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This paper investigates the temporal accuracy of the velocity and pressure when explicit
Runge–Kutta methods are applied to the incompressible Navier–Stokes equations. It is
shown that, at least up to and including fourth order, the velocity attains the classical order
of accuracy without further constraints. However, in case of a time-dependent gradient
operator, which can appear in case of time-varying meshes, additional order conditions
need to be satisfied to ensure the correct order of accuracy. Furthermore, the pressure is
only first-order accurate unless additional order conditions are satisfied. Two new methods
that lead to a second-order accurate pressure are proposed, which are applicable to a cer-
tain class of three- and four-stage methods. A special case appears when the boundary con-
ditions for the continuity equation are independent of time, since in that case the pressure
can be computed to the same accuracy as the velocity field, without additional cost. Rele-
vant computations of decaying vortices and of an actuator disk in a time-dependent inflow
support the analysis and the proposed methods.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

In this paper we discuss the application of explicit Runge–Kutta methods to the time discretization of the incompressible
Navier–Stokes equations. Explicit Runge–Kutta methods are a popular choice for the time discretization of the Navier–Stokes
equations, because they are cheap compared to implicit methods if flow problems are not stiff, which is the case for convec-
tion-dominated flows not involving solid boundaries. Compared with (explicit) multi-step methods, Runge–Kutta methods
have in general better stability properties, do not have a start-up problem, and easily allow for adaptive time stepping,
although they generally require the solution to a Poisson equation for the pressure at each stage of the Runge–Kutta method.
Examples of Runge–Kutta methods applied to the incompressible Navier–Stokes equations are Wray’s third-order
method (sometimes combined with an implicit method for the diffusion terms) [1–4], a third-order accurate semi-implicit
method [5], and the classic fourth-order method [6,7]. These three- and four-stage methods have the favorable property for
convection-dominated flows that the linear stability domain contains part of the imaginary axis.

The application of explicit Runge–Kutta methods to the incompressible Navier–Stokes equations is not straightforward
because of the differential–algebraic nature of the equations. It is common practice to explicitly advance the velocity at each
stage as if the discretized equations are a system of ordinary differential equations, and subsequently solve a Poisson equa-
tion for the pressure to make the velocity field divergence-free. However, it is not clear if and how this approach influences
. All rights reserved.
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the temporal order of accuracy of the velocity and pressure. The accuracy of the velocity is often silently assumed to be unaf-
fected by the differential–algebraic nature of the incompressible Navier–Stokes equations, and the temporal accuracy of the
pressure is often not reported. A temporally accurate pressure is however of interest in many flow simulations, such as those
involving unsteady lift and drag computations or fluid–structure interactions. We therefore thoroughly analyze the accuracy
of both velocity and pressure by applying the convergence theory developed for index 2 differential algebraic equations [8,9]
to the incompressible Navier–Stokes equations. We discuss the treatment of unsteady boundary conditions and time-varying
meshes, which has not been clearly reported in literature so far, and investigate if they influence the order of accuracy.

The outline of this paper is as follows. First, in Section 2 we develop a general formulation for explicit Runge–Kutta meth-
ods applied to the incompressible Navier–Stokes equations, which includes the case of unsteady boundary conditions for the
continuity and momentum equations. Subsequently, in Section 3 we investigate the order conditions for velocity and pres-
sure, and in Section 4 we propose different methods to compute a high-order accurate pressure. In Section 5 we show the
results of two test cases which confirm our theoretical findings.

2. Framework

2.1. Introduction

The governing equations for incompressible flow are the conservation of mass and momentum,
r � u ¼ 0; ð1Þ
@u
@t
þ ðu � rÞu ¼ �rpþ mr2u; ð2Þ
collectively called the incompressible Navier–Stokes equations. For the spatial discretization of (1) and (2) we employ a sec-
ond-order finite volume method on staggered Cartesian grids, similar to the method of Harlow and Welch [10]. We stress
however that the analysis presented in this paper is not restricted to finite volume methods but is equally valid for finite
difference and finite element methods, as long as the spatial discretization leads to a semi-discrete system (method of lines)
that can be expressed as the following problem:
MuðtÞ ¼ r1ðtÞ; ð3Þ
X _uðtÞ ¼ �CðuðtÞÞ þ mDuðtÞ � GpðtÞ þ r2ðuðtÞ; tÞ; ð4Þ
supplemented with suitable initial conditions. uðtÞ 2 RNu and pðtÞ 2 RNp are vectors with unknowns. In the remainder, their
explicit t-dependence will mostly be left out of the notation. M, C, D and G represent the discrete divergence, convection,
diffusion and gradient operators, respectively. Note that r2 2 RNu ; r1 2 RNp ; M 2 RNu�Np ; X;C;D 2 RNu�Nu ;G 2 RNp�Nu . r1(t) is
a vector with boundary conditions for the continuity equation and r2(u, t) is a vector with boundary conditions and forcing
terms for the momentum equation. X is a matrix with on its diagonal the finite volume sizes, which are assumed to be inde-
pendent of t. In finite element methods this is the mass matrix. Eqs. (3) and (4) form a non-autonomous differential algebraic
equation (DAE) system of index 2 (see e.g. [8,9,11]), where u plays the role of the differential variable, and p the role of the
algebraic variable. Following the literature on DAEs, they can be written as
0 ¼ gðu; tÞ; ð5Þ
_u ¼ f ðu; p; tÞ; ð6Þ
where
gðu; tÞ ¼ Mu� r1ðtÞ; ð7Þ
f ðu; p; tÞ ¼ Fðu; tÞ � Gp; ð8Þ
with F(u, t) = �C(u) + mD u + r2(u, t). X�1 has been absorbed in the definition of C, D, G and r2. The explicit presence of unsteady
boundary conditions for the divergence equation, r1(t), is often omitted in literature, but it will be shown to be important in
our discussion. An example of a nonzero r1(t) is a time-varying inflow condition such as a turbulent inflow field. We assume
that
L ¼ �guðu; tÞfpðu; p; tÞ ð9Þ
is non-singular, so that the problem is indeed of index 2. For the incompressible Navier–Stokes equations
L ¼ MG ð10Þ
is recognized as the Laplacian operator (independent of u and p), which is actually singular in case of Dirichlet or periodic
conditions for the velocity on the entire boundary. A possible remedy against the singular nature is to impose an additional
constraint (e.g. setting the average pressure value by replacing one row of the Laplace matrix by ones). An instantaneous
equation for the algebraic variable, the pressure, is found by applying the divergence-free constraint to the momentum
equation:
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Lp ¼ MFðu; tÞ � _r1ðtÞ; ð11Þ
where we have used that M is not depending on t. We note that this equation can be derived similarly if M, G and other oper-
ators depend on time, as in the case of time-varying meshes; an additional term _MðtÞu will appear on the right-hand side.
The pressure can be eliminated from the system of equations, by solving Eq. (11) and inserting it into (6):
_u ¼ PFðu; tÞ þ GL�1 _r1ðtÞ; ð12Þ
where the projection operator P, defined by
P ¼ I � GL�1M; ð13Þ
is a square matrix that projects velocity fields on the space of divergence-free fields; the divergence of this projection is zero
(M P = 0). However, when discretizing in time one should not start with Eq. (12). Differentiating the constraint, necessary to
arrive at (12), effectively lowers the index of the DAE system, and upon discretization its solutions do not necessarily satisfy
the constraint (5). It is therefore desirable to use the original DAE system (5) and (6) (the one with highest index), because its
solutions will satisfy all the derived lower index systems [12].

The initial conditions at t = t0 should be consistent with Eqs. (5) and (6) and (11):
Mu0 ¼ r1ðt0Þ; ð14Þ
Lp0 ¼ MFðu0; t0Þ � _r1ðt0Þ: ð15Þ
Eq. (15) expresses that the initial pressure cannot be chosen freely, but has to be calculated based on u0.

