

Study on the performance of hybrid adsorption-compression type II heat pumps based on ammonia salt adsorption

M. van der Pal A.K. Wemmers S.F. Smeding K. van den Heuvel¹

¹TU Delft

Published in International Oxford Journals, Journal of Low-Carbon Technologies, Volume 6, Issue 3, pages 207-211

ECN-W--11-055 OCTOBER 2011

Study on the performance of hybrid adsorption—compression type II heat pumps based on ammonia salt adsorption

M. van der Pal^{1*}, A. Wemmers¹, S. Smeding¹ and K. van den Heuvel²

¹Energy research Centre of the Netherlands (ECN), Petten, The Netherlands; ²Delft University of Technology, Delft, The Netherlands

Abstract

Sorption heat pumps based on monovariant reactions, such as ammonia-salt systems, can operate at low driving temperatures and achieve high power densities in comparison with multi-variant sorption systems. The disadvantage of monovariant systems, however, is the inflexibility towards required temperature levels. Where multivariant systems scale over a large range of temperatures, for the monovariant system, the temperature range is limited by the discrete transition from (fully) adsorbed to desorbed state. To increase flexibility towards changes in operating temperatures of the monovariant sorption systems, the extension of such systems with a compressor has been studied. Focus of this research is on the use of ammonia salts for type II heat pump for upgrading low temperature industrial waste heat to low-medium pressure steam. At ECN, a system based on LiCl-MgCl₂ ammonia reactions has proved to achieve sufficient temperature lift (>50°C) and cyclic stability (>100 cycles) but requires a minimum temperature of 120°C for proper operation. To add flexibility to this system, i.e. to be able to use waste heat below 120°C, the performance of a hybrid variant containing both thermally driven sorption reactors and a compressor has been evaluated. This evaluation focuses on extension in temperature range, and exergy efficiency and economic consequences of such a hybrid system. In addition, the possibility to use other ammonia-salt combinations has been investigated. The conclusions are that hybrid systems can reduce primary energy consumption and be economically feasible. It also shows that salt combinations other than LiCl-MgCl₂ could be more suitable for a hybrid thermo-chemical adsorption-compression system.

Keywords: sorption; hybrid; compression; heat pump; ammonia

*Corresponding author: vanderpal@ecn.nl

10

15

20

30

Received 14 October 2010; revised 2 February 2011; accepted 8 April 2011

1 INTRODUCTION

Large quantities of energy are used in industry and released into the environment as waste heat. A study by Spoelstra [1] shows that the chemical industry and refineries in The Netherlands actively releases 160 PJ of waste heat per year in the temperature range of $50-160^{\circ}$ C (Figure 1). Upgrading this heat to medium pressure steam (with a temperature of $180-220^{\circ}$ C) is an interesting option for waste-heat reuse. Existing technologies for such reuse are, however, very limited. Commercially available, industrial compression heat pumps are, with some exceptions, limited to a maximum output temperature of $\sim 130^{\circ}$ C, and sorption-based, heat-driven heat pumps type II require a relative high waste heat temperatures of 120° C or more, for a reasonable temperature lift. Measurements on lab-scale prototypes show a maximum

temperature lift of 70° C for an adsorption-based type II heat pump, provided the available source heat temperature is at least 130° C [2]. As shown in Figure 1, the energy savings potential at such waste heat temperatures is limited to ~ 20 PJ per year. Lowering the required waste-heat temperature would unlock a significant greater amount of waste heat and thereby create a larger energy savings potential.

To operate a heat-driven sorption system using lower temperature heat, multi-stage cycles can be used. These cycles will, however, have a low coefficient of performance (COP), and the sorbent reactors will be significantly larger and thus more costly compared with a single-stage heat pump. An alternate solution would be to equip the heat-driven system with a work-driven compressor. This compressor could be placed either in the low temperature, regeneration cycle or in the high temperature, discharge cycle, or in both. Figure 2 shows the

International Journal of Low-Carbon Technologies 2011, 0, 1–5

90

95

110

(theoretical) effect of a hybrid double-compressor adsorption system: a significant reduction in required waste heat temperature can be achieved. Because the compressor can be placed in the discharge and/or the regeneration cycle of the process, a large variety of salts can be used. The drawback of such a system is the necessity of work input (mechanical or electric).

