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Temperature dependent carrier lifetime studies of Mo in crystalline silicon
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The capture cross sections of both electrons o, and holes o, were determined for interstitial
molybdenum in crystalline silicon over the temperature range of —110 to 150 °C. Carrier lifetime
measurements were performed on molybdenum-contaminated silicon using a temperature controlled
photoconductance instrument. Injection dependent lifetime spectroscopy was applied at each
temperature to calculate o, and o,. This analysis involved a novel approach that independently
determined the capture cross sections at each temperature assuming a known defect density and
thermal velocity. Since the energy state is in the lower half of the bandgap, the determination of o,
is unaffected by the defect energy at all temperatures, and o), is found to decrease with temperature
in a fashion consistent with excitonic Auger capture. At temperatures below 0 °C, the determination
of g, is also unaffected by the defect energy due to the suppression of thermal emission, and o,
decreases with temperature as well. It is shown that a projection of o, to higher temperature
suggests the defect has an energy of 0.375 eV above the valance band edge of silicon. © 2010

American Institute of Physics. [doi:10.1063/1.3309833]

I. INTRODUCTION

Molybdenum (Mo) is a transition metal and a potential
source of contamination in silicon devices." Mo remains in
interstitial form within the lattice structure of silicon and
creates an electrically active defect. Istratov et al.* measured
significant amounts of Mo in commercially available multi-
crystalline silicon for solar cells, while Davis et al.® showed
Mo to have a very strong impact on solar cell efficiency in
Cz silicon, reducing it by up to one third.

In 1995, Graff' summarized published information about
the electrical properties of Mo in silicon, mostly based on
deep level transient spectroscopy (DLTS). Interstitial Mo
was found to introduce a single defect energy level (E,) that
is donorlike and exists at 0.28 £0.01 eV above the valance
band edge of silicon (Ey) with hole and electron capture
Cross sections 0,=6.0x107' cm?> and  0,=1.60
X 10714 cm respectively In addition to those studies, Ro-
hatgi et al’ applied DLTS coupled with dark and illuminated
I-V measurements and concluded the defect energy to be
E,=E;+0.30 eV. Hamaguchi et al’ applied DLTS and
optical-DLTS to investigate the Mo-related defects in silicon
and reported E,=Ey+0.31 eV. Similarly Pettersson et al.’
applied junction space charge techniques (JSCTs) and found
E,=Ey+0.298 eV. More recently, Rein et al.”® applied a
combination of temperature and injection dependent lifetime
spectroscopy to determine E,=FE,+0.317*+0.05 eV and the
ratio of the capture cross sections o,/0,=13 % 3. Further-
more, they concluded that both o, and o, have a dependence
on temperature of 7-', where it was assumed that the tem-
perature dependence of o,/ g, was constant. In this work, we
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explicitly measure the temperature dependence of both o,
and o, from which we also determine the temperature de-
pendent trend of &,/ g,,. Furthermore, the measured tempera-
ture dependence of o, is used to assess E, of Mo in silicon.
Table I summarizes these published results on the interstitial
Mo defect in Si.

This paper presents a novel and relatively simple tech-
nique to determine o,(7) and o,(7) over a wide range of
temperature. It employs injection-dependent lifetime spec-
troscopy with a T-controlled photoconductance (PC) mea-
surement instrument. Section II explains the carrier lifetime
theory and its simplification in order to determine the
temperature-dependent expression for ¢,(7) and o,(T), and
the application of ¢,,(7) to determine E,. This is followed by
Sec. III that presents the preparation of Mo-contaminated
samples for this work, the instrument and the details of the
measurement procedure. In Sec. IV, we present o,(7) and
0,(T), and analyze their trends to give insight into the effec-
tive capture mechanism and to assess E,.

Il. THEORY

The simpliﬁed version of Shockley Read Hall (SRH)
lifetime™'° for a single defect can be written as'!