2.2. Explicit Runge–Kutta methods

Application of an explicit Runge–Kutta method to DAE systems is not always straightforward. We employ existing theory
on half-explicit Runge–Kutta methods, see Hairer et al. [8], to Eqs. (5) and (6), which leads to the following formulation:
Ui ¼ un þ Dt
Xi�1

j¼1

aijðFj � GpjÞ; i ¼ 1; . . . ; s; ð16Þ

MUi ¼ r1ðtiÞ: ð17Þ
Here Ui and un are approximations to the exact values u(ti) and u(tn), respectively, with ti = tn + ciDt and Fj = F(Uj, tj).
A = (aij), bi and ci are the coefficients of the Runge–Kutta method, which can be written in compact form using a Butcher
tableau:
ð18Þ
with the convention
ci ¼
Xi�1

j¼1

aij: ð19Þ
Now that the Runge–Kutta method has been applied, one can obtain a more compact formulation by eliminating the
pressure:
Ui ¼ un þ Dt
Xi�1

j¼1

aijPFj þ GL�1ðr1ðtiÞ � r1ðtnÞÞ; i ¼ 1; . . . ; s: ð20Þ
Since M P = 0, Eq. (20) satisfies M Ui = r1(ti) at all intermediate stages. Note that when Eq. (12) would be integrated in time
with a Runge–Kutta method, the last term in (20) would change to GL�1P

jaij _r1ðtjÞ, and the constraint is only satisfied if
_r1ðtÞ ¼ 0 (both formulations are equal in that case). Satisfying the incompressibility constraint at the intermediate stages
is important to obtain the correct convergence order of the Runge–Kutta method; this will be discussed in some more detail
in Section 3. The velocity at the new time step follows as a combination of the stage values:
unþ1 ¼ un þ Dt
Xs

i¼1

biPFi þ GL�1ðr1ðtnþ1Þ � r1ðtnÞÞ: ð21Þ
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A simpler representation for explicit methods is obtained by introducing the shifted matrix eA

eA ¼

a21 0 . . . 0

..

. . .
. . .

. ..
.

as1 . . . as;s�1 0
b1 . . . bs�1 bs

0BBBB@
1CCCCA; ð22Þ
and the shifted vectors
~c ¼

~c1

..

.

~cs�1

~cs

0BBBB@
1CCCCA ¼

c2

..

.

cs

1

0BBBB@
1CCCCA; eU ¼

eU1

..

.

eUs�1eUs

0BBBBB@

1CCCCCA ¼
U2

..

.

Us

unþ1

0BBBB@
1CCCCA; ~p ¼

~p1

..

.

~ps�1

~ps

0BBBB@
1CCCCA ¼

p2

..

.

ps

pnþ1

0BBBB@
1CCCCA; ð23Þ
so that Eqs. (20) and (21) can be written as
eUi ¼ un þ Dt
Xi

j¼1

~aijPFj þ GL�1ðr1ð~tiÞ � r1ðtnÞÞ; ð24Þ
with ~ti ¼ tn þ Dt ~ci.
The presence of the inverse of the Laplace operator (in the two last terms) makes the computation of eUi unattractive from

a practical point of view. Therefore we rewrite Eq. (24) back into a two-step formulation by introducing a variable which
‘looks’ like the pressure p. First we substitute P = I � GL�1M in (24), leading to
eUi ¼ un þ Dt
Xi

j¼1

~aijFj � GL�1 Dt
Xi

j¼1

~aijMFj � ðr1ð~tiÞ � r1ðtnÞÞ
 !

: ð25Þ
Comparing with the ‘exact’ equation for the pressure at each stage,
L~pi ¼ MeF i � _r1ð~tiÞ; ð26Þ
it seems natural to introduce a pressure-like variable, /, and the c coefficients and rewrite (25) as the following two steps:
eUi ¼ un þ Dt
Xi

j¼1

~aijFj � ~ciDtG~/i; ð27Þ
with ~/i defined by
L~/i ¼
Xi

j¼1

1
~ci

~aijMFj �
r1ð~tiÞ � r1ðtnÞ

~ciDt
: ð28Þ
Eq. (28) is simply the divergence of (27) supplemented with the additional information M eUi ¼ r1ð~tiÞ. Each ~/i is a Lagrange
multiplier to make eUi divergence free and each eUi is independent of the value of ~/j for j – i; this is the advantage of using /
instead of p. It should be stressed that the presence of the c coefficients in the pressure term is not necessary to obtain the
correct velocity field. The reason to introduce the c coefficients is that for explicit methods it yields a ~/i which is a consistent
approximation to ~pi. In case of implicit methods (e.g. methods based on Radau or Lobatto quadrature) it is possible to have a
non-trivial first stage (a1j – 0) with c1 = 0 and then the c-coefficients should not be introduced. The most general approach is
then to define a pressure-like variable qi(=ci/i) and not introduce the c coefficients at all. As can be seen in Section 4, this does
not complicate obtaining high-order accurate pressure estimates, because the combination ci/i = qi also occurs in that con-
text. These qi values are still Lagrange multipliers whose value is independent of previous time steps, and consequently the
velocity field remains independent of the history of the pressure. On the other hand, this is no longer true when the solution
of velocity and pressure is decoupled, for instance by employing a pressure correction method, see e.g. [13,14,4]. In that case
the c coefficients appear in the pressure term of the initial velocity estimate and both velocity and pressure depend on pres-
sure values from previous time steps. This is however not important for the explicit methods under consideration here.

When comparing Eqs. (28) with (26), the first term on the right side of (28) is recognized as an approximation to MeF i and
the second term as an approximation to _r1ð~tiÞ. The second term is clearly a first-order approximation, since
_r1ð~tiÞ ¼
r1ð~tiÞ � r1ðtnÞ

~ciDt
þ OðDtÞ: ð29Þ
The first term is also a first-order approximation, which we show by following an argument employed in [15,16]. eF i in (26) is

F evaluated at ðeUi;~tiÞ, whereas
Pi

j¼1
1
~ci

~aijFj is an approximation to the average value of F from tn to ~ti. Assuming that F is con-
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tinuous over the interval ½tn;~ti�, this average equals the value of F at some point t̂ 2 ½tn;~ti� (according to the integral version of

the mean value theorem) and as such is an OðDtÞ approximation to eF i:
MeF i ¼
Xi

j¼1

1
~ci

~aijMFj þ OðDtÞ: ð30Þ
As a consequence the Lagrange multiplier / is a first-order approximation to the pressure p:
~/i ¼ ~pi þ OðDtÞ: ð31Þ
Of course, by virtue of the midpoint method, /i is a second-order approximation to the pressure at tn þ 1
2 ciDt, as long as the

stage order of the method is at least 2 (this will be detailed in Section 4). We will call the approach, where one uses ~/s as
approximation to pn+1, the ‘standard’ approach. The first-order accuracy of this approach is independent of the particular
coefficients of the Runge–Kutta method. It results from the fact that (20) contains an approximation to the integral

R
F dt,

whereas (28) contains F evaluated at a certain time instance. This is because the pressure has an instantaneous character:
its value is such that the velocity field is divergence free at each time instant, and is independent of the pressure at any pre-
vious time. The equation for the velocity is, on the contrary, an evolution equation.

An alternative formulation of Eqs. (27) and (28) that can avoid the first-order behavior of the pressure is as follows. In-
stead of taking a single pressure-like variable at each stage, we take a combination by introducing a Butcher tableau eAp for
the pressure term such that:
eUi ¼ un þ Dt
Xi

j¼1

~aijFj � Dt
Xi

j¼1

~ap
ijG~wj; ð32Þ
with
Xi

j¼1

~ap
ijL~wj ¼

Xi

j¼1

~aijMFj �
r1ð~tiÞ � r1ðtnÞ

Dt
: ð33Þ
eAp is, like eA, lower triangular and should have ~ap
i;i – 0 in order to guarantee a unique ~w at each stage. Eqs. (28) and (33) are

related by
~w ¼ ðeApÞ�1diagð~c1; . . . ; ~csÞ~/: ð34Þ
One can therefore obtain ~w from ~/, as long as eAp is invertible. For the choice
eAp ¼ diagð~c1; . . . ; ~csÞ; ð35Þ
we obtain formulation (27) and (28) with ~w ¼ ~/, and the accuracy of the pressure is limited to first order. A possible way to
obtain a higher order pressure is to choose eAp ¼ eA (so that there is just a single Butcher tableau). This is simply the original
formulation (16) and (17), whose accuracy can be evaluated with the theory of Hairer et al. [8,9].

