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Abstract 

 

CO2 fluxes for the Netherlands and surroundings are estimated for the year 2008, from 

concentration measurements at four towers, using an inverse model. The results are 

compared to direct CO2 flux measurements by aircraft, for 6 flight tracks over the 

Netherlands, flown multiple times in each season. We applied the Regional Atmospheric 

Mesoscale Modeling system (RAMS) coupled to a simple carbon flux scheme (including 

fossil fuel), which was run at 10 km resolution, and inverted with an Ensemble Kalman 

Filter. The domain had 6 eco-regions, and inversions were performed for the four seasons 

separately. Inversion methods with pixel-dependent and -independent parameters for each 

eco-region were compared. The two inversion methods, in general, yield comparable flux 

averages for each eco-region and season, whereas the difference from the prior flux may 

be large. Posterior fluxes co-sampled along the aircraft flight tracks are usually much 

closer to the observations than the priors, with a comparable performance for both 

inversion methods, and with best performance for summer and autumn. The inversions 

showed more negative CO2 fluxes than the priors, though the latter are obtained from a 

biosphere model optimized using the Fluxnet database, containing observations from 

more than 200 locations worldwide. The two different crop ecotypes showed very 

different CO2 uptakes, which was unknown from the priors. The annual-average uptake is 

practically zero for the grassland class and for one of the cropland classes, whereas the 

other cropland class had a large net uptake, possibly because of the abundance of maize 

there. 
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Introduction 

 

Knowledge of the surface atmosphere fluxes of CO2 is important for our understanding of 

current and future climate change, and in particular the response of the carbon cycle to 

climate. The only existing direct observations of these fluxes consist of eddy-covariance 

measurements that provide information at scales of a few 100 of meters to a few 

kilometers (Baldocchi et al., [2001]) at best, and in case of heterogeneous surfaces, need 

to be scaled up with land cover information and models, to obtain flux estimates at larger 

domains. However, recent research (Groenendijk et al. 2011a) shows that the vegetation 

parameters on which the CO2-fluxes depend, are much more variable than assumed by 

current vegetation models, and this causes large uncertainties in upscaling. Another direct 

flux approach which has already been applied for the Netherlands is the 222Radon-tracer 

method (e.g. van der Laan, 2009a, van der Laan 2010) which can be used for much larger 

scale (i.e. regional) surface flux estimates. However, its results are directly proportional to 

the assumed 222Radon soil emission rate, which is currently not well known. Inversion 

methods that derive fluxes from concentration measurements, a transport model and a 

priori guesses of the surface flux field, are arguably our current best method to obtain a 

more spatially integrated perspective. 

 

There are, however, specific challenges with the application of inversion methods to 

determine fluxes at relatively high resolution. First, to apply an inversion to a limited 

area, it is necessary to use a high resolution transport model that resolves mesoscale 

circulations (size from a few km to a few hundreds of km), and the recycling of nocturnal 
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CO2 (e.g. Sarrat et al. [2007], Ahmadov et al. [2009], Schuh et al., [2010], Rivier et al., 

[2010]; Broquet et al., [2011]). Second, an a priori flux parameterization using surface 

maps at high resolutions is needed to resolve the heterogeneity of the surface fluxes. The 

third, while also common to more global inversions, is the large number of unknowns 

that have to be constrained by a limited number of observations. Finally, sufficient 

temporal resolution is required to obtain a good match with observed concentrations that 

exhibit large diurnal variability.  

 

Until recently, most regional scale inversions have worked with “synthetic data” to test 

the performance of the inversion methods and the measurement network, e.g. Zupanski et 

al. [2007], Carouge et al. [2010], Gourdji et al. [2010], Tolk et al. [2011]. Such work is 

obviously of considerable importance, but as synthetic flux fields form the basis of these 

methods it remains speculative to which extent the results can be generalized towards the 

real world. To test whether such regional methods produce credible results when applied 

to real observed data requires an independent comparison with observed flux data. The 

lack of appropriate data has unfortunately often presented a significant hurdle for such 

validation. For instance, the inversions by Göckede et al. [2010] use observed 

concentration data from two towers, but lack an independent validation of the calculated 

fluxes, while Rivier et al., [2010] evaluate their results against independent biosphere 

model calculations. Recently, as more appropriate flux data have become available, such 

data have been used for validation: Schuh et al. [2010], Broquet et al. [2011], and 

Lauvaux et al. [2012] evaluate fluxes against tower measurements, and Lauvaux et al. 

[2009] also employ additional aircraft measurements.  
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In this study, we extend that analysis further from the campaign scale to the seasonal 

scale by applying two state-of-the-art inversion methods to obtain the CO2-fluxes for the 

Netherlands for the year 2008. The inversion schemes we use, are based on previous 

theoretical and synthetic work by Tolk et al. [2009, 2011]. A relatively dense and well-

maintained network of four towers is used for the CO2 concentration measurements. A 

large amount of flux measurements by aircraft (O.S. Vellinga, R.J. Dobosy, E.J. Dumas, 

B. Gioli, J.A. Elbers, and R.W.A. Hutjes, Calibration and quality assurance of flux 

observations from a small research aircraft, submitted to Journal of Atmospheric and 

Oceanic Technology 2012) is available for all the seasons in 2008 to validate the 

calculated fluxes. This setup also offers the opportunity to test the usefulness of the 

existing concentration measurement network for regional inversions. 