T0(p1 +Ppo+ An) + 7, 0("1 + 1+ An)

(ng+po+ An)

TSRH = ; (1)
where 7,9 and 7, are the fundamental capture time constants
for electrons and holes, n,=N, exp[—(E,—E,)/kgT] and p,
=N, exp[—(E,—E,)/kgT], N. and N, are the effective densi-
ties of states at the conduction and the valance band edge, kp
is the Boltzmann’s constant, n, and p, are the electron and
hole densities at thermal equilibrium, and An is the excess
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TABLE I. Summary of published results for interstitial molybdenum in crystalline silicon. The table lists the

capture cross section of electrons o, and holes o,

and the defect energy E, above the valence band edge E,.

a, a, E,

(cm?) (cm?) o,/0,at27 °C (eV) Ref. and technique
6.0X 10710 at 27 °C 1.6X 107 at 27 °C 26.67 E,+0.28 DLTS," average
NA NA NA E,+0.31 DLTS"

NA NA NA E,+0.30 DLTS®

NA 7.8X 1075 at 27 °C 13.0 E,+0.317 TIDLS?

NA NA NA E,+0.298 JSCT®
6.05X 10714 x 77107 421X 1078 x 1729 11£2 E,+0.375£0.03 This work, TIDLS

“Reference 1.
"Reference 5.
“Reference 4.
dReferences 7 and 8.
“Reference 6.

carrier density. Equation (1) assumes that trapping effects are
negligible (i.e., An=Ap)."

For a p-type wafer, n, can be neglected in comparison
with p, and when An is sufficiently less than p, 7ggy can be
rewritten as

T0(P1 + Po) + Tyo(ny +np) + @An.
Po Po

TSRH = (2)
At a sufficiently low temperature, emission from the defect
energy level is negligible and n,(T)+ny(T)<<An and p(T)
<po(T). In such a case, Eq. (2) can be simplified further to
become

TSRH = Tno + I0 5 An. (3)
Po

Figure 1 presents a plot that shows the temperature below
which Eq. (3) is valid. It plots T when n;+ny=0.01 X An
=0.0001 X py and when p;=0.01 X p, as a function of E, and
N,. It assumes n; +ng negligible in comparison to An when
earlier’s value is less than 1% of the latter and a similar
assumption applies to p; and p,. At temperatures below the
lines in Fig. 1 (for a given N,), it is safe to employ Eq. (3).
The figure shows that the temperature below which both as-
sumptions are valid decreases as (i) N, decreases and (ii) as
the defect energy level moves further from midgap. The lat-
ter occurs because thermal emission from a defect level to a
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FIG. 1. (Color online) Temperature below which n;+n,=0.01XAn

=0.0001 X pg and p;=0.01 X p, as a function of E, for p-type silicon of three
doping densities (N,).

band edge is high when the defect energy is near that band
edge.

At temperatures where Eq. (3) is valid, the slope of a
plot of 7gry against An gives 7,,/p, and the intercept gives
7,0- Hence o, and o, can be calculated using the measured
slope and the intercept of a linear plot of 7ggy; against An for

different temperatures, as

1 1

0-[7 = = B (4)
TpoUaiplVs Slope X PoVmplN;
1 1
o, = (5)

T.00mN, Intercept X v,,N,’

where vy, and v, are the thermal velocities of holes and
electrons and N, is the defect concentration. In some cases
the effective capture mechanism can be inferred from the
temperature dependence of o,(7) and o,(T Jaia

At higher temperatures, when carrier emission from the
defect energy level is significant and n,(T) +ny(T) is not neg-
ligible compared with An or p,(7T) is not negligible in com-
parison to po(T), the more generalized expression of Eq. (2)
must be employed. In such a case, the slope of a plot of 7ggy
against An is still 7,0(7) and Eq. (4) remains a valid way to
determine o,,(T). However, the intercept of the plot becomes
a function of p,(T) and/or n,(T), which are dependent upon
E,. Therefore, a value of E, is required to calculate o,(7) at
higher temperatures. By extrapolating the observed trend of
0,(T) measured at lower temperatures, and assuming the
dominant capture mechanism remains unchanged as the tem-
perature increases, it is therefore possible to determine the
energy level itself.

