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In this paper, we investigate the use of learning curves for the description of observed cost reductions
for a variety of energy technologies. Starting point of our analysis is the representation of energy
processes and technologies as the sum of different components. While we recognize that in many cases
“learning-by-doing” may improve the overall costs or efficiency of a technology, we argue that so far
insufficient attention has been devoted to study the effects of single component improvements that
together may explain an aggregated form of learning. Indeed, for an entire technology the phenomenon
of learning-by-doing may well result from learning of one or a few individual components only. We
analyze under what conditions it is possible to combine learning curves for single components to derive
one comprehensive learning curve for the total product. The possibility that for certain technologies
some components (e.g., the primary natural resources that serve as essential input) do not exhibit cost
improvements might account for the apparent time dependence of learning rates reported in several
studies (the learning rate might also change considerably over time depending on the data set
considered, a crucial issue to be aware of when one uses the learning curve methodology). Such an
explanation may have important consequences for the extent to which learning curves can be
extrapolated into the future. This argumentation suggests that cost reductions may not continue
indefinitely and that well-behaved learning curves do not necessarily exist for every product or
technology. In addition, even for diffusing and maturing technologies that display clear learning effects,
market and resource constraints can eventually significantly reduce the scope for further improvements
in their fabrication or use. It appears likely that some technologies, such as wind turbines and
photovoltaic cells, are significantly more amenable than others to industry-wide learning. For such
technologies we assess the reliability of using learning curves at large to forecast energy technology cost
reductions.

Keywords:

Energy technology
Learning by doing
Experience curve

© 2008 Published by Elsevier Ltd.

1. Introduction

Given the current reliance of our economy on fossil fuels,
substantial efforts will be needed to decarbonize it on a global
scale. Some peculiar aspects of the energy sector contribute to the
complexity of the challenge. First, given the size of it, proven CO,
abatement measures should be deployed on scales unseen for
most other environmental problems. Second, persistent difficul-
ties in internalizing the environmental costs, or externalities, of
energy use heavily distort the market in favor of the incumbent
fossil-based technologies. Therefore, market forces alone cannot
be expected to deliver the required fundamental change. It is
the purpose of carefully crafted public policy to optimize the
transition to a sustainable energy system. In addition to the
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continued development of new energy technologies, the deploy-
ment of existing clean ones is essential to this transition. To assess
as accurately as possible the economic implications of the
necessary profound technological transformation, quantitative
tools such as learning curves have been developed. Key to
strategically planning the deployment and estimating the poten-
tial capacities of alternative energy technologies are attempts to
forecast their future costs, and the learning curve methodology is
one of the instruments available to achieve this task.

As new energy technologies translate into new commercial
products, the focus of the industry-concerned shifts from R&D to
deployment. At this stage significant cost reductions may be
brought about by accumulating experience merely as a result of
deployment activity. The lessons learned on the field usually yield
a variety of process improvements, among which cost reductions.
Learning curves have extensively been used to describe this
phenomenon of “learning-by-doing” for the deployment of energy
technologies (Wene, 2000; McDonald and Schrattenholzer, 2001).
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In contrast to direct cost-estimate techniques, learning curves
have the potential to describe cost reductions (or more generally
progress) for a product over a range spanning a volume growth
of orders of magnitude. While learning curves are regularly used
for strategic planning at the firm level (Dutton and Thomas, 1984),
in the context of the design of energy policy they are often used
for, e.g., estimating the future potential of emerging technologies
(Neij, 1997; van der Zwaan and Rabl, 2004) and providing input for
comprehensive energy system modeling. Even if learning curves
have proved useful for a number of purposes, they need to be
handled carefully in order to derive reliable and robust lessons for
energy policy making. In this paper, examples from wind power,
photovoltaic (PV) cells and hydrogen production are used to
illustrate some important methodological issues and caveats
related to the use of learning curves. In particular, a detailed
discussion is provided for the way error margins ought to be
accounted for when applying this technique.

In Section 2, we briefly introduce the formulation of learning
curves. In Section 3 a model is presented that describes a product,
process or technology as the sum of several components, each
of which learns at a different pace. The model derived is used
to discuss the reliability of learning curves for the long-term
forecasting of energy technology costs. Section 4 proposes
an analysis of the possibility to derive industrywide learning
curves for energy technologies. In this section, the accuracy
of learning curves for energy technologies is assessed with wind
power as an example. Finally, we report our main conclusions in
Section 5.