 

Methods 

 

The set up of the modeling work is, to a large extent, similar to that in the previous 

studies: Tolk et al. [2009] for the forward modeling and Tolk et al. [2011] for the 

inversion modeling. A Bayesian inversion scheme that uses an ensemble Kalman filter 

with prior fluxes, is applied to estimate the surface CO2 fluxes. Based on the comparison 

by Tolk et al. [2011], the two best performing inversion setups (“parameter” and “pixel” 

inversion) were selected. In contrast to the previous synthetic data study, the inverse 

modeling is performed with real CO2 concentration measurements. No “synthetic truth” 

is involved.  Another difference with the Tolk et al [2009, 2011] studies is that the 
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calculations are performed with season-dependent model parameters, rather than 

stationary model parameters. 

    

The next paragraphs present a summary of the modeling system used, and document the 

specific changes compared to the previous studies. The observation methods are also 

described. 

 

Transport model and background fields 

The transport model used in this study is the Regional Atmospheric Modeling System 

(RAMS), specifically version B-RAMS-3.2, with some adaptations described in Tolk et 

al. [2009]. The domain includes the Netherlands and some of its surroundings (figure 1). 

For this study, a single grid with 10 km resolution is used. Reanalysis data from ECMWF 

(which we imported at resolution 0.5º) are used for initialization and boundary conditions 

for the meteorological fields, where nudging is applied only close to the boundaries. Sea 

surface temperatures are also obtained from the ECMWF reanalysis.  

 

The CO2 transport is calculated simultaneously with the atmospheric modeling (Eulerian 

method). For initial and boundary conditions of the CO2 mixing ratios, optimized fields at 

1° × 1° resolution from CarbonTracker Europe (Peters et al. [2010]) were used. Ensemble 

modeling is applied: One hundred three-dimensional CO2-fields are simulated 

simultaneously, each of them driven by its own surface flux field (see hereafter). 

 

Surface modeling 
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The surface model LEAF-3 is part of RAMS, and is used to calculate the meteorological 

fluxes from the land to the atmosphere. Land use is specified according to the 

Corine2000 database, and Leaf Area Index (LAI) according to MODIS data (monthly 

values). The domain contains six different land use classes, as shown in figure 1. The 

crop-covered pixels are classified according to the absence (“crops-1”) or presence 

(“crops-2”) of significant areas of natural vegetation.  Subgrid patches of grassland and 

maize are more abundant in land use class crops-2 than in land use class crops-1. The 

latter is characterized by more large-scale farming (potatoes, cereals) and locally by 

horticulture. The class “other” concerns several kinds of areas (urbanized areas, dunes). 

 

CO2 fluxes from fossil fuel burning are taken from the IER database at 10 km resolution 

(CarboEurope, 2003). These data are based on the year 2000. Since according to the 

national inventories (RIVM, see reference), the emissions grew from 178.2 Mton (2000) 

to 186.7 Mton (2008), the fossil fuel flux is multiplied with an constant scaling factor of 

1.05 to obtain fluxes for 2008. Results appear rather insensitive to this scaling factor. To 

cope with the fact that fossil fuel emissions are lower in weekends, the emissions of 2000 

were used with a shift of three days to get the days of the week matching those of 2008. 

The uncertainty of these fluxes is included in the “observation-representation” 

uncertainty (see below). 

 

The calculation of the CO2 surface fluxes is performed, simultaneously with the 

atmospheric transport calculations, for a random ensemble of parameter combinations, 

each ensemble member generating its own CO2 field. CO2 assimilation and autotrophic 
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respiration are calculated with a scheme derived from Farquhar [1980], and heterotrophic 

respiration according to Lloyd and Taylor ([1994]. More details can be found in Tolk et 

al. [2009].  

 

Modeling periods 

Four separate model simulations have been performed: 

 

1) Spring: March-May 2008; 

2) Summer: June-August 2008; 

3) Autumn: September-November 2008. 

4) Winter:       January, February and December 2008. 

 

To obtain a comparable winter season, winter data have been combined for the winter 

2007-2008 (January-February 2008) and that of 2008-2009 (December 2008). These 

periods are run separately for their meteorology but with a single set of vegetation 

parameters. The results are combined afterwards, so that effectively one season is 

obtained. 

 

The weather in 2008 

In the modeling domain, the first four months in 2008 were climatologically mild or very 

mild, except for March that was relatively cold. May 2008 was the hottest May in 100 

years. The summer was rather wet, but warm. The autumn was average. December was 

cold compared to 2000-2010 average (KNMI 2008). 
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Parameter inversion 

For each of the six land use classes, two parameters are estimated: carboxylation capacity 

(Vcmax) to control photosynthesis (and indirectly autotrophic respiration), and reference 

respiration rate (R10) which controls heterotrophic respiration. Hence, for this method, 12 

unknowns have to be solved per season. In contrast to Tolk et al. [2011], the values of 

quantum yield (α) and activation energy (E0) were kept fixed everywhere, to prevent the 

aliasing effects as discussed in Tolk et al. [2011]. For E0/R a value of 200 K is used (R 

denotes the gas constant). The parameters Vcmax and R10 are assumed to be stationary 

within each season. The prior parameter values used in the inversions are identical for 

each season, and given in Tolk et al [2011]. Due to the imperfectness of observed LAI-

values and of the vegetation model, Vcmax and R10 have the character of tuning 

parameters, whose best fits may be season-dependent (Groenendijk et al. 2011b). For this 

reason we allow their posterior values to depend on season. 