The goal of this study is to determine which system configurations are possible and to determine their performance factors such as temperature (lift), efficiencies (both heat and work), exergy and power density in order to get a first selection of suitable ammonia-salt reactions.

2 MATERIALS AND METHODS

Although various combinations of sorbents (liquid as well as solid) and sorbates can be used in a hybrid cycle, it was decided to limit our analysis to ammonia-salt reactions due to our experience with such reactions. Based on literature data

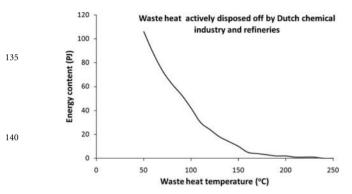


Figure 1. Cumulative energy content (PJ) of disposed waste heat as a function of waste-heat temperature for chemical industry and refineries in The Netherlands [1].

[3–5] and our in-house experience, 47 + 1 ammonia-salt reactions with their subsequent enthalpy and entropy values were selected for further analysis (see Supplementary data, Appendix I, available at *International Journal of Low-Carbon Technologies* online). The +1 refers to evaporation and condensation of pure ammonia (HEX). The performance of hybrid configurations with a compressor at low pressure/low temperature, at high pressure/temperature or at a combination of both has been calculated.

The model calculation follows a stepwise approach. The first step is to calculate the equilibrium pressures for the low temperature salt (lts) and the high temperature salt (hts), based on the chosen temperatures and the thermodynamic data of the salts:

$$P = e^{-\Delta H/RT + \Delta S/R}$$
180

170

175

185

190

195

200

220

yielding $P_{\text{ads,hts}}(T_1)$, $P_{\text{ads,hts}}(T_h)$, $P_{\text{des,hts}}(T_m)$ and $P_{\text{des,hts}}(T_m)$, the adsorption and desorption reactions equilibrium pressures for the lts and the hts at given low (T_1) , medium (T_m) and high temperature (T_h) . Only for LiCl(1-3)NH₃ and MgCl₂(2-6)NH₃ salt reactions, separate adsorption/desorption data were available and used for calculation of the pressures. From these pressures, the pressure ratios for the regeneration and discharge cycle are calculated:

$$\phi_{\mathrm{reg}} = rac{P_{\mathrm{ads,lts}}}{P_{\mathrm{des,hts}}}, \quad \phi_{\mathrm{dis}} = rac{P_{\mathrm{ads,hts}}}{P_{\mathrm{des,lts}}},$$

Using these pressure ratios, the mode of operation can be determined: for all salt reactions with both (regeneration and discharge) pressure ratios being smaller than 1, the sorption reaction will occur spontaneously; higher than 1 a compressor with a pressure increase equal to (or larger than) the pressure ratio will be required for operating the cycle.

At this moment, the number of salt combinations is greatly reduced by implying limits on pressures and pressure ratio. A maximum working pressure of 60 bars was applied. This

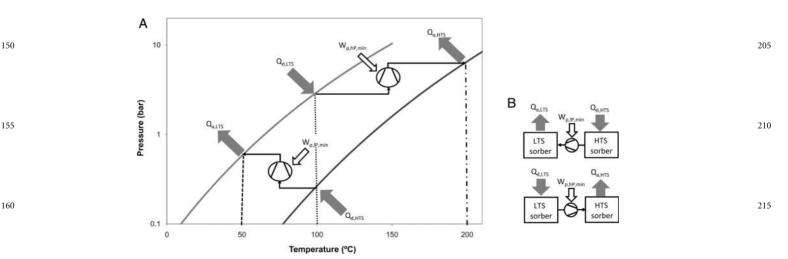


Figure 2. Pressure temperature diagram (a) and reactor-compressor configuration (b) of hybrid solid-sorption cycle based on a double-compressor ammonia salt system.

