þ
Both Nðz; ẑÞ and Dðz; ẑÞ can be expressed as polynomials of the form:
Nðz; ẑÞ ¼
Xs

i¼0

Xs�i

j¼0

nijẑj

 !
zi; Dðz; ẑÞ ¼

Xs

i¼0

Xs�i

j¼0

dijẑj

 !
zi; ðC:7Þ
where the coefficients nij and dij associated with the highest order terms are
n0s ¼ ð�1ÞsDetðbQ Þ; ns0 ¼ ð�1ÞsDetðQÞ; ðC:8Þ

d0s ¼ ð�1ÞsDetðbAÞ; ds0 ¼ ð�1ÞsDetðAÞ: ðC:9Þ
If the original method A is L-stable (i.e., it has DetðQÞ ¼ 0 and DetðAÞ – 0), then these expressions show that the resulting
additive method is still L-stable, i.e., we have for fixed ẑ:
lim
z!�1

Rðz; ẑÞ ¼ 0; ðC:10Þ
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provided that the additive method is A-stable. Unfortunately, as in the case of algebraic stability, A-stability of the additive
method does not follow from the A-stability of the two separate methods due to the coupling terms in Nðz; ẑÞ and Dðz; ẑÞ.
References

[1] C. Foias, O. Manley, R. Rosa, R. Temam, Navier-Stokes Equations and Turbulence, Cambridge University Press, 2001.
[2] K. Mahesh, G. Constantinescu, P. Moin, A numerical method for large-eddy simulation in complex geometries, J. Comput. Phys. 197 (2004) 215–240.
[3] B. Perot, Conservation properties of unstructured staggered mesh schemes, J. Comput. Phys. 159 (2000) 58–89.
[4] R. Mittal, P. Moin, Suitability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows, AIAA J. 35 (1997) 1415–1417.
[5] S. Nagarajan, S. Lele, J. Ferziger, A robust high-order compact method for large eddy simulation, J. Comput. Phys. 191 (2003) 392–419.
[6] F. Ham, K. Mattsson, G. Iaccarino, P. Moin, Towards time-stable and accurate LES on unstructured grids, in: S. Kassinos, C. Langer, G. Iaccarino, P. Moin

(Eds.), Complex Effects in Large Eddy Simulations, Lecture Notes in Computational Science and, Engineering, vol. 56, 2007, pp. 235–249.
[7] R. Verstappen, A. Veldman, Symmetry-preserving discretization of turbulent flow, J. Comput. Phys. 187 (2003) 343–368.
[8] R. Verstappen, A. Veldman, Spectro-consistent discretisation of Navier-Stokes: a challenge to RANS and LES, J. Eng. Math. 34 (1998) 163–179.
[9] N. Kampanis, J. Ekaterinaris, A staggered, high-order accurate method for the incompressible Navier-Stokes equations, J. Comput. Phys. 215 (2006)

589–613.
[10] P. Sagaut, Large Eddy Simulation for Incompressible Flows, Springer, 2002.
[11] D. Tafti, Comparison of some upwind-biased high-order formulations with a second-order central difference scheme for time integration of the

incompressible Navier-Stokes equations, Comput. Fluids 25 (1996) 647–665.
[12] F. Felten, T. Lund, Kinetic energy conservation issues associated with the collocated mesh scheme for incompressible flow, J. Comput. Phys. 215 (2006)

465–484.
[13] R. Sadourny, The dynamics of finite-difference models of the shallow-water equations, J. Atmos. Sci. 32 (1975) 680–689.
[14] A. Arakawa, Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. Part I, J.

Comput. Phys. 1 (1966) 119–143.
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