With the reduction in number of parameters to solve for each land-use class, the inversion 

method resembles the so-called βRG0.0 – method of Tolk et al. [2011], since the 

unknown parameters are essentially linear or close to linear scaling factors. In setting up 

the ensemble (100 members), the parameters are assumed to be uncorrelated, and to have 

standard deviations of 30 μmol m-2 s-1 (Vcmax) and 2 μmol m-2 s-1 (R10). 

As in Tolk et al. [2011], to suppress the influence of random noise in the updating of the 

parameters we prescribe that a parameter is updated on inversion, only if after processing 

of all the observations, σprior/σpost for that parameter is at least 1.05 times the smallest 

σprior/σpost of all the parameters (Zupanski et al. [2007]). 
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Pixel inversion 

The inversion procedure is extensively described in Tolk et al. [2011], and is summarized 

here briefly. The domain contains 1109 land pixels of 10 km × 10 km. For each pixel, the 

surface CO2-flux is 

 

NEE(t) = βrespRprior(t) – βGPPGPPprior(t) 

 

with the scaling factors β depending on pixel but not on the time within a specific season. 

The prior fluxes are calculated from the prior parameter values in the forward run, and for 

the two β’s an ensemble is set up with the following properties. The means are equal to 

one, and there is no correlation between βGPP and βresp, nor between the β’s of different 

land use types. Within a land use class, the βGPP-values are correlated with an e-folding 

length of 100 km, as was found appropriate by Tolk et al. (2011). The standard deviation 

of βGPP is constant within a land use class, and is tuned so that the variance of the time 

series of each land-use-class-averaged flux is the same as for the ensemble that was used 

for the parameter run. To reach this, first an initial run has to be executed; from that run 

we calculate how the β’s have to be rescaled to meet the variance requirement. For βresp, 

the same remarks apply as for βGPP. The number of unknowns to be solved amounts to 

2218 for each season. The rule for suppressing the influence of random noise is applied in 

the same way as for the parameter inversion (see above). 

 

Overview of the inversions 
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All runs are performed for each season separately. First, runs were executed with an 

ensemble of parameters (for the parameter inversion) or β-coefficients (for the pixel 

inversion). Then the inversions were performed, and new runs were performed with an 

ensemble of posterior parameters or β-coefficients, respectively. The CO2 mixing ratio 

fields generated by the (ensemble of) fluxes is propagated through the domain from day-

to-day, and constrained on the larger scales by the CarbonTracker boundary conditions. 

Each new seasonal inversion starts with a new initial CO2 field from CarbonTracker. 

 

Concentrations from atmospheric observations 

Hourly atmospheric CO2 concentrations from four observation sites for the year 2008 are 

used. The measurement locations are also shown in figure 1. The Cabauw mixing ratio 

observations are described in Vermeulen et al. [2011]. At Loobos, concentrations were 

measured using a single infrared gas analyzer and a solenoid switching system. An 

AIRCOA system was used (http://www.eol.ucar.edu/~stephens/RACCOON). The 

uncertainty (standard error) of the CO2 concentration measurements with the AIRCOA 

system is 0.2 ppm. See for further information Elbers et al. [2011]. At Lutjewad, 

concentrations are measured with a modified Agilent 6890 N Gas Chromatograph. The 

obtained measurement uncertainty is usually <0.1 ppm. For details see Van der Laan 

[2009a]. At Hengelman, concentrations were measured at one level using a single 

infrared gas analyzer CIRAS-SC (PP Systems, Amesbury, USA), which was calibrated 

twice daily. The uncertainty of the CO2 concentration measurements with the CIRAS 

systems was 2 ppm. The measurement heights above ground level used for this paper are 

200, 24, 60 and 18 m for Cabauw, Loobos, Lutjewad and Hengelman, respectively, and 

http://www.eol.ucar.edu/~stephens/RACCOON
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all measurements are reported on the WMO2007x scale. Only hourly values (average 

over last 5 minutes), from 11 to 16 UT (6 values) are used for each day, since transport 

errors are likely to be larger for other hours (Tolk et al. [2011]). 

 

An “observation representation uncertainty” (standard error) has to be assigned to the 

concentrations, but its quantification is difficult. Tolk et al. (2011) found that for 

synthetic inversions with the present model and network, a hourly uncertainty of 1.2 ppm 

worked well. This translates to an uncertainty of 1.2/√6 = 0.5 ppm for the daily average 

over 6 values. Since the present work with real observations has also to cope with (large 

but unknown) transport errors, we have enhanced the estimated uncertainty to 2 ppm. 

This explains why our uncertainty is somewhat larger than the instrument uncertainties. 

This value is multiplied with √6 to obtain the hourly observation representation 

uncertainty. For the autumn (SON), the data from Hengelman have been omitted because 

of known calibration issues. For the winter, there were no data from Hengelman 

available. 

 

 

Surface fluxes from atmospheric observations 

Flux observations were carried out by a small, low altitude and at low speed flying Sky 

Arrow 650 TCNS aircraft (Vellinga et al., submitted to Journal of Atmospheric and 

Oceanic Technology 2012). There are data from flights available for 6 trajectories (figure 

1), which were flown 2 by 2 on a weekly schedule throughout 2008 and early 2009. The 

measurement height was usually around 70 m above the surface. The surface fluxes have 
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been derived using the eddy covariance method based on 50 Hz raw data of wind fields, 

temperature, and CO2 and H2O concentrations, all measured with fast response sensors 

(Vellinga et al., [2010]).  Covariance and fluxes were computed for 2 km windows, 

representing the spatial resolution of this type of airborne flux measurement. The 

instruments and aircraft configuration were calibrated following procedures described 

elsewhere (Vellinga et al., submitted to Journal of Atmospheric and Oceanic Technology 

2012). That publication also documents further details of data processing and quality 

assessment.  