lll. EXPERIMENT

A silicon ingot was grown with the pedestal growth tech-
nique and boron-doped with a resistivity of 1.8 ) cm. The
ingot was intentionally contaminated by adding 2800 ppma
of molybdenum (Mo) in the silicon melt.”> A Mo concentra-
tion of 2 X 10" ¢cm™3 was determined by neutron activation
analysis (NAA) on the section of the ingot studied here, as
described in detail elsewhere." If all of the Mo atoms are
interstitial and active, this gives an upper limit to N, of 2
X 103 ecm™. The experiment was performed on a silicon
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FIG. 2. (Color online) (a) Measured lifetime of the Mo-contaminated and
control wafers at room temperature. (b) Measured lifetime of Mo-
contaminated wafer for temperatures of —110 to 150 °C.

sample sliced from the ingot. The wafer was subject to a
phosphorus diffusion step, to remove unintended fast-
diffusing impurities such as Fe, which may otherwise affect
the lifetime. The diffused layers were then removed by
chemical polishing, followed by cleaning and a plasma
enhanced-chemical vapor deposited, SiN, layer optimized
for surface passivation as described by Coletti et al.'® The
average width of the sample was 285 um.

Lifetime measurements were performed on a tempera-
ture controlled inductive coil PC based instrument, described
in detail elsewhere.'” Figure 2(a) depicts the injection depen-
dent lifetime data for the Mo-contaminated wafer and a con-
trol wafer at room temperature, and Fig. 2(b) presents injec-
tion dependent lifetime data for the Mo-contaminated wafer
for —110 to 150 °C. The effective lifetime (7.¢) in the Mo-
contaminated wafer was found to be an order of magnitude
smaller than the control wafer, which indicates that the Mo
impurities have a dominant effect on overall recombination.
We therefore assume the measured quantity 7. is equal to
the 7qry that is associated with interstitial Mo in these
samples.

The quasisteady-state PC technique18 was employed to
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FIG. 3. (Color online) Lifetime plot and linear fit of Mo-doped (1.8 ) ¢cm)
wafer for the selected injection range (1 X 10™#-2.X 10 ¢cm™).
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FIG. 4. (Color online) Carrier densities (n;, p;, ng, and p,) for a defect
energy level (E,+0.28 eV).

determine the carrier lifetime at different temperatures. The
carrier mobility model developed by Reggiani et al.” was
applied for the subsequent analysis of the measured lifetime
data. This mobility model accounts for the effect of tempera-
ture and dopant concentration but does not account for the
effect of An. The Reggiani model for carrier mobility was
therefore modified by replacing the donor density Np with
Np+An and the acceptor density N, with Ny+An. This ap-
proximation was found to give a good agreement with the
mobility model of Klaassen et al.*?" at room temperature.
Reggiani’s carrier mobility model was preferred in this case
because of it validity over a larger temperature range (—73 to
327 °C). The temperature across the wafers was found to
vary by =2% during measurement and the uncertainty in the
measured lifetime was +6%,'” which depends mostly upon
the calibration of the illumination intensity and the inductive
coil. The effective lifetime 7.4 was measured as a function of
An over a temperature range of —110 to 150 °C at intervals
of 10 °C. Figure 3 depicts the measured 7.4 as a function of
An from —110 to 150 °C in steps of 40 °C.