To conclude, we write down the solution algorithm that we use in practice, obtained by rewriting (27) and (28):
eV i ¼ un þ Dt
Xi

j¼1

~aijFj; ð36Þ

L~/i ¼
1

~ciDt
ðMeV i � r1ð~tiÞÞ; ð37Þ

eUi ¼ eV i � ~ciDtG~/i; i ¼ 1;2 . . . s; ð38Þ
optionally followed by Eq. (34). This sequence of first computing a tentative velocity, then the pressure, and finally correcting
the tentative velocity is similar to fractional step methods (see e.g. [15]). However, in fractional step methods the diffusive
and/or convective terms are often taken implicitly, and a splitting error then results from uncoupling the solution of velocity
and pressure. Here all terms are handled explicitly (except the pressure) and consequently there is no splitting error in-

volved. It is therefore unnecessary to solve a coupled system for eUi and ~/i, as is done for example in Pereira et al. [6]. The
half-explicit nature of the method is now clear: the differential variable is advanced with an explicit method (Eqs. (36)
and (38)) while the algebraic variable is handled implicitly (Eq. (37)). The implicit equation for the pressure has to be solved

at each stage, so in total this results in s Poisson equations. The resulting eUs ¼ unþ1 and ~/s ¼ /nþ1 (or ~ws) are approximations

to u(tn+1) and p(tn+1). The order of accuracy of ~ws and eUs will be considered next.
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3. Order conditions

3.1. Local and global error

For general index 2 DAEs of the form (5) and (6) the classical order conditions (‘classical’ referring to non-stiff ODEs, see
e.g. [17]) for the coefficients of the Butcher tableau are not sufficient to guarantee the correct order of accuracy for both the
differential and algebraic variable. The work of Hairer et al. [8] and Hairer and Wanner [9] provides local and global error
analyses for index 2 DAEs and identifies in which cases order reduction can occur. Here we focus on the local error, because
for half-explicit methods the error propagation from local to global error is the same as for non-stiff ODEs. For the velocity
(the differential variable) this is expressed by the following theorem:

Theorem 1. Convergence – Brasey and Hairer [18]. Suppose that (9) holds in a neighborhood of the solution (u(t),p(t)) of Eqs. (5)
and (6) and that the initial values satisfy (14) and (15). If the coefficients of the half-explicit Runge–Kutta method (32) and (33)
satisfy ~ap

i;i – 0 and bs – 0 and if the local error satisfies
duðtÞ ¼ OðDtrþ1Þ; ð39Þ
then the method is convergent of order r, i.e.,
un � uðtnÞ ¼ OðDtrÞ for tn � t0 ¼ nDt 6 T; ð40Þ
with T finite.
The pressure-like variable ~wi (including ~ws ¼ wnþ1) is independent of wn and the order of accuracy of the global error in w

is therefore given by the order of accuracy of the local error dw(t), provided that du(t) has at least the same order [8]. The
focus of the rest of this section is therefore on the local error of both the u- and p-component.

3.2. A short introduction to trees

For Runge–Kutta methods applied to ODEs of the form _u ¼ f ðuÞ, the local error can be investigated by expanding both the
exact and numerical solution in a Taylor series and comparing until which order they agree. This requires that €u, vu, etc. are
written in terms of f and its derivatives:
_u ¼ f ; €u ¼ fuf ; vu ¼ fufuf þ fuuðf ; f Þ: ð41Þ

Since f and u are vectors, the first derivatives in this expression should be interpreted as Jacobian matrices, the second deriv-
atives as bilinear maps, and (f, f) as a tensor product. The number of elementary differentials that appear in this process
grows rapidly when high orders are compared. With each differential there is an associated order condition. An efficient
way to handle the order conditions for ODEs was introduced by Butcher with the concept of rooted trees [17,19]. Given a
certain tree the elementary differential and the order condition corresponding to it can be easily written down. For example,
(41) becomes in terms of trees
ð42Þ
The order conditions for these trees are (in order of appearance):
X
bi ¼ 1;

X
bici ¼

1
2
;
X

biaijcj ¼
1
6
;
X

bic2
i ¼

1
3
: ð43Þ
In all cases, the summation is over all indices present in the summand.
The extension of the analysis with trees to DAEs was done by Hairer et al. [8] and will be used here. Hairer et al. [8] con-

sider the autonomous index 2 DAE
0 ¼ gðuÞ; ð44Þ
_u ¼ f ðu; pÞ: ð45Þ
The non-autonomous system (5) and (6) can be written in this form by adding _t ¼ 1 so that Eqs. (44) and (45) hold by rede-

fining u :¼ u
t

� �
and f :¼ f

1

� �
. In the Taylor expansion of the exact and numerical solution, _p; €p; . . . appear next to _u; €u; . . .

Here we list the first few derivatives (see [8,9]):
_u ¼ f ; ð46Þ
_p ¼ ð�gufpÞ�1ðguuðf ; f Þ þ gufuf Þ; ð47Þ
€u ¼ fuf þ fpð�gufpÞ�1ðguuðf ; f Þ þ gufuf Þ: ð48Þ
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For DAEs, the number of differentials grows even more rapidly for higher order derivatives. Trees still provide a compact way
to represent these derivatives, when extended to contain both meagre (solid) and fat (open) vertices:
ð49Þ

ð50Þ

ð51Þ
The order of a tree is the number of meagre vertices minus the number of fat vertices [8]. To have a local error of OðDtrþ1Þ
(global error OðDtrÞ) the order conditions should be satisfied up to and including tree order r. (An exception is the case where
a differential corresponding to a tree is of the form fp � (. . .). The corresponding order condition then has to be considered for
order r + 1 instead of r [8].) These order conditions can be read again from the trees, as is outlined in Hairer et al. [8] and
Brasey and Hairer [18]. As an example, the above trees correspond to the following order conditions:
_u :
X

bi ¼ 1; ð52Þ
_p :

X
bixijxjkc2

k ¼ 2;
X

bixijxjkaklcl ¼ 1; ð53Þ

€u :
X

bici ¼
1
2
;
X

bixijc2
j ¼ 1;

X
bixijajkck ¼

1
2
; ð54Þ
the summation being again over all indices. In this example we see that next to the classical order conditions (represented by
trees with only meagre vertices) additional order conditions appear, corresponding to trees with fat vertices, which include
the inverse of matrix A (xij denotes the entries of A�1). The order conditions for the p-component are especially difficult due
to the presence of (A�1)2. Fortunately, some of these additional trees do not pose additional constraints on the coefficients
because they reduce to classical order conditions. For example, the last condition in Eq. (54) can be written as
X
bixijajkck ¼ bT A�1Ac ¼

X
bici ¼

1
2
; ð55Þ
so it reduces to the classical second-order condition. The additional order conditions that cannot be simplified to classical
order conditions are of interest to us. To find these remaining conditions we used the software described in [20]. We found
that for the u-component there is no additional tree for order 1, but there is 1 for order 2, there are 4 for order 3 and 17 for
order 4. For the p-component there are 2 trees for order 1, 6 for order 2, 21 for order 3, and 81 for order 4.

This large number of additional order conditions can still be considerably reduced when taking into account two impor-
tant facts, namely that (i) we are considering half-explicit methods and (ii) we are applying these to the Navier–Stokes
equations.
3.3. Application to the incompressible Navier–Stokes equations

For the Navier–Stokes equations we know that f(u,p, t) = F(u, t) � Gp, which means that fp = G is a constant matrix and thus
all derivatives of fp, such as fpu, fpp, etc., are zero. Therefore trees which have a meagre vertex as root or as branch and con-
nected to it a fat vertex and at least one other meagre or fat vertex need not be considered. In case G is a function of time, one
cannot remove trees with derivatives of the form fpu, fpuu, but only those of the form fpp, fppp, etc.; we will treat this in
Section 3.5.