  

Data were available from 64 flights. The uncertainty (standard error) in the flux 

measurements was estimated based on twin flights, and varies from 10 to 20 % for the 

flight averages (uncertainties in averages over shorter distances are much larger). These 

fluxes are used for validating our posterior fluxes. Flux divergence occurs between the 

surface and the measurement level, but generally the resulting flux-loss at these flight 

levels is smaller than other errors (Vellinga, et al. [2010], supplementary material) and 

neglected in the current comparison. Rather than aggregating the flux observations to 

prescribed parts of the model domain, as is often done (e.g. Lauvaux et al. [2009]), we 

chose an alternative approach: A routine was added to the model to import the locations 

and times of the observations, and to export the calculated fluxes exactly for these 

locations and times.  

 

Results 
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Goodness-of-fits for the concentrations 

Figure 2 shows a comparison of observed and modeled CO2 concentration series for 

Cabauw in summer. Averages of the “daytime” (11, 12, ..., 16 UT) values which are used 

for the inversion and the distribution of the residuals are shown. The unrealistically high 

concentrations of the prior simulation, and the reduction of the error on inversion (both 

kinds) are typical for most stations and seasons. The residual distributions are close to 

Gaussian, as expected. Similar results are found for Loobos (not shown). For Hengelman 

(not shown) and in particular for Lutjewad (figure 3), the Gaussian shape is less well 

approximated, which is caused by the frequent occurrence of unexpectedly high observed 

concentrations. It is likely that the discrepancy for Lutjewad is caused by transport errors 

which are not yet fully understood, but probably related to the coastal character of the 

station. It is unlikely that the observations are erroneous, as these have been well 

scrutinized (Van der Laan [2009a]). 

 

To find out whether this behavior could cause a bias in the resulting fluxes, a test 

inversion has been performed for summer in which the high-concentration outliers were 

discarded. Though this obviously improved the fit for the concentrations, it did not lead 

to a substantial change in the fluxes, which appear less sensitive to the concentrations at 

Lutjewad than to other stations. This will be further considered below. For this reason, 

only results obtained using data that included the outliers are presented in this paper. 

 

Table 1 lists the differences between the modeled and observed CO2 concentrations for 

the various stations and seasons, based on the daily-averages of the “daytime” (11, 12, ..., 
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16 UT) values which are used for the inversion. The prior concentrations show a 

significant bias (too high), especially in summer and autumn, for some but not all of the 

stations. In the posterior results, this bias has been strongly reduced. It will be shown 

below that the bias in the prior concentrations is most likely due to a too small modeled 

net uptake of CO2, rather than to an assumed high background concentration. Both 

Cabauw and Loobos have a strong RMS error reduction (except in winter) while 

Lutjewad and Hengelman have less. Our results suggest that with the present observation 

network, for spring, summer and autumn, the inversion scheme is able to produce 

concentration series which are, in general, significantly improved. They also suggest, 

however, a lower sensitivity specifically for the coastal station Lutjewad. A further 

observation is that the fit of the CO2 mixing ratios is practically always better for the 

pixel inversion than for the parameter inversion. This is to be expected, as the pixel 

inversion has much more degrees of freedom.  

 

Nevertheless, the posterior concentrations still differ considerably from the observations. 

The main contributions to this difference stem from (1) transport errors, and (2) errors in 

the flux model. The synthetic runs of Tolk et al. [2011] for the same network had much 

smaller RMS of the concentration difference. Since these runs used the same transport 

model, but strongly different flux models, for the forward run (creating synthetic 

concentrations) and the inversion, they show that the inversion can correct the errors 

caused by a wrong flux model, provided the transport model is accurate. Hence, it is 

likely that the decreased performance with real data is not due in the first place to errors 

in the flux model, but to the difference between the real and modeled transport. It is well 
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known (e.g. Gurney et al. [2002], Stephens et al., [2007]) that current schemes for 

transport modeling have imperfect treatment of vertical transport in the atmospheric 

boundary layer. 

 

Flux estimates and uncertainty 

We now turn to the comparison of the best estimates of the fluxes for both inversion 

methods. Figure 4 gives an overview of the flux-averages (terrestrial biogenic part) for 

each season and eco-region. Flux-averages for the whole year are also shown. Figure 5 

shows the prior and the two posterior fields for all seasons.  In interpreting the results, it 

should be kept in mind that the error bars depict random standard errors, as represented 

by the ensemble, but that they do not account for other types of errors. One such an error 

source is the following: with the parameter inversion, vegetation parameters etc. are 

changed so as to produce concentrations that better fit with the observations; but by the 

rigidness of the base functions, this also affects unmonitored areas which may have in 

reality other values for the vegetation parameters, causing a systematic (but unknown) 

bias there. On the other hand, for the pixel inversion, regions outside the footprint are 

hardly affected by the inversion, and there the posterior fluxes will tend to stay close the 

prior values. In both cases, errors arise locally which are not encompassed by the random  

spread of the ensemble. These errors are of a systematic nature, but they are very hard to 

quantify, because of lacking information about such things as the spatial variation of the 

vegetation parameters etc.. Problems in transport modeling are also a source of 

systematic errors. Hence, real uncertainties may be larger than indicated, and results of 

the two methods should not always be expected to correspond within the error bars. 
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The averages (figure 4) for the dominant land use classes (grass, crops-1 and crops-2) 

contain the most important information. For both inversion methods, there is on average a 

tendency towards larger posterior net uptake in the posterior fluxes, with the exception of 

the winter for all eco-regions, and the summer for crops-1. The two inversion approaches, 

although strongly different, yield the same direction for the shifts, though the magnitudes 

differ sometimes more than indicated by the error bars (for the reasons explained above). 