maximum pressure was chosen to avoid construction issues and too large losses due to open gas volumes in the system. A lower pressure limit of 0.1 bars is applied to avoid too limited driving force to move the gas from the LTS to the HTS reactor and vice versa. Furthermore, a maximum pressure ratio limit of 3 was applied. This value was chosen because the required work, in terms of required 'primary' energy, for pressure ratios above 3, starts nearing the amount of primary energy saved by the hybrid heat pump. A pressure ratio of 3 is also considered the upper limit for dynamic compressors, which are, in general, more efficient than positive displacement compressors.

In the next step, the work required by the compressor is determined. The compressor work for the regeneration cycle is calculated using

235

250

$$w_{\text{reg}} = \frac{RT_1}{\eta_i} \frac{k}{k-1} \left[\phi_{\text{reg}}^{(k-1/k)} - 1 \right],$$

where R is the gas constant (J K⁻¹ mol⁻¹), l is the low/ambient (temperature), i is the isentropic, η is the efficiency and k the isentropic exponent.

An isentropic efficiency of 0.75 was used. This value has been estimated from the literature [6]. The compressor output temperature is then given by

$$T_{w,\mathrm{gen}} = T_1 \left[1 + \frac{oldsymbol{\phi}_{\mathrm{reg}}^{(k-1/k)} - 1}{oldsymbol{\eta}_i}
ight]$$

Similar equations were derived for the compressor work of the discharge cycle. The next step involves determining the heat losses and the subsequent net heat output and COP values. The heat losses consist of losses due to heating up the ammonia (difference between T_w and target temperature, multiplied by heat capacity of ammonia) and heat losses due to heating up the sorbent reactor. The heat losses of the reactor are related to heating of the salt and of the inert reactormaterial. The contribution of this inert mass (tubes, fins, thermal oil/steam) has been set to 4 J K⁻¹ per g of salt. This is comparable with the inert mass-salts ratios used in an ECN prototype heat transformer [2]. The required amount of salt has been corrected using a bed loading factor, the fraction of reacting salt used per cycle, which was set to 0.7. Altogether this results in the following heat loss of the hts reactor in the

Table 1. Parameters for economic analysis.

primary
er J _{primary}
ı <i>' '</i>
1
]

discharge cycle (J per mol NH₃):

$$\begin{aligned} Q_{\rm loss,hts,dis} &= C_{\rm p,NH_3}(T_{\rm h} - T_{\rm w,dis}) + (n_{\rm hts} \cdot m_{\rm hts}/\eta_{\rm hts}) \\ & (C_{\rm p,hts} + {\rm hc}) \cdot (T_{\rm h} - T_{\rm m}), \end{aligned}$$

where C_p is the specific heat capacity (J mol⁻¹ K⁻¹), n is the theoretical amount of ammonia reacting per amount of salt(molmol⁻¹), m is the molar mass (g mol⁻¹), h is the high/output (temperature), m the medium/waste heat (temperature).

Similar equations were derived for the low temperature reactor and the regeneration cycle. The heat output is now given (in J per mol NH₃) as the difference between sorption enthalpy and heat loss:

$$Q_{
m out,dis}(T_{
m h}) = \Delta H_{
m hts} - Q_{
m loss,hts,dis}$$
 290
 $Q_{
m in,dis}(T_{
m m}) = \Delta H_{
m lts} + Q_{
m loss,lts,dis}$ $Q_{
m in,reg}(T_{
m m}) = \Delta H_{
m hts} - Q_{
m loss,hts,reg}$ $Q_{
m out,reg}(T_{
m l}) = \Delta H_{
m lts} + Q_{
m loss,lts,reg}$