We note that in the case of non-autonomous systems, guu in Eqs. (47) and (48) consists of guu, gut and gtt. guu and gut are
zero for the Navier–Stokes equations, but gtt ¼ €r1ðtÞ is in general not, and therefore trees that have a fat vertex with more
than one meagre vertex connected to it do not vanish. This also covers the case of a time-dependent M matrix. The special
case of _r1ðtÞ ¼ 0, so that gtt = 0, will be discussed in Section 4.3.
3.4. Half-explicit methods

For half-explicit methods the construction of the order conditions changes slightly: if a meagre vertex follows a fat vertex
then the index changes from ajk to ~ajk (or from cj to ~cj). The trees and order conditions that result with this notation, and after
removing all trees containing a derivative of fp, are shown for the u-component and p-component in Tables 1 and 2,



Table 1
Additional trees and order conditions for u-component up to and including order 4 when fp = constant.

Tree Order Condition Simplifies to Differential

1. 2 ? 3
P

bi ~xij~c2
j ¼ 1 ~c2

s ¼ 1 fp(�gu fp)�1guu(f, f)

2. 3 ? 4
P

bi ~xij~c3
j ¼ 1 ~c3

s ¼ 1 fp(�gu fp)�1guuu(f, f, f)

3. 3 ? 4 P
bi ~xij~cj~ajkck ¼ 1

2

P
bici ¼ 1

2
fp(�gufp)�1guu(f, fuf)

Table 2
Trees and order conditions for p-component up to and including order 2 when fp = constant.

Tree Order Condition Simplifies to Differential

4. 1
P

bi ~xij ~xjk~c2
k ¼ 2

P
~xsi~c2

i ¼ 2 (�gufp)�1guu(f, f)

5. 1
P

bi ~xij ~xjk~aklcl ¼ 1 cs = 1 (�gufp)�1gu fuf

6. 2
P

bi ~xij ~xjk~ck~aklcl ¼ 3
2

P
~xsi~ci~aijcj ¼ 3

2
(�gufp)�1guu(f, fuf)

7. 2 P
bi ~xij ~xjk~c3

k ¼ 3
P

~xsi~c3
i ¼ 3 (�gufp)�1guuu(f, f, f)

8. 2
P

bi ~xij ~xjk~aklalmcm ¼ 1
2

P
asici ¼ 1

2
(�gufp)�1gufufuf

9. 2
P

bi ~xij ~xjk~aklc2
l ¼ 1 c2

s ¼ 1 (�gufp)�1 gufuu(f, f)
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respectively. Contrary to the u-component, the order of accuracy of the global error of the p-component is equal to the order
of the tree plus 1, because there is no power lost when going from local error to global error.

Table 1 shows that for the u-component up to and including order 4 only 3 trees with associated additional order con-
ditions remain. The ‘shift’ in order indicated by an arrow r ? r + 1 is due to the form fp � (. . .) of the remaining trees, as
was mentioned before. The order conditions corresponding to these trees can be simplified for the explicit methods under
consideration. Considering that b is the last row of eA, we can write



Table 3
Additio

10.

11.

12.

13.

14.

15.

B. Sanderse, B. Koren / Journal of Computational Physics 231 (2012) 3041–3063 3049
bT ¼ ð 0 . . . 0 1 ÞeA: ð56Þ
As an example, the order condition for tree number 3 can simplified to
X
bi ~xij~cj~ajkck ¼ ð0 . . . 0 1 ÞeAeA�1ð~c � ðeAcÞÞ ¼ ~cs

X
bici ¼

X
bici ¼

1
2
; ð57Þ
where � denotes the elementwise product, i.e., c = a�b means ci = aibi. If the Runge–Kutta method satisfies the classical sec-
ond-order condition

P
bici ¼ 1

2 this additional order condition is satisfied. A similar simplification of trees 1 and 2 yields the
conditions ~c2

s ¼ 1 and ~c3
s ¼ 1, which are automatically satisfied, see Eq. (23). In conclusion, the specific form of the pressure

term in the Navier–Stokes equations and the use of explicit methods leads to the observation that all additional order con-
ditions are trivially satisfied, at least up to and including order 4. This is also true for order 5, for which 6 stages are needed
(although methods with order higher than 4 are hardly used for the time integration of the incompressible Navier–Stokes
equations). We conjecture that this is true for any order, i.e., when applying an explicit Runge–Kutta method to the incom-
pressible Navier–Stokes equations no additional order conditions appear for the u-component, and consequently no order

reduction occurs. On the other hand, order reduction will occur if the continuity equation MeUi ¼ r1ð~tiÞ is not satisfied at
all intermediate stages, although this does not affect the stability domain of the method. The resulting method can therefore
be of interest to compute, for example, steady flows with an artificial time-stepping technique, because stability is then
much more important than temporal accuracy. The effect on the order of accuracy of the velocity requires the study of
the influence of perturbations in the constraint on the velocity at the end of the time step. Such a study is left as a suggestion
for further research; here we focus on methods that satisfy the constraint at each stage, so s Poisson equations are solved for
an s-stage method.

For the p-component the above simplification of the additional order conditions is not possible and we have to look in
more depth in whether the remaining order conditions can be satisfied. This will be detailed in Section 4.
nal trees and order conditions for u-component up to and including order 4 when fp is a function of t.

Tree Order Condition Differential

3
P

bici ~xij~c2
j ¼ 2

3
fpu(f, (�gufp)�1guu(f, f))

4
P

biaijcj ~xjk~c2
k ¼ 1

6
fufpu(f, (�gufp)�1guu(f, f))

4 P
biaijcj ~xik~c2

k ¼ 1
4

fpu(fuf, (�gufp)�1guu(f, f))

4
P

bici ~xij~cj~ajkck ¼ 3
8

fpu(f, (�gufp)�1guu(f, fuf))

4 P
bici ~xij~c3

j ¼ 3
4

fpu(f, (�gufp)�1guuu(f, f, f))

4 P
bic2

i
~xij~c2

j ¼ 1
2

fpuu(f, f, (�gufp)�1guu(f, f))
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3.5. Time-dependent operators

The interesting case of a time-dependent gradient operator G(t) can be treated in an analogous fashion. The additional
trees that result when fp is not constant but depends on time leads to the trees shown in Table 3. In contrast to Table 1,
the order conditions associated with these trees do not reduce to classical order conditions. This table is similar to Table 1
in [18], but with the difference that in that work trees containing fpp, fppp and fppu are also present. We present this table here
as a reference for practitioners of Runge–Kutta methods for time integration of the incompressible Navier–Stokes equations
on time-varying meshes.

For a third order method there is one additional tree, denoted by number 10. Evaluating the condition associated with this
tree for a three-stage method, together with the four classical order conditions for third order methods, leads to a solution
family with c3 = 1, and c2 as a free parameter c2–0; c2– 2

3 ; c2–1
� �

:

a21 ¼ c2 a31 ¼
3c2 � 3c2

2 � 1
c2ð2� 3c2Þ

a32 ¼
1� c2

c2ð2� 3c2Þ
; ð58Þ

b1 ¼
3c2 � 1

6c2
b2 ¼

1
6c2ð1� c2Þ

b3 ¼
2� 3c2

6ð1� c2Þ
: ð59Þ
This family excludes Wray’s popular third-order method [2]. Wray’s method reduces to second order for time-dependent
operators, such as moving meshes, and is therefore not recommended in this case.

For a fourth order method six additional trees appear due to the time dependency of G. It is proven in [18] that the order
condition corresponding to tree number 15 cannot be satisfied with a four-stage, fourth-order method. An example of a five-
stage, fourth-order method that satisfies the conditions corresponding to trees 10–15 is the HEM4 method [18]. It does not
satisfy the conditions corresponding to trees 6 and 7, so it is second order accurate for the pressure.

Note that the time-dependence of fp also leads to additional trees for the pressure, next to those already mentioned in
Table 2. They are of order 2 or higher.