When An<2.5X 10 c¢m™3, the above mentioned con-
ditions of Egs. (2) and (3) are satisfied. The carrier densities
(n1, p1, ng, and p) and An for the analysis are depicted in
Fig. 4 for the defect energy level of Ey+0.28 eV in silicon.
This graph shows n,+ny,<1X 10" cm™ for temperatures
less than 160 °C and p;<<p, for temperatures less than
0 °C. Table II depicts the temperature ranges for which the
assumption (n;+ny)<An and p,<p, is valid for different
reported values of E,, where we require (n; +n,) and p; to be
no more than 1% of An and p,, respectively. In this work, we
choose the most conservative upper limit of temperature for
the subsequent analysis, as represented by the vertical line in
Fig. 1. no(T) was determined by using the doping density

TABLE II. Upper limit of T,,(°C) for which the assumptions (n;+n,)
<0.01 X An and p,<0.01 X p, is valid for analysis.

E, (ny+ny) <An P1<<po

(eV) (°C) (°C) Ref.
E,+0.28 T=160 T=0 1
Ey+0.30 T=158 T=10 4
Ey+0.317 T=155 T=18 7 and 8

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



054511-4 Paudyal et al.

2.1x10°*]
1.8x10°]
1.5x10°]
1.2x10°]
9.0x10°*]
6.0x10°*

-6
3.0XIOOO< (a)

6x10™%] *

71 (3)

O Measured data
Fitted trend

O This work

¥ Graff etal. [11 @ 27 °C
a6 | T Fitted for EAC

5x10™°

Calculated a'p( T (sz)

(b)
-100 -80 -60 -40 20 O 20 40 60 80 100 120 140

Temperature (°C)

FIG. 5. (Color online) Measured 7, (a) and calculated o,,(T) for Mo impu-
rities in silicon (b) with an EAC mechanism fit, depicting other previously
published values at RT.

(N,) and the temperature dependent intrinsic carrier concen-
tration, ni(T).22 Freeze-out of the boron atoms in the wafer
was taken into account at the low temperature (<77 °C) by
adopting the T-dependent model of py(T) from Ashcroft and
Mermin.” T-dependent models for vy, and vy, reported by
Green et al.”> were employed to calculate o, and o, using
Egs. (4) and (5).

IV. RESULTS AND DISCUSSION

Figure 5(a) plots the measured 7,,(7) over the tempera-
ture range of —110 to 150 °C and Fig. 5(b) plots o,(T)
calculated with Eq. (4) assuming that N, equals the Mo con-
centration. The figure shows that o, decreases with tempera-
ture over the entire temperature range. This eliminates the
possibility that hole capture occurs via multiphonon emission
in which o, increases with temperature:.12 We also rule out
cascade capture as a possible capture mechanism because it
is only relevant to shallow Coulomb attractive defect
centers.'* This leaves excitonic Auger capture (EAC) (Ref.
13) as the most likely mechanism for the capture of holes by
the Mo defect.

The temperature dependence of o under EAC is gov-
erned by the equation, o=0,T“, where o\ and « are inde-
pendent of temperature. The line in Fig. 5 is a fit of this
equation to the experimental data, where 0,=6.05*0.8
X 107" cm™ and a=-1.07 = 0.05. The uncertainty in these
values represents a 95% confidence interval from an error-
weighted least-square fit to the experimental data.

The above calculation assumes 100% of the Mo atoms,
determined by NAA measurements, are electrically active,
however this may not be valid if, for example, precipitation
occurs' or in case of uncertainties in NAA measurement. In

J. Appl. Phys. 107, 054511 (2010)

1.2x10° s
9.0x107 T
0 ] ,{,w%' % %
= 6.0x10” -
£ ] o™
2 7] T
o 3.0x10 12 o Measured data
0 Q ] (@ - Fitted Trend
1.8x10° ' ' ' ' ' ' '
©  This Work
14 This work fit for EAC Yo
1.5x10™ 4 % Graff [1]
& » O Rein etal.[7,8] 6 /o, x Garff o [1]
f,/ 1.2x10™ 4
2
‘b&9.0x10'15—
he)
2
-15
% 6.0x10 "
8
3.0x10™°
0.0 (b)

T T T T T T
-100 -80 -60 -40 -20 0 20
Temperaure (°C)