280

285

295

300

305

310

315

320

325

330

From the work and the net heat input and output, the COP values can be calculated for both heat and work input:

$$\begin{aligned} \text{COP}_{\text{h}} &= Q_{\text{out,dis}}/(Q_{\text{in,dis}} + Q_{\text{in,reg}}) \\ \text{COP}_{w} &= Q_{\text{out,dis}}/(w_{\text{dis}} + w_{\text{reg}}) \end{aligned}$$

The overall exergy efficiency is calculated from the net heat and work flows (T_1 is assumed ambient temperature):

$$\eta_{\rm x} = \frac{Q_{\rm out, dis} \cdot (T_{\rm h} - T/T_{\rm h})}{(Q_{\rm in, dis} + Q_{\rm in, reg})(T_{\rm m} - T_{\rm l}/T_{\rm m}) + w_{\rm dis} + w_{\rm reg}}$$

To calculate the power density, a total cycle (=discharge + regeneration) time of 3600 s has been assumed, yielding the power density, p (W per g sorbent):

$$p = \frac{Q_{\text{out,dis}}}{(n_{\text{lts}} \cdot m_{\text{lts}}/\eta_{\text{lts}} + n_{\text{hts}} \cdot m_{\text{hts}}/\eta_{\text{hts}})/t_{\text{c}}}$$

Table 2. Results $LiCl(1-3)NH_3-MgCl_2(2-6)NH_3$ heat pump configuration: temperatures and resulting pressure(ratio)s.

T_1 (°C)	P _{ads,lts} (bar)	$\phi_{ m reg}$			
20	0.14	3.2	1.8	1.1	0.6
30	0.25	5.8	3.3	1.9	1.2
40	0.43	10.2	5.8	3.4	2.0
50	0.73	17.1	9.7	5.7	3.4
P _{des,hts} (bar):		0.04	0.08	0.13	0.21
$T_{\rm m}$ (°C):		80	90	100	110
$P_{\rm des,lts}$ (bar)		2.38	3.78	5.85	8.86
150	2.68	1.1	0.7	0.5	0.3
170	4.88	2.0	1.3	0.8	0.6
190	8.43	3.5	2.2	1.4	1.0
210	13.9	5.9	3.7	2.4	1.6
230	22.1	9.3	5.9	3.8	2.5
<i>T</i> _h (°C)	P _{ads,hts} (bar)	$\phi_{ m dis}$			

340

350

Table 3. Results LiCl(1-3)NH₃-MgCl₂(2-6)NH₃ heat pump configuration: detailed results for 30°C ambient and 100°C waste heat temperature.

	T_{m} (°C):		100					
	<i>T</i> ₁ (°C)	T _h (°C)	COP_h	COP_{w}	η_{x}	PER (J _{primary} /J _{useful})	PES (J _{primary} /J _{useful})	$s \ (\in kW^{-1} \ year^{-1})$
335	30	150	0.32	11.7	0.42	0.19	0.99	272
		170	0.28	10.1	0.41	0.22	0.96	265
		190	0.25	5.9	0.37	0.38	0.80	228
		210	0.23	3.5	0.34	0.63	0.54	169
		230	0.21	2.4	0.30	0.93	0.25	97

Using the hybrid heat pump performance and some typical prices and efficiencies for electricity and steam production (Table 1), the primary energy ratio (PER), primary energy savings (PES) and annual savings (s) can be calculated:

$$PER = \frac{COP_{w}}{\eta_{el}}, \quad PES = \eta_{st}^{-1} - PER$$
$$s = t_{o} \left(\frac{N_{st} - N_{el}}{COP_{w}}\right)$$

where el is the electricity, o is the operating (time) and st the steam.