A second conclusion is that crops-2 has a much larger uptake than crops-1, at least for 

spring and summer (the two methods disagree for autumn).   

 

The small summer uptake of crops-1 contrasts not only with the crops-2 but also with the 

grasslands uptake, which appears large in summer, as expected in the growing season. 

Whether this small uptake of crops-1 is real or not needs further investigation.   

 

An odd result is the large error bar for the crops-1 class in winter for the parameter 

inversion. Common Bayesian inversion cannot increase errors. However, for the 

parameter inversion, we used a model in which the fluxes are functions of the vegetation 

parameters with nonlinear dependence for some of them, and this can cause posterior 

errors to become even larger than the prior errors. This phenomenon has been elaborately 

discussed in Tolk et al. 2011 (section 3.1 and Appendix C). 

 

Averaged over the whole year (see figure 4), the mean flux is not significantly different 

from zero for three classes (Grassland, crops-1, other), but does show large net uptake for 
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crops-2. For this class, the average uptake is 6.5 ± 0.9 and 3.5 ± 1.0 μmol m-2 s-1 

(standard errors), according to the parameter- and pixel-inversion, respectively. Both 

methods lead to a small though significant net uptake for the needle leaf forest and the 

deciduous broadleaf forest. The calculated uncertainties in the annual averages are small, 

but, as discussed above, they do not include the possible effect of systematic errors (of 

various origins) which could lead to relatively large shifts of these small averages. 

 

The sub-ecoregion distribution within one land use class often differs strongly between 

the inversion methods. As expected, for the parameter inversion the spatial distribution is 

rather homogeneous, while more spatial structure is present in the pixel inversion results. 

Figure 5 illustrates how the distribution of observation towers, together with the chosen 

structure of the unknowns and assumed covariances, spreads information across the 

domain to yield such differing regional fluxes. Whereas the pixel inversion focuses most 

of its parameter adjustments in a region around the towers, the ecoregion based method 

spreads information over a larger domain, and much more homogeneously. This result is 

consistent with earlier inverse studies employing such “regularization” methods (Carouge 

et al. [2010], Schuh et al. [2010]). 

    

Concerning the smaller classes, there is often (summer, autumn) a difference in the 

results of the two inversion methods for the needle leaf forest, in spite of the fact that the 

class is monitored at Loobos. For this class, the uncertainty in the posterior fluxes was 

found to be usually greater than for the classes with a larger surface area (figure 4). Little 
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information seems to be retrieved by the network for the deciduous broadleaf forest class 

(no direct observations in the area), and the “other” class (very small fluxes). 

  

Figure 6 shows the relative improvement of the standard error, as calculated by the 

Kalman filter. Note that the results for autumn and winter were obtained with a reduced 

network (no Hengelman data). Since the parameters are spatially constant for each 

region, the error reduction map reflects the land use map. For the same reason, the error 

reduction is for most eco-regions much stronger than for the pixel inversion (for which 

there are much more unknowns to constrain). This strong reduction of the error per pixel 

is an artifact of the parameter method. The error reduction is primarily calculated for the 

vegetation parameters, and causes an appropriate error reduction for the average fluxes 

over the ecoregions to which these parameters apply. However, owing to the low number 

of basis functions, the small spread of the averages is automatically translated to a small 

spread per pixel, causing an unrealistically low uncertainty in the flux per pixel. The 

other (pixel) inversion method, on the other hand, does not suffer from this artifact. 

 

The finer structure of the error reduction close to the observation sites shows details 

which are not always obvious to explain. Cabauw and Loobos have an overlapping region 

of influence, which is mainly restricted to grassland, which limits the effective radius. For 

Hengelman the region of influence is larger, because of the extensive crops-1 region 

there. It is remarkable that the influence of Hengelman is most conspicuous on the 

eastern side, whereas the prevailing wind direction is from the west. 
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From figure 6 Lutjewad is seen to have the smallest influence on the error reduction. The 

impact of the coastal station Lutjewad on error reduction depends on the frequency of 

southerly wind, which is locally on average about 30 % of the time (Van der Laan et al., 

[2009b]). The southerly winds are less prevalent in spring than in summer and autumn 

2008 (see table 2). 

 

Comparison with CO2 flux measurements by aircraft 

The aircraft flux measurements are summarized in table 3. The winter measurements 

were restricted to December 2008, as the flights started in March 2008, and the inversion 

results are confined to 2008. The error in the observed fluxes is estimated as 15 % based 

on comparison of simultaneous flights over SW France in 2007 (Vellinga, unpublished). 

Figure 7 shows an example of one day of flux measurements by aircraft, compared to 

modeled posterior total fluxes, found by both parameter and pixel inversion. Note that the 

simulated fluxes pertain to the same places and times as the observations, so that 

unnecessary aggregation uncertainties are avoided. 