3.6. A note on space–time errors

At this point it is worthwhile to mention that, apart from the order reduction mechanism discussed above (a result of the
differential–algebraic nature of the Navier–Stokes equations), another mechanism for order reduction exists. This mecha-
nism, analyzed for example in [21–24], can result when Runge–Kutta methods are applied to PDEs with time-dependent in-
flow boundary conditions and the exact boundary values are imposed for the intermediate stages (as we do in the current
work, see Eq. (20)). Order reduction then appears when studying the full space–time error, i.e., when simultaneously refining
mesh and time-step (for example mesh refinement at a fixed CFL number). A solution to this problem is to not impose any
intermediate boundary values but instead obtain these values by integrating the semi-discrete equations at the boundary,
using one-sided difference stencils to approximate the spatial derivatives. It is questionable if this is a mathematically valid
approach for the incompressible Navier–Stokes equations, but in any case it significantly reduces the allowable time step for
stability [24]. Another fix, for linear and non-linear hyperbolic PDEs, is presented in [21,22], which boils down to repeated
differentiation of the boundary condition and then cleverly integrating it along with the Runge–Kutta method for the interior
points. However, it is questionable if such a fix also works for the incompressible Navier–Stokes equations (a system of DAEs
of mixed parabolic-elliptic type), because a change in boundary conditions for the intermediate stages affects the divergence
equation. As mentioned before, this requires a study of the effect of perturbations in the divergence-free constraint on the
order of accuracy. Furthermore, the fix of [21,22] requires that r1 can be differentiated with respect to time; this derivative is
not always available (as in the case of a turbulent inflow field) or might not even exist (e.g. a boundary condition of the form
e1�1/t for t P 0 does not have a proper derivative at t = 0). Note that this differentiability of r1 with respect to time will be
encountered again in the next section when discussing the accuracy of the pressure. A cure for DAEs (or even for the specific
case of the incompressible Navier–Stokes equations) is, to the authors’ knowledge, not yet available. Fortunately, the order
reduction from unsteady boundary conditions as described above, generally only manifests itself at very fine grids due to a
small coefficient of the leading error term [21]. Moreover, our spatial discretization is second-order accurate so that a pos-
sible order reduction in the global error is likely to be overwhelmed by the spatial error. Therefore, in our current work we
focus on the temporal error only; we fix the mesh and then refine the time step. We leave the possible interplay of temporal
and spatial errors as suggestion for future research.
4. The accuracy of the pressure

4.1. Single Butcher tableau for velocity and pressure (Method 1)

We continue with an order study of the pressure when formulation (27) and (28) with eAp ¼ eA is employed. As was the
case in Table 1, the order conditions in Table 2 can also be simplified in certain cases by employing Eq. (56). However, in
contrast to the u-component, additional order conditions remain, even for a second-order method. This is not a surprise
when considering that the Lagrange multipliers / and w are of a different nature than the pressure p (integral versus point
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value). Here we concentrate on obtaining an accurate point value for the pressure. Such a point value is of interest when
comparing, for example, a pressure distribution at a certain time instant with an experimentally obtained pressure distribu-
tion at the same time instant. However, in other cases, such as computing the displacement of a body due to aerodynamic
forces in a CFD code for fluid–structure interaction, the integral value can be a better quantity to use.

We should note that all additional order conditions for the pressure can be circumvented entirely by solving an additional
Poisson equation, Eq. (11), at tn+1:
Lpnþ1 ¼ MFnþ1 � _r1ðtnþ1Þ: ð60Þ
Given an rth order accurate velocity field un+1, the resulting pressure pn+1 is of the same order of accuracy. However, there are
two issues in solving Eq. (60). Firstly it is required that r1(t) can be differentiated (analytically or numerically), something
which is not required in the computation of u and /. In many practical computations, for example involving a prescribed
turbulent inflow, _r1ðtÞ might not be available. Secondly, solving Eq. (60) amounts to the solution of an additional Poisson
equation, which is computationally costly. We will therefore look at the additional conditions of Table 2, which, when sat-
isfied, give a higher order accurate pressure without solving Eq. (60).

4.1.1. Two-stage methods
For two-stage, second-order methods we have the classical conditions b1 + b2 = 1 and b2c2 ¼ 1

2. For a second-order accu-
rate pressure the conditions corresponding to trees 4 and 5 have to be satisfied as well. The additional order condition cor-
responding to tree 4 is
X2

i¼1

~x2i~c2
i ¼ 2; ð61Þ
where
ðxijÞ ¼ A�1 ¼
1

a21
0

� b1
a21b2

1
b2

 !
: ð62Þ
This results in the condition
a21 � b1c2

a21b2
¼ 2: ð63Þ
The order condition corresponding to tree 5 is
c2 ¼ 1: ð64Þ
This latter condition results in b1 ¼ b2 ¼ 1
2 after applying the classical order conditions. However, condition (63) can then not

be satisfied, because it reduces to a21 � 1
2 ¼ a21. It is therefore not possible to obtain better than first-order accuracy for the

pressure with a two-stage explicit method.

4.1.2. Three-stage methods
Butcher [17] lists three cases for which a three-stage, third-order explicit method exists. Only in the ‘case I’ family there is

a solution that allows c3 = 1 (the condition corresponding to tree 5), which is the same as solution family (58) and (59). Eval-
uating the order condition corresponding to tree 4 for this family leads to
3c2
2 � 7c2 þ 4
3c2 � 2

¼ 2; ð65Þ
which has only one valid solution, being c2 ¼ 1
3. The resulting Butcher tableau is
; ð66Þ
which satisfies indeed trees 4 and 5. Evaluating Eq. (34) gives
pnþ1 ¼ ~w3 ¼ �
3
2

~/1 �
3
2

~/2 þ 4~/3: ð67Þ
The conditions corresponding to trees 6, 7 and 8 are not satisfied, and the pressure is at best second-order accurate.
We remark that the occurrence of negative coefficients in (66) and (67) will in general not lead to spurious, non-positive

solution behavior, because of the smoothness of incompressible Navier–Stokes solutions. No measures will be taken to make
(66), (67), or any following method positive.
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4.1.3. Four-stage methods
For explicit four-stage, fourth-order methods the classical order conditions require c4 = 1 (see e.g. [17]), which tree 5

(and 9) automatically satisfy. We found three methods that also satisfy the condition corresponding to tree number 4;
they read:
: ð68Þ
For example, evaluating Eq. (34) for the left tableau gives
pnþ1 ¼ ~w4 ¼
1
2

~/1 � 2~/2 � 2~/3 þ
9
2

~/4: ð69Þ
As can be readily calculated, none of the above methods satisfies the conditions corresponding to trees 6, 7 and 8. Therefore,
with a four-stage, fourth-order explicit method the pressure is, again, at best second-order accurate.

4.2. Reconstructing instantaneous pressure values from time averages (Method 2)

We mentioned in Section 2.2 that ~/i defined by (28) is only first-order accurate in time but that higher order accurate

pressures ~wi are possible with the generalized formulation (33). With the choice eAp ¼ eA this led to the order conditions out-
lined in Section 4.1, and it appeared that only a limited number of three-stage and four-stage methods lead to a second-order
accurate pressure. In this section we take a different approach by relating the integral averages ~/i to the point value pn+1. In

fact, this boils down to taking eAp – eA, although it is not necessary to explicitly derive eAp.
First we consider the exact integration of Eq. (11) from tn to ~ti, which reads
L
Z ~ti

tn

pðtÞdt ¼ M
Z ~ti

tn

FðtÞdt � ðr1ð~tiÞ � r1ðtnÞÞ; ð70Þ
and we denote the exact average of p over this interval by /ð~tiÞ (the exact counterpart of the approximation ~/i):
/ð~tiÞ ¼
1

~ciDt

Z ~ti

tn

pðtÞdt: ð71Þ
The challenge is to find a higher order accurate point value pn+1 from the time average values /ð~tiÞ. Such an approximation of
point values from integral averages is well-known in the field of Essentially Non-Oscillatory (ENO) conservative finite differ-
ence schemes and is called reconstruction. We follow [25] to perform this reconstruction, and refer to that work for more
details. Denoting the primitive function of p(t) by P(t), we can write
/ð~tiÞð~ciDtÞ ¼
Z ~ti

tn

pðtÞdt ¼ Pð~tiÞ � PðtnÞ; i ¼ 1;2; . . . s: ð72Þ
We then construct a polynomial H(t) that interpolates P(t) at the following points:
~tk1
;~tk2