3 **RESULTS**

Tables 2 and 3 shows the results for the salt-combination LiCl(1-3)NH₃-MgCl₂(2-6)NH₃, which is currently researched at ECN for application in heat-driven heat pump type II. It contains pressures (*italic*) and pressure ratios for various temperature combinations (bold), with the top part showing the results for ambient temperature versus the waste heat temperature (middle) and the bottom part the waste heat temperature versus the output temperature. The results show that heat-driven application (dark-grey cells) is only possible for relatively high waste heat temperatures of at least 110°C (with 20°C ambient temperature and a maximum output temperature of 190°C). A compressor (light-grey cells) reduces the minimum waste heat temperature to 90°C and/or increases the output temperature up to 230°C.

Table 3 shows more detailed results for 100°C waste heat and 30°C ambient temperature. As can be expected, the COP_h and COP_w decreases with increasing output temperatures. Up to 190°C output temperature, the savings exceed 200 € kW⁻¹ year⁻¹, still two-third of the amount that would be saved with a pure heat-driven system (=312 € kW⁻¹ year⁻¹).

These calculations were conducted for all combinations of ammonia-salt reactions, yielding a large array of data. From this data, a selection was made of the most favourable salt combinations for application in a hybrid heat pump. This selection was made on calculated COP values and the number of possible combinations (i.e. 'light-grey' and 'dark-grey' cells in the table) within limits regarding pressure ratios (a maximum of 3), pressure levels (between 0.1 and 60 bars) and

Table 4. Overview of results for heat-driven, single and double compressor systems.

	Heat driven	Single compressor	Double compressor
Number of salt combinations	11	38	19
Number of operating conditions	31	241	175
Max. heat output (W per g salt)	0.08	0.13	0.12
Max. COP _h	0.25	0.32	0.33
Min. $T_{\rm m}$ (°C)	90	70	60
Max. $T_{\rm h}$ (°C)	210	220	230

390

395

400

405

410

415

420

425

435

440

Table 5. Most favorable ammonia-salt reactions for heat-driven and hybrid systems.

Ammonia-salt reacti	T_1 (°C)	$T_{\rm m}$ (°C)	$T_{\rm h}~(^{\circ}{\rm C})$	COP_h	
lts	hts				
Heat-driven					
$MnCl_2(2-6)NH_3$	$NiCl_2(2-6)NH_3$	30	110	180 - 200	0.22
$MnSO_4(2-6)NH_3$		40	100 - 110	170 - 210	0.19
$ZnCl_2(2-4)NH_3$		40 - 50	100 - 110	170 - 180	0.25
$ZnCl_2(4-6)NH_3$	$MgCl_2(2-6)NH_3$	30	110	180	0.25
Single compressor					
CaCl ₂ (4-8)NH ₃	$MnCl_2(2-6)NH_3$	30 - 50	80 - 110	150 - 210	0.18
	$MnSO_4(2-6)NH_3$	30 - 40	80 - 90	150 - 160	0.32
Double compressor					
CaCl ₂ (4-8)NH ₃	$MnCl_2(2-6)NH_3$	30 - 50	60 - 100	130 - 200	0.20
	$MnSO_4(2-6)NH_3$	40-50	80-90	150-160	0.33

temperature levels ($T_1 = 20 - 50^{\circ}$ C, $T_m = 60 - 110^{\circ}$ C and $T_h = 150 - 230^{\circ}$ C). The results of this procedure are shown in Table 4. For the heat-driven configuration, 11 salt-combinations could be used, whereas the single and double compressor configurations yield, respectively, 38 and 19 useable salt-combinations. Adding the compressor also increases the specific heat output, maximum COP and maximum output temperature. From this table, is it clear that applying a compressor can also significantly reduce the wasteheat temperature required for a heat pump type II cycle.

Table 5 shows the temperature interval and the average COP_h value of the salt combinations that yield the best performance, either in terms of applicable temperature range ('flexibility') or in terms of energy efficiency. For hybrid operation (both single and double compressor configuration), the

505

510

515

530

535

ammonia-salt reactions CaCl₂(4-8)NH₃ with MnCl₂(2-6)NH₃ and CaCl₂(4-8)NH₃ with MnSO₄(2-6)NH₃ are most favoured. The MnCl₂ combinations can be used for a large temperature range, both in terms of waste heat temperature as well as useful heat output temperature, whereas the combination with MnSO₄ achieves high efficiencies in a smaller temperature range.