 

Figure 7 illustrates the problems pertaining to the comparison of calculated and observed 

fluxes on the short term. First, continuous observations exist only for brief intervals. 

Second, the simulated and observed time series have different shapes, because the 

observations are strongly influenced, on the short term, by random effects like turbulence 

and intermittent clouds, which are in the simulations either averaged out, or not well 

timed. As a consequence of this randomness, it is practically impossible to assess the flux 

difference between ecoregions by looking at data from single days. 
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Since it appears rather meaningless to compare observed fluxes, averaged over 2 km, 

with our posterior fluxes, we compare in the following only averaged flux values which 

belong to the same trajectory and season. Figure 8 shows these average flux values for 

the observations, priors and the two posteriors. As indicated  earlier (at the start of the 

discussion of figure 4), the standard errors which are given for the posterior fluxes may 

underestimate the uncertainty, as they do not account for systematic errors which are 

inherent to the inversion methods. Within the enhanced uncertainty of both our estimates 

and the aircraft data, the observations confirm, in most cases, the shift towards much 

larger uptake (for spring to autumn) that is produced by the inversions. This increases the 

confidence in the ability of the inversion system to improve on prior estimates, and also 

demonstrates the value of our assimilation approach in integrating different types of 

information of the regional carbon cycle.  

 

Figure 9a shows the root-mean-square differences between the simulated (prior and both 

posteriors) and the observed average fluxes, for all seasons. The employed averages are 

taken immediately from figure 8. In the comparison to independent flux data we find a 

remarkable improvement of estimated fluxes over prior fluxes for summer and autumn, 

but not for winter and spring. The bad result for winter is related to the existence of small 

fluxes overall with the coupling between observed concentrations and nearby fluxes 

being weak, so that the posterior values do not move far away from the priors. A likely 

cause for the spring mismatch is the representation of the LAI, which changes faster in 

spring than in other seasons. The monthly LAI maps (used to calculate both prior and 
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posterior fluxes) cannot well resolve these changes. The LAI maps were according to 

MODIS data for 2006, but have not been adjusted to 2008. However, an inspection of the 

meteorological data (source: KNMI) shows no reason for a great difference. Tolk et al. 

[2009] also suggests that regional scale inversions appear to be quite sensitive to the 

precise specification of the land surface properties. The difference in performance 

between the parameter- and pixel inversion is small. 

 

Figure 9b shows root-mean-square differences between the average fluxes of figure 8, 

this time for each trajectory. In the computation, the winter data were not used. There are 

large differences in performance between the trajectories: when considering the 

parameter inversion, a quite large error reduction is noted for the West and South and, to 

a lesser extent, Center and East trajectory. For the others, the error reduction is modest or 

even (for north) absent.  There is no clear link to the presence or absence of concentration 

measurements close to the trajectory: The North trajectory has the worst performance, 

although it is covered by the Lutjewad site. This might again be because Lutjewad is a 

coastal station, and concentrations are insensitive to land based CO2 fluxes when the 

wind is onshore (which occurs for March-November 2008 for about 40 % of the time, 

and maybe more often due to local sea breezes (e.g. Ahmadov et al., [2009]). Strong 

horizontal flux gradients may also be a source of errors, as the aircraft roughly follows 

the coastline for the North trajectory. The strongest error reduction and the best posterior 

fluxes are obtained for the South trajectory, though there are no concentration 

measurements performed there. This trajectory largely runs through the crops-2 eco-

region, which was seen earlier (in the section on fluxes: best estimates) to have strong 
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and consistent flux shifts produced by the inversion scheme. The strongest observed 

uptake (see figure 8) occur in summer for trajectories South (largest) and East (second 

largest), which happen to be the trajectories for which the crops-2 class is dominant 

respectively substantial (figure 1). These flux measurements confirm the large uptake for 

crops-2 which was found by the inversion (figure 4). 

 

Calculated national carbon budget of the Netherlands for 2008 

 

Table 4 shows the calculated biotic uptake integrated over the Netherlands, for the 

seasons and for the whole year (the land area, calculated on model resolution, is about 

35000 km2). For comparison, the integrated fossil fuel emission (as assumed for the 

modeling) has been added. As elsewhere in this paper, the winter contribution is the sum 

of the months January, February and December 2008. For spring to autumn, the 

calculated uncertainties of the biotic fluxes are in agreement with the differences between 

the methods. For winter, an unusually large relative uncertainty is calculated for the 

parameter inversion. This is related to the nonlinearity of the parameter inversion, which 

seems to cause specific problems when winter data are used, as remarked earlier when 

discussing figure 4. 

 

The two year sums are in close agreement, but as the differences are larger for the 

contributions of the seasons, this seems to be coincidental. The estimated uncertainty for 

the year sum is much larger for the parameter than for the pixel inversion, which is 

caused by the uncertainty in the winter contribution. 
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Discussion and conclusions 

 

The results of the paper have to be interpreted carefully, because the flux values resulting 

from the inversions may have biases (dependent on the inversion method and the region) 

which are difficult to characterize and estimate, and which cause results from different 

inversion methods to be differ more than expected from the random errors. Important 

factors contributing to this are, besides transport errors, also erroneous assumptions 

concerning spatially constancy or smooth spatial correlations of vegetation parameters 

etc., and there will be more research needed to mitigate such problems. 