; . . . ;~tkm ; ð73Þ
where K = {k1, . . . ,km} is the set of points that will be used in the interpolation. We always take k1 = 0 and km = s (using the
convention that ~t0 ¼ tn). The other values of k depend on which of the intermediate stages are used in the interpolation. One
could take all points, i.e., K = {0,1, . . . ,s}, but this is in general not necessary, as we will show later. The derivative of H(t) is
denoted by h(t). Then h(t) is an approximation to p(t), and their integrals are the same:
1
~ciDt

Z ~ti

tn

hðtÞdt ¼ 1
~ciDt

Z ~ti

tn

H0ðtÞdt ¼ 1
~ciDt
ðHð~tiÞ � HðtnÞÞ ¼

1
~ciDt
ðPð~tiÞ � PðtnÞÞ ¼

1
~ciDt

Z ~ti

tn

pðtÞdt ¼ /ð~tiÞ: ð74Þ
The crucial point in this derivation is that H(t) interpolates P(t) exactly at the points used for the construction of the poly-
nomial. We employ the Lagrange form of the interpolation polynomial, i.e., we write
HðtÞ ¼
X
k2K

Pð~tkÞ‘kðtÞ; ð75Þ
where
‘kðtÞ ¼
Y

j2K; j–k

t � ~tj

~tk � ~tj
: ð76Þ
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For a well-posed polynomial we require that all ~tk are distinct. H(t) can be written in terms of the integral values /ð~tiÞ by
subtracting P(tn) from both sides and using

P
k2K‘kðtÞ ¼ 1:
HðtÞ � PðtnÞ ¼
X
k2K 0

/ð~tkÞ ~ckDt ‘kðtÞ; ð77Þ
where K0 = {k2, . . . ,km}. Differentiation then leads to
hðtÞ ¼
X
k2K 0

/ð~tkÞ ~ckDt ‘0kðtÞ: ð78Þ
Given the values /ð~tkÞ and the points ~tk this expression can be evaluated at tn+1, which provides the approximation we are
looking for:
pnþ1 ¼ hðtnþ1Þ: ð79Þ
Using m � 1 / values (the number of elements in K0) this results in an (m � 1)th order accurate pressure. If all / values are
used, then m � 1 = s and one could, in theory, obtain an sth order accurate pressure. Note that, in contrast to ENO schemes,
we do not choose the reconstruction points in such a way that the smoothest stencil results.

In practice we cannot use the exact average /ð~tiÞ to find pn+1. /ð~tiÞ is approximated by ~/i, whose order of accuracy depends
on the stage order of the method. This stage order can be expressed by making use of the so-called simplifying condition Ci(n)
[26]:
CiðnÞ :
Xs

j¼1

aijck�1
j ¼ 1

k
ck

i ð1 6 k 6 nÞ; ð80Þ
or, in terms of the shifted Butcher tableau:
eCiðnÞ :
Xs

j¼1

~aijck�1
j ¼ 1

k
~ck

i ð1 6 k 6 nÞ: ð81Þ
If Ci(q) holds then polynomials of degree lower than q are exactly interpolated at stage i. Ci(1) is equivalent to condition (19).
We remark that with the notation of the shifted tableau, eCsðqÞ is equal to simplifying condition B(q):
BðgÞ :
Xs

i¼1

bick�1
i ¼ 1

k
ð1 6 k 6 gÞ: ð82Þ
This expresses the order of quadrature of the final step in the Runge–Kutta method, so eCsðsÞ ¼ BðsÞ trivially holds for an s-
stage, sth order method. Assuming that eCiðqÞ holds, the equation for /ð~tiÞ can be written as
L/ð~tiÞ ¼
1
~ci

Xi

j¼1

~aijMFj �
r1ð~tiÞ � r1ðtnÞ

~ciDt
þ OðDtqÞ; ð83Þ
so that the difference between the exact integral and its numerical approximation is OðDtqÞ:
/ð~tiÞ ¼ ~/i þ OðDtqÞ: ð84Þ
To summarize, it is possible to obtain a higher order accurate pressure at tn+1 by combining the average values ~/i from
the different stages. To attain a certain order r requires at least r distinct stages (i.e. with different ci), and each individual
stage i should have stage order r, i.e., satisfy Ci(r). We will now check if this is possible for methods with two, three and
four stages.

4.2.1. Two-stage methods
For two-stage, second-order methods eC2ð2Þ ¼ Bð2Þ is obviously satisfied, but eC1ð2Þ cannot be satisfied because the equa-

tion for eU1 is simply a Forward Euler step, which is first-order accurate (this is always the case for explicit methods).

4.2.2. Three-stage methods
Since eC1ð2Þ cannot be satisfied, we require eC 2ð2Þ to be satisfied, i.e.,
a32c2 ¼
1
2

c2
3; ð85Þ
together with the condition c3 – 1 to have distinct c’s. Using the third-order conditions
b3a32c2 ¼
1
6
; b2c2

2 þ b3c2
3 ¼

1
3
; ð86Þ
this leads to b1 ¼ 1
4 ; b2 ¼ 0; b3 ¼ 3

4 and c3 ¼ 2
3. c2 can be chosen freely (–0), and then determines a31 and a32. Wray’s popular

third-order method [2] falls in this category, with c2 ¼ 8
15:
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: ð87Þ
Another possibility is to take c2 = c3, which saves an evaluation of boundary conditions and forcing terms:
: ð88Þ
The interpolation polynomial h(t) from Eq. (78) is independent of c2 and given by:
hðtÞ ¼ �
2 t�tn

Dt � 1
1� c3

� �
~/2 þ

2 t�tn
Dt � c3

1� c3

� �
~/3; ð89Þ
and pn+1 follows with c3 ¼ 2
3 as
pnþ1 ¼ hðtnþ1Þ ¼ �3~/2 þ 4~/3: ð90Þ
This equation provides a new way to obtain a second-order accurate pressure by combining two first-order accurate pres-
sures of a three-stage method. It is also valid when Wray’s method is used only for the convective terms and an appropriate
implicit method for the diffusive terms, such as the method from [1].

If one wants to maximize stability instead of order of accuracy (second-order accuracy is sufficient in many practical
applications), one can use three-stage methods that are second order for the velocity. Combining the condition for maximum
stability along the imaginary axis b3a32c2 ¼ 1

4

� �
with condition (85) yields a family of methods with c2 and c3 as free param-

eters. An example of a low-storage method satisfying these conditions is presented in Perot and Nallapati [27], but it has
c3 = 1 so a second-order accurate pressure cannot be obtained. We propose the following alternative method
; ð91Þ
which we obtained by requiring b1 = 0 and c2 = c3. The requirement b1 = 0 leads to the same storage requirements as [27], and
c2 = c3 has the advantage that only one intermediate boundary condition evaluation is needed.