FIG. 6. (Color online) Measured 7, (a) and calculated o,,(T) for Mo impu-
rities in silicon (b) with an EAC mechanism fit, depicting other previously
published values at RT.

the case where only a fraction f,,, of Mo atoms are electri-
cally active, the temperature dependence of the hole capture
cross section is therefore

o, (T) = L (605 = 0.8 x 1071072005, (6)
act

Thus, oy is inversely proportional to f,., while « is indepen-
dent of f,.. If the fraction of electrically active impurities
were f,=0.3, o, becomes consistent with the DLTS value
reported by Graff at room temperature.' We note that a frac-
tional activation of Mo atoms does not alter the conclusion
that EAC is the most likely capture mechanism of holes.

The electron capture cross section o,,(7T) was first deter-
mined for the temperature range of —110 to 0 °C by imple-
menting Eq. (5), which does not require E,. o, is also found
to decrease monotonically and like o, it can be best de-
scribed by an EAC mechanism. The EAC fit of the measured
o, gives

o, (T) = L(4.21 + 0.4 X 10787 (295=002) (7)
act

Figure 6(a) shows the measured 7,,(7) over the temperature
range of —110 to 0 °C and Fig. 6(b) shows the calculated
0,(T) when f,,=1. When f,,=0.3, o, extrapolated to room
temperature is consistent with Rein’s value of o,/0, multi-
plied by Graff’s value of o, and when f,,=0.15, o, is con-
sistent with Graff’s value of o,.

Temperature-dependent values of o, for the higher tem-
perature range (0—150 °C) were then calculated using vari-
ous reported values of E, for Mo'*7# ag required in Eq. (2).
Figure 7(a) depicts the measured intercepts and Fig. 7(b)
shows the corresponding o,(T) calculated for different E,.
This reveals that an energy level of E,=Ey
+0.375+0.03 eV is required to fit the measured intercept
for the extended trend of o,(T) when we assume the EAC
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calculated o,(7T) for Mo for previously reported values of E,. Depicts the
best fit with E,=E,+0.375 eV for EAC mechanism.

mechanism described by Eq. (7) remains dominant. It is pos-
sible, however, that the EAC mechanism does not remain
dominant and another recombination mechanism that causes
0,(T) to increase with temperatures becomes significant at
temperatures above 0 °C. We therefore do not discount the
possibility that E, is smaller than E,+0.375 eV and closer to
values determined by other authors" 7

Figure 8 plots the ratio of the capture cross sections
(0,,/a,) over the temperature range, —110 to 150 °C. The
symbols in Fig. 8 plot the data assuming E,=E,+0.375 eV,
and the error bars combine the uncertainty in the measure-
ment with the uncertainty in E,. The figure shows that o,/ o,
decreases with temperature, even though both carriers are
best described by the same capture mechanism (EAC). The
data agrees well with the value reported by Rein et al.™® at
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FIG. 8. (Color online) Capture cross section ratio of Mo defect in silicon at
different temperatures.
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room temperature. The uncertainty due to any partial activa-
tion of Mo atoms in silicon [represented by f,. in Egs. (6)
and (7)] cancels in the calculation of o,/0,. However the
uncertainty in o,/0, increases at higher temperature
(>0 °C) due to the uncertainty in o, associated with the
uncertainty in E,.

V. CONCLUSIONS

Temperature-dependent expressions for o, and o, of in-
terstitial molybdenum in silicon were independently deter-
mined over the temperature range, — 110 to 150 °C, using a
temperature controlled PC instrument. The T-dependent
trends of o, and o, are best matched by an EAC mechanism,
giving minimum values of the coefficients of 0y=6.1*0.8
X 107" and 4.2+ 0.4 X 107® cm? and giving T-exponents of
a=1.07x0.05 and 2.95*0.2. Assuming the EAC mecha-
nism also dominates electron capture at higher temperatures,
the energy level of interstitial Mo in silicon is determined to
be 0.375%=0.03 eV above the valance band of silicon.
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