 

An important observation is that the prior fluxes for the net uptake are in general too 

small. This follows both from the comparison with concentration measurements (using 

inversion) and from the flux measurements (performed by aircraft). The reason however 

is not entirely clear. There are uncertainties in both the biotic component and the 

heterotrophic respiration. The first is based on a rather well-founded vegetation model 

combined with LAI-maps based on observations. On the other hand, for the heterotrophic 

component there is a lack of data, and we had to base the estimates on preliminary 

research (Tolk et al. [2009]). The present results suggest that the prior heterotrophic 

respiration is too large for the dominating land use types. 

 

The inversion produces posterior fluxes which are, on average more reliable than the 

priors. The comparison with independent flux estimates from aircraft confirms this. This 
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pertains primarily to the flux averages as observed by aircraft flights. On a finer scale, the 

scatter between observations and simulations remains quite large, owing to the noisy 

nature of the real turbulent fluxes, as illustrated by figure 7. Further, there is no 

improvement for winter. The small fluxes in winter and the lack of convection (causing 

larger transport errors) are likely to be the main reasons why improvement by inversion is 

difficult for the winter season. The larger impact of errors in the assumed fossil fuel 

emissions in winter may also play a role. 

 

The present results also bear on the relation of the results to spatial and temporal 

resolution. We had to average the aircraft measurements over trajectories to obtain useful 

results. The bars in figure 8 actually represent averages over observations of, on average, 

2.7 days (of the about 91 days in a season). In spite of this rather sparse temporal 

coverage, the inversion produces a considerable improvement of the RMS difference 

between simulation and observation (for most of the trajectories and seasons). This shows 

that the inversion with the present setup produces already a considerable improvement of 

averages even over periods of no more than a few days. Note that these results primarily 

refer to daytime values. 

 

The improvement for spring is less than for summer and autumn. We suggest this is 

caused by errors in the modeling of the timing of LAI changes. This parameter changes 

faster in spring than in the other seasons. 
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A simple experiment was performed to estimate the sensitivity of posterior fluxes to CO2 

boundary conditions, for the summer season only: the inversion was repeated with one 

ppm subtracted from the background field (the response to bigger shifts can be estimated 

using linearity). For the parameter inversion, this caused a shift of the posterior fluxes of 

+ 0.8 to + 1.0 μmol m-2 s-1 for grassland and crops-2, but 0.0 for crops-1. For the pixel 

inversion, the shifts were quite evenly distributed for the dominant classes: + 0.7 to + 0.8 

μmol m-2 s-1  for grassland, crops-1 and crops-2. These shifts preserve the flux pattern 

(for the assumed 1 ppm), but cause the overall flux average to become less negative. 

Nonetheless, a substantial bias is not expected. The use of the results of European scale 

CO2 inversions, and the various meteorological circumstances and wind directions over 

which the results for a season are averaged are expected to prevent a large bias.  

 

It is difficult to draw conclusions concerning the performance of the inversion in 

recovering flux field structures smaller than the eco-region scale. There are sometimes 

strong differences between the outcomes of the two inversion methods, but it remains in 

general difficult to say which one performs best. Whereas the parameter inversion 

assumes an unproven homogeneity of vegetation and heterotrophic respiration 

parameters, the pixel inversion is more flexible, but its results reflect to some extent the 

stochastic properties (mean field as well as noise) of the prior ensemble. Eddy correlation 

(EC) measurements, from surface sites and by aircraft, lack the required spatial and 

temporal averaging to settle the question. 
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The inversions showed a large and unexpected difference in the behavior of the two crops 

regions.  The large uptake of the second crops class cannot be explained from the higher 

sub-pixel abundance of natural vegetation, as such vegetations tend to have a small 

uptake (also in our results). The difference must thus be caused by a difference in crops 

species. We suggest that the higher abundance of maize in the second crops class 

contributes much to its large uptake. Maize is known to have a very large uptake (Verma 

et al. [2005]). However, the dataset of Fluxnet measurements within the modeling 

domain, which was used to tune the model (Tolk et al. [2009]), contained no sites with 

maize (Groenendijk et al. [2011a]) and the present results suggest that this has caused a 

bias in the prior flux calculations. The annual carbon balance according to the inversions 

is practically zero for both grassland and the first crop class, whereas for the second class 

there is a significant uptake.  

 

A negative feature of the results, which was found to a weaker extent in the synthetic 

inversions of Tolk et al. [2011], is the “aliasing” in the two terms in the net flux, biotic 

flux and heterotrophic respiration. The aliasing is evident from the occurrence of cases 

with negative (hence certainly spurious) posterior heterotrophic respiration. This is 

worrying because it causes difficulties in accurately identifying errors in the flux 

modeling, such as those, which cause the bias in the prior fluxes. An improvement would 

require in the first place an improved transport modeling for the inversions, in particular 

better modeling of nocturnal transport. This is a rather long-lasting problem, though some 

advances have been made (Steeneveld et al. [2008]). 
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This study presents the first regional scale inversion of CO2 fluxes for the Netherlands 

using an inverse model. The posterior fluxes were compared with aircraft measurements 

of seasonal and flight-leg averaged fluxes. For most regions, there is a significant and 

sometimes strong improvement of the posterior fluxes. The improvement is greatest for 

summer and autumn, whereas for winter, no improvement occurs. For spring, it will be 

important to have reliable data for the development of the LAI in time. For extended eco-

regions, there was significant improvement of the average fluxes, also if no homogeneity 

of the unknown parameters within the eco-region was assumed. On the other hand, it is 

difficult to monitor small eco-regions, even if they have a nearby site for concentration 

measurements, and to monitor urbanized regions, which have small fluxes. Though 

improvements with respect to the prior fluxes are clear, the posterior results still depend 

on assumptions that remain difficult to validate, such as homogeneity of parameters for 

vegetation and heterotrophic respiration within an eco-region. The results reveal a large 

and unexpected difference between the fluxes for crops eco-regions without and with 

significant natural vegetation, especially in summer (much smaller net uptake for the first 

class). This is most likely caused by a very large uptake of one or more crop types that 

are more abundant in the second class (potentially maize). 
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Table 1. Difference between observed, prior and posterior CO2 concentrations (daytime 

averaged) for all stations and seasons. Values are in ppm. Stations: CBW = Cabauw, 

LOO = Loobos, LUT = Lutjewad, HEN = Hengelman. 