4.2.3. Four-stage methods
Four-stage, fourth-order methods have c4 = 1, so that even if eC3ð2Þwould hold, it cannot be used. We therefore look again

for methods that satisfy eC2ð2Þ. Combining condition (85) with the fourth-order conditions leads to c3 ¼ 1
2 and two families of

solutions result, corresponding to the ‘case II’ and ‘case IV’ solutions found by Kutta [17]:
ð92Þ

ð93Þ
The upper tableau with c2 ¼ c3 ¼ 1
2 is attractive because it requires only one intermediate evaluation of boundary conditions

and forcing terms. In a similar fashion as the three-stage method (Eq. (89) with ~/3 replaced by ~/4), pn+1 follows as
pnþ1 ¼ �2~/2 þ 3~/4: ð94Þ
Again, this equation provides a new way to obtain a second-order accurate pressure by combining two first-order accurate
pressures of a four-stage method.
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4.3. Steady boundary conditions for the continuity equation (Method 3)

An important case for the incompressible Navier–Stokes equations is when the boundary conditions for the continuity
equation are steady, i.e., Eq. (3) can be written as
Mu ¼ r1; ð95Þ
where r1 is independent of t. Eq. (5) then reads g(u) = 0, with g linear in u. This means that gu = constant and all partial deriv-
atives of gu (guu,gut,gtt, etc.) are zero. As before, all additional trees for the u-component (Table 1) disappear, but most of the
trees for the p-component (Table 2) also vanish. Only trees 5, 8 and 9 remain, and it is possible to find higher order accurate
methods for the pressure. For example, with two stages a second-order accurate pressure is possible (c2 = 1), and with four
stages a third-order accurate pressure is possible. However, it is not necessary to consider such methods, because in the case
gu = constant the pressure can be computed to the same order of accuracy as the velocity, without additional cost. This can
be seen by comparing Eq. (28) for i = 1 with Eq. (60):
Lpn ¼ MFn � _r1ðtnÞ; ð96Þ

L~/1 ¼
~a11

~c1
MF1 �

r1ð~t1Þ � r1ðtnÞ
~c1Dt

: ð97Þ
Considering that F1 is equal to Fn (determined at the end of the previous time step) and that ~a11 ¼ ~c1, these expressions are
equal if r1 is independent of time (or a linear function of t). This means that ~/1 is actually the rth order accurate pressure at tn,
and the additional Poisson solve associated with Eq. (60) can be avoided. An existing implementation could remain unal-
tered; instead of taking ~/s ¼ /nþ1, the pressure that makes un+1 divergence free, one should take ~/1 from the next time step
to have a higher order accurate pressure at the end of the current time step. We prefer to compute pn+1 and then skip the
computation of ~/1 in the next time step. This works for any explicit Runge–Kutta method with at least two stages, thus pro-
viding a simple way to improve the temporal accuracy of the pressure without increasing computational cost.

4.4. Summary

We classify the methods analyzed so far as follows. The methods that were derived in Section 4.1 (with eAp ¼ eA) will be
indicated by M1, the methods derived in Section 4.2 are indicated by M2, and in case Section 4.3 applies we write M3. We
then write Mm Ss Rr to indicate that an s-stage explicit Runge–Kutta method of type m is used with order s for the velocity
and order r for the pressure. For example, there are three methods of type M1S4R2 and they are given by the tableaux in (68).
In case m = 3, we can always make r equal to s with the approach of Section 4.2, and any existing s-stage, sth order method
can be used. In case r = 1 we have the standard approach with pnþ1 ¼ ~/s, which can be used with any method.

5. Results

5.1. Taylor vortex

The Taylor–Green vortex in two dimensions is an exact solution to the Navier–Stokes equations:
uðx; y; tÞ ¼ � sinðpxÞ cosðpyÞ e�2p2t=Re; ð98Þ
vðx; y; tÞ ¼ cosðpxÞ sinðpyÞ e�2p2t=Re; ð99Þ

pðx; y; tÞ ¼ 1
4
ðcosð2pxÞ þ cosð2pyÞÞe�4p2t=Re: ð100Þ
The domain on which we define the solution is the square 1
4 ;2

1
4

� �
� 1

4 ;2
1
4

� �
with either time-dependent Dirichlet or periodic

boundary conditions. Prescribing both inflow and outflow with Dirichlet conditions is normally not a good idea, see e.g. [28],
but we did not find any negative effects in this test case. We deliberately do not take the square [0,2] � [0,2] (or
[�1,1] � [�1,1]) as domain, because it leads to u � n = 0 on the entire boundary, meaning that r1(t) = 0. In all simulations
we use Re = 100 and we integrate from t = 0 to t = 1. The Poisson equation is solved by LU-decomposition of L, which is
the most efficient way for this relatively small problem.

As mentioned in Section 2.1, a consistent initial condition requires that p0 is obtained by solving a Poisson equation (Eq.
(15)), but for the explicit methods that are under consideration here, both the velocity field and the pressure field at each
time step are not depending on p at the start of a time step, so the initial condition for the pressure is unnecessary.

5.1.1. Verification of spatial accuracy
We simulate the Taylor vortex on different uniform grids ranging from 5 � 5 to 320 � 320 volumes using a fixed time step

of Dt = 10�3, and then we calculate the error in the resulting velocity and pressure fields by comparing with the exact solu-
tion at t = 1. We use the classical fourth-order, four-stage Runge–Kutta method for this, which ensures that the temporal er-
rors are negligible compared to the spatial errors.
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Figs. 1(a) and (b) show that for both periodic and (unsteady) Dirichlet boundary conditions the error in the u-velocity
component and the pressure is second order in the L2- and L1-norm. The error in the v-velocity component is not shown
because it is almost indistinguishable from the u-velocity component.
5.1.2. Temporal accuracy
We now take a coarse mesh with 20 � 20 volumes and vary the time step to investigate the temporal accuracy. The spa-

tial error clearly overwhelms the temporal error and in order to compute the latter, we subtract the solution from a simu-
lation with a small time step (Dt = 10�3), so that the spatial error is effectively eliminated.

The first test concerns periodic boundary conditions, such that the observations from Section 4.3 apply and the methods
are characterized as M3. Four s-stage, sth-order Runge–Kutta methods are tested, with s = 1, 2, 3, 4. For s = 1 we take Forward
Euler, for s = 2 modified Euler (explicit trapezoidal, Heun’s method), for s = 3 Wray’s method, and for s = 4 the classical
fourth-order method. In all cases the number of Poisson solves is the same as the number of stages. Fig. 2(a) shows that with
our current approach both pressure and velocity attain the classical order of convergence, whereas the standard method
(pnþ1 ¼ ~/s) leads to only first order convergence of the pressure, see Fig. 2(b). The velocity error is unaffected by the accuracy
Fig. 1. Convergence of spatial error for Taylor–Green problem.



Fig. 2. Convergence of temporal error for Taylor–Green problem with steady boundary conditions.
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of the pressure. For this very smooth test case the error of higher order methods does not only converge faster upon time step
refinement (as predicted by theory), but the magnitude of the error for the largest time step is also much smaller. We only
show here the L1-norm because the L2-norm shows exactly the same behavior. Comparison with Fig. 1(a) shows that for this
mesh and boundary conditions the temporal error is much smaller than the spatial error, for all methods (except Forward
Euler), even for Dt = 10�1. In this particular example the two-stage, second-order method is stable and accurate enough
and is to be preferred over the more expensive three- and four-stage methods.

The second test concerns unsteady Dirichlet conditions with methods of type M1. For s = 1 and s = 2 only r = 1 is possible,
so we focus on s = 3 and s = 4 with r = 2. For M1S3R2 the only solution is (66) with (67) for the pressure, for M1S4R2 we take
the first tableau in (68) (because it has the simplest coefficients) and (69) for the pressure.

The third test concerns unsteady Dirichlet conditions with methods of type M2. As for methods of type M1, we focus on
s = 3 and s = 4. For M2S3R2 we take Wray’s method with (90) for the pressure and for M2S4R2 we take (92) with c2 ¼ 1

4 and
(94) for the pressure.

Figs. 3(a) and (b) then show the order of accuracy of the velocity and pressure for these two methods, in case of the ‘stan-
dard’ approach (R1), our approach (R2) and in case of an additional Poisson solve (R3 or R4). The additional Poisson solve can



Fig. 3. Convergence of temporal error for Taylor–Green problem with unsteady Dirichlet boundary conditions.
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be performed because the explicit dependence of r1 on t is known so that _r1ðtÞ can be calculated. The velocity error is in all
cases again independent of the particular approach for the pressure. It is confirmed that both methods M1 and M2 indeed
lead to a second-order accurate pressure when the proper Butcher tableaux are chosen. The difference in accuracy between
the results of M1 and M2 is small, but this depends on the test case under consideration. The computational effort is for both
very similar. These second-order schemes greatly improve the accuracy with respect to the standard first-order approach
without additional cost. The effort of an additional Poisson solve can only be justified in case higher-order accurate (third
or fourth order) pressure solutions are required.