4 DISCUSSION AND CONCLUSIONS

The results show that ammonia-salt reactions in combination with a compression step yield a significant larger range of waste heat and output temperatures for which a heat pump type II cycle can be applied. Using realistic and achievable values for heat losses, compressor efficiencies and cycle times show acceptable COP values and power densities. Although the savings in energy costs are obviously lower compared with a heat-driven system as electricity is required for the compressor work, the savings of a hybrid system are only 30% less than that for a heat-driven system. Given that an entirely heat-driven system for low waste heat temperatures would require multistage, thus double the number of reactor and low COP_h, it can be expected that a hybrid system would be a very competitive alternative.

However, there are also some aspects that have not been addressed in this study. These include the possible irreversibility of salt reactions, the temperature gradients required for transferring heat into/from the salt reactors, the aspect of combining a batch-operated process (adsorption heat pump cycle) with a continuous process (compression) and the lack of a detailed cost calculation for a hybrid heat pump to determine whether the financial benefits outweigh the costs. These issues will be addressed in future research projects. Several of these aspects can be dealt with: the irreversibility of ammonia-salt reactions is not uncommon but the salt-reactions used are of pure salts only. Research by Kato [7] shows that salt-mixtures can yield intermediate pressure-temperature relations, which can replace salts that show irreversibility. This way also the material costs for the heat pump can be reduced: by replacing expensive salts by mixtures of cheap salts. Problems related to combining batch and a continuous process can be minimized by using multiple reactors. This would also allow more

efficient operation thus higher ${\rm COP_h}$ and ${\rm COP_w}$ due to heat recuperation between sorption cycles. The final conclusion therefore is that the calculations in this paper show that hybrid heat pump technology using a monovariant salt-reaction can provide a useful alternative for relatively low temperature heat that is currently disposed off in the environment as waste product.

ACKNOWLEDGEMENT

This work is part of AgentschapNL project EOSLT08026.

SUPPLEMENTARY DATA

Supplementary material is available at *International Journal of Low Carbon Technologies* online.

REFERENCES

- [1] Spoelstra S, Haije WG, Dijkstra JW. Techno-economic feasibility of high-temperature high-lift chemical heat pumps for upgrading industrial waste heat. *Appl Thermal Eng* 2002;22:1619–30.
- [2] Haije WG, Veldhuis JBJ, Smeding SF, et al. Solid/vapour sorption heat transformer: design and performance. Appl Thermal Eng 2007;27:1371–76.
- [3] Touzain Ph. Thermodynamic values of ammonia-salt reactions for chemical sorption heat pumps. In Schweigler C, Summerer S, Hellmann H-M, et al. (eds). Proceedings of the International Sorption Heat Pump Conference, Munich, Germany, March 24–26, 1999. ZAE Bayern, 1999, 225–38.
- [4] Bevers ERT, van Ekeren PJ, Haije WG, et al. Thermodynamic properties of lithium chloride ammonia complexes for application in a high-lift high temperature chemical heat pump. J Therm Anal Calorim 2006;86:825–32.
- [5] Bevers ERT, Oonk HAJ, Haije WG, van Ekeren PJ. Investigation of thermodynamic properties of magnesium chloride amines by HPDSC and TG For application in a high-lift high-temperature chemical heat pump. *J Therm Anal Calorim* 2007;90:923–9.
- [6] Boot H, Nies J, Verschoor MJE, et al. Handboek Industriële Warmtepompen. Kluwer Bedrijfsinformatie, 1998.
- [7] Kato Y, Takahashi R, Sekiguchi T, et al. Reactor study on middle temperature heat storage using chemical composite materials. ISHPC 2008. In: Proceedings of the International Sorption Heat Pump Conference 2008, Sep.23–26, Seoul, Korea, 2008, 5-II-122.

485

490 545

495