 

 

 

days mean yobs-ymod :  RMS yobs-ymod: 

prior, param inv, pixel inv prior, param inv., pixel inv. 

 

 

CBW, spring  89 -2.85       -1.71       -0.97 4.82        3.74        3.18 

LOO, spring  91 -2.62        0.00        0.10 4.71        3.73        3.23 

LUT, spring  81 -0.09        0.21       -0.17 4.35        4.40        4.21 

HEN, spring  66  1.92        1.79         1.97 8.45        8.32        8.00 

 

CBW, summer 90 -5.09       -2.42       -0.89 6.31        4.10        3.54  

LOO, summer  92 -5.97       -0.73        0.42 7.49        4.72        4.45 

LUT, summer  80  1.19        2.84         1.81 8.20        8.72        8.37 

HEN, summer  92  0.51        2.23         1.92 5.86        5.70        5.39 

 

CBW, autumn  58 -4.98       -2.33      -1.06 7.37        5.60        5.29 

LOO, autumn  87 -5.56        0.19        0.23 8.82        5.92        5.50 

LUT, autumn  87 -1.87        0.59       -0.08 4.98        4.20        4.02 
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HEN, autumn    0 

 

CBW, winter  85 -0.67       -1.44       -0.63 6.15        6.26        6.02 

LOO, winter  87 -0.30        0.23        0.62 6.98        6.43        6.46 

LUT, winter  81   2.41        1.39        0.69 5.38        4.98        4.81 

HEN, winter    0 
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Table 2. Wind direction frequencies (days per season per 90 degree sector) in 2008 

according to the daily vector-averages of station De Bilt, in the center of the Netherlands. 

Data obtained from Royal Netherlands Meteorological Institute (KNMI). 

 

 

   NE  SE  SW  NW 

spring   32  15  27  18 

summer    8  12  51  21 

autumn  23  13  49    6 

winter   14  15  55    7 
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Table 3. Number of days with observations for each flight trajectory, per season 

 

 

 

 

  Spring  Summer Autumn Winter 

 

East  5  2  2  2 

North  5  2  1  1 

West  3  3  3  2 

South  3  3  2  2 

Center  3  4  2  2 

Polder  3  3  4  2 
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 Table 4. Calculated carbon budget of the Netherlands, according to the two methods 

(unit: TgC season-1). The fossil fuel emission for the same region has been added for 

comparison. 

 

 

   Biotic,   Biotic,   Fossil fuel 

   parameter inversion pixel inversion  emission 

 

 

Spring     (2008)    -7.54 ± 0.95    -9.63 ± 0.91  13.43 

Summer  (2008)   -9.22 ± 1.40     -8.24 ± 1.07  12.26 

Autumn  (2008)   -6.51 ± 0.53    -5.23 ± 0.89  13.94 

Winter    (2008)    5.68 ± 3.36     5.88 ± 0.85  13.49 

 

Year       (2008) -17.59 ± 3.80   -17.23 ± 1.87  53.12 
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Figure captions 

 

Figure 1: 

Dominant land use class per pixel (crops-2 has more natural vegetation mixed with the 

crops than crops-1). Triangles indicate concentration measurements: Lutjewad (north), 

Cabauw (west), Loobos (center), and Hengelman (east).  

 

Figure 2: 

Example of observed and modeled CO2 concentration time series: Cabauw, summer. Left 

panel: daytime average, with root-mean-square values for the differences between 

observed and modeled values. Right panel: Distribution of residuals (hourly daytime 

values), with means and standard deviations. 

 

Figure 3: 

The same for station Lutjewad. 

 

Figure 4: 

Averaged biogenic fluxes for six land use types, for the four seasons and for the whole 

year, according to prior, parameter inversion and pixel inversion. Error bars (one standard 

deviation) are also shown. 

 

Figure 5: 
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Mean biogenic flux (μmol m-2 s-1). Left to right: Prior, posterior parameter inversion, 

posterior pixel inversion. 

 

Figure 6: 

Improvement of the flux: (σprior-σpost)/σprior. 

Top: parameter, bottom: pixel inversion. 

 

Figure 7: 

Example of one day of flux measurements by aircraft, compared to the simulated total 

flux (prior and two posteriors), for the same points of the trajectory. 

 

Figure 8: 

Average CO2 flux over aircraft flight trajectory for each season, unit: μmol m-2 s-1. From 

left to right: prior of simulated total flux, simulated total flux from parameter-inversion 

and from pixel inversion, and observed flux from aircraft. 

 

Figure 9: 

(a) Seasonal root-mean-square difference between the simulated and observed average 

fluxes shown in figure 8. 

(b) Regional root-mean-square difference between the simulated and observed average 

fluxes shown in figure 8 (winter results not counted).  
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