5.2. An actuator disk in an unsteady inflow field

A practically relevant situation with a temporally varying inflow appears when simulating the flow of air through wind
turbines operating in a turbulent atmospheric wind field. Such simulations of wind-turbine wakes can contribute to the



Fig. 4. Actuator disk in an unsteady inflow field.
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understanding of the effect of wakes on power production and blade loading. Different methods exist for modeling the effect
of the wind turbines on the flow, such as actuator methods and direct methods [29]. In the former, the action of the turbine is
modeled with a body force, such as an actuator surface, and in the latter the action of the turbine is modeled by computing
the actual flow around it, for example by applying a body fitted grid around the turbine blades. In both cases accurate
knowledge of the pressure field is necessary to calculate the forces that act on the blade, such as lift and drag.

Here we study a simplified case of an actuator disk in a laminar flow. The domain is [0,10] � [�2,2], the Reynolds number
is 100 and the thrust coefficient of the turbine is CT ¼ 1

2. The actuator disk is located at x = 2 and has unit length, see Fig. 4. On
all boundaries, except the inflow boundary at x = 0, we prescribe the following outflow conditions (see e.g. [28]):
y ¼ �2;2 :
@u
@y
¼ 0 p� 1

Re
@v
@y
¼ p1; ð101Þ

x ¼ 10 : p� 1
Re

@u
@x
¼ p1

@v
@x
¼ 0: ð102Þ
For a verification study of the actuator disk in a laminar flow with steady inflow and these boundary conditions we refer to
[30]. In the current test, the inflow conditions are given by:
x ¼ 0 : ubðtÞ ¼ cos aðtÞ; vbðtÞ ¼ sinaðtÞ; ð103Þ
where aðtÞ ¼ p
6 sinðt=2Þ. This describes a time-varying inflow with constant magnitude but changing direction, see Fig. 5.

First we perform a simulation from t = 0 to t = 4p, with a uniform mesh having 200 � 80 volumes (Dx = Dy = 1/20) and
10,000 time steps (Dt = 4p/10000), using the M2S4R4 method of Eq. (92), again with c2 ¼ 1

4. We focus on methods of type
M2, because they still allow for some freedom in the choice of the coefficients of the Butcher tableau, in contrast to methods
Fig. 5. Inflow as a function of time.



Fig. 6. Kinetic energy, integrated over the entire computational domain, as a function of time.
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of type M1. In Fig. 6 the normalized kinetic energy of the flow (integrated over the entire domain) is shown, from which it
can be concluded that the flow becomes periodic with period 2p after approximately t = 4p. The velocity and pressure field at
this time instant are shown in Figs. 7 and 8. The wake has been deflected downwards due to the inflow with negative vb that
was present from t = 2p to 4p. The presence of the actuator disk is clearly seen in the pressure contours; they are discontin-
uous across the disk.

Due to the very small time step, these velocity and pressure fields have a negligible temporal error compared to the spa-
tial error, and are therefore used to compute the temporal error in the velocity and pressure field for larger time steps. The
resulting convergence of the velocity and pressure error is shown in Fig. 9, for methods (87) and (92). As before, we see that
the velocity attains its classical order of accuracy, i.e., third order for the three-stage method, and fourth order for the four-
stage method. The pressure can be computed to the same order as the velocity, but this requires an additional Poisson solve
and an expression for _r1ðtÞ. Since _r1ðtÞ contains only the normal velocity component on the boundary, it is sufficient to derive
the expression for _ubðtÞ:
_ubðtÞ ¼ �
p
12

sinðaðtÞÞ cosðt=2Þ: ð104Þ
On the other hand, the standard approach is only first order and starts with a large error at large time steps. Our proposed
approach, corresponding to the lines M2S3R2 and M2S4R2, does not require any significant additional computational effort
(no additional Poisson solve, no evaluation of _r1ðtÞ), it clearly shows second-order accuracy and starts with a small error al-
ready at the largest time step considered. This time step, Dt = 4p/200, is the largest step for which stable solutions could be
obtained. It is determined by the convective terms, showing the benefit of explicit Runge–Kutta methods for this test case.
Fig. 7. Streamlines and u-contour lines at t = 4p.



Fig. 8. Streamlines and p-contour lines at t = 4p.

Fig. 9. Velocity and pressure error at t = 4p for a selection of methods.
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6. Conclusions

In this paper we have analyzed the temporal order of accuracy of the velocity and pressure when explicit Runge–Kutta
methods are applied to the incompressible Navier–Stokes equations. It is shown that the order of accuracy of the velocity
is not affected by the differential–algebraic nature of the incompressible Navier–Stokes equations and is therefore the same
as for non-stiff ordinary differential equations. However, if the semi-discrete equations involve time-dependent operators,
then additional order conditions appear for orders higher than two. These conditions restrict three-stage, third-order meth-
ods to a one-parameter family of methods, to which the popular method of Wray does not belong. Four-stage, fourth-order
methods for time-varying operators do not exist, and one has to resort to five stages to achieve fourth order. In any case
(time-dependent and time-independent operators) the pressure suffers from the problem that upon time-stepping a
time-average pressure is computed, instead of a point value. Therefore, achieving higher than first order accuracy for the
pressure imposes additional conditions on the coefficients of the Runge–Kutta method compared to the classical order
conditions.

Fortunately, if the boundary conditions for the continuity equation are independent of time, then the pressure can be
determined to the same order of accuracy as the velocity, without requiring an additional solution of a Poisson problem.

However, if the boundary conditions for the continuity equation depend on time, then additional order conditions for the
pressure appear. These are not satisfied by most existing explicit Runge–Kutta methods, so that the pressure is typically only
first-order accurate in time. Using the same Butcher tableau for velocity and pressure, second-order accuracy can be
achieved by only one three-stage, and only three four-stage methods.



3062 B. Sanderse, B. Koren / Journal of Computational Physics 231 (2012) 3041–3063
An alternative approach is to reconstruct instantaneous pressure values from time-average values. We showed that this
reconstruction, based on Lagrange polynomials, can be of the same order as the number of stages, but that the stage order of
the method limits the accuracy of the pressure. These methods can be interpreted as having a different Butcher tableau for
velocity and pressure, in contrast to the foregoing single-Butcher array approach. Three- and four-stage methods with sec-
ond-order stage order were derived, leading to a much larger class of methods that have second-order accuracy for the pres-
sure. Furthermore, a distinct advantage of this new class of methods is that they can be directly applied to implicit and
implicit-explicit (IMEX) Runge–Kutta methods as well.

In all cases considered here third-order accuracy could not be obtained with a three- or four-stage method without
resorting to an additional Poisson solve. Such an additional solve is not always straightforward in practical computations,
because it requires the derivative of the boundary conditions for the continuity equation with respect to time. If the addi-
tional Poisson solve is performed, the proposed second-order accurate methods can be used to provide an accurate and
cheap initial guess for iterative methods (such as the conjugate gradient method) to solve this Poisson equation.

Runge–Kutta methods with more than four stages might perhaps lead to higher-order accurate pressures, but such meth-
ods are not very relevant from a practical point of view. For example, when considering five-stage methods (requiring five
Poisson solves), to obtain third-order accuracy for the pressure, it would be better to employ an additional Poisson solve in a
four-stage method, leading to fourth-order accuracy of the pressure (assuming that _r1ðtÞ is available). However, methods
with more stages than the classical order of accuracy (e.g. a four-stage third-order method) can be of interest from a stability
point of view. Such methods can possibly be used with less Poisson solves than the number of stages.

To conclude, we think that the ‘best’ explicit Runge–Kutta method for many incompressible Navier–Stokes problems is a
three-stage method of type M2, that is third order for the velocity and second order for the pressure. It combines stability
(includes the imaginary axis), sufficient accuracy (temporal error is in general sufficiently small) and flexibility (c2 can still be
chosen, in contrast to the three-stage method of type M1). A fourth-order method might lead to unnecessarily accurate solu-
tions for the velocity without improving the order of accuracy of the pressure. For time-dependent operators, the three-stage
method derived in Section 4.1.2 is to be preferred: it maintains third-order accuracy on time-varying meshes, and is second-
order accurate for the pressure. Of course, the coefficients of a Runge–Kutta method can be chosen on other grounds than
accuracy only, for example low storage, low dispersion or built-in error estimation with adaptive step-size control. Such
arguments have not been considered in this paper.
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