2. Method and framework

The concept of learning-by-doing expresses that accumulating
the deployment or use of a technology increases the correspond-
ing experience, which typically results in the optimization of the
process involved. In particular, technology improvements are
often economic in nature and thus result in cost reductions, so
that changes in cost or price are usually used as a proxy for
learning-by-doing. Already in the 1930s, it was observed that
costs may decrease by approximately a fixed percentage with each
doubling of cumulated production (Wright, 1936). This quantita-
tive relation can be written as

Xt -b
C(xt) = C(xo0) <X_o) , (1)

in which x; is the cumulated production (or capacity), b a positive
learning parameter, and C(x;) the cost (or, as it is used in many
cases, the price) of a product, process or technology at x.. The
variables C(xo) and xo are, respectively, the cost and cumulated
production at an arbitrary starting point.! Learning curves are
derived by fitting Eq. (1) to cost and production data observed in
the past. The starting point then ideally corresponds to the first
unit of production. In practice, however, it often proves more
appropriate to choose a later (but still early) stage of deployment
for t = 0, and for the purpose of estimating future cost reductions
on the basis of learning curves, it can be convenient to use the
present cumulative production as starting point. The learning rate
(LR) is defined as the relative cost reduction (in %) after each
doubling of cumulative production, that is

[R=1-27", (2)
1 One can easily see that this starting point is arbitrary in principle by realizing

that, given two levels of cumulative production xo and x;, C(x;) = C(Xo)(X:/
X0) ™" = C(x0)(X1Xe/X1X0) ™" = C(Xo)(X1/X0) 2(Xefx1) ™" = C(x1)(xe/X1) "

Learning curves have been developed for many products,
processes and technologies in several industrial fields, which thus
constitute empirical evidence for the phenomenon of learning-by-
doing and the existence of LRs. Studies have been undertaken that
propose a more theoretical clarification of learning-by-doing, some
of which are more established and accepted than others (see, e.g.,
Arrow, 1962; Wene, 2007). These analyses, however, still remain far
from a broadly agreed explanation of the apparently robust
cost-production relation. This article attempts to contribute to
opening the black box of learning curves.

In a comprehensive survey Dutton and Thomas (1984)
analyzed the results of 108 studies that report LRs in 22 industrial
sectors, among which are the electronics, machine tools, paper-
making, steel and automotive industries. We have normalized the
distribution of the LR values from their data set to obtain the
relative probability of each LR and have fitted it with a normal
distribution as shown in Fig. 1. The observed LRs are approxi-
mately normally distributed with a mean p~19% and a standard
deviation g~8%. Our Gaussian fit describes the variance in
the data with a coefficient of determination that is statistically
significant (R? = 0.76), so that there is a 95% probability of finding
values for LR between 3% and 34% (truncated to the closest
integer). Note that the Dutton and Thomas data refer to learning
at the firm level and hence do not include LR values that cover
entire industrial sectors or fields at large. Data from other studies
(most notably McDonald and Schrattenholzer, 2001) report a
comparable central value and a similar distribution for the
observed LRs (increasing the confidence in the statistical rele-
vance of the data set).

On a double-logarithmic scale the exponential relation of
Eq. (1) is represented by a straight line with slope —b. This is
shown in Fig. 2, in which the normalized costs (C/Cy) are plotted
as function of the normalized cumulated capacity (x/xo) for the
average LR of Fig. 1 and the corresponding 95% confidence level
(CL) values (for brevity, here we use Co = ((xo)). It can readily be
observed that the cumulative production required to reach a given
relative cost reduction depends strongly on the value of the LR. For
any technology entering the market, we define the breakeven
capacity, xp, as the cumulated production or deployment neces-
sary to reach a given cost target, Cp, e.g., to become competitive
with an incumbent technology that delivers the same or similar
service. Fig. 2 demonstrates that if LR = 19% and the technology
under consideration needs to reach a cost one-tenth of the current
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Fig. 1. Distribution of observed learning rates (bars) and fit with a normal

distribution (solid curve) based on the mean (x) and standard deviation (o) of an
observed set of learning rates. Data from Dutton and Thomas (1984).
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Fig. 2. Normalized costs (C/Cp) as function of the normalized cumulated capacity
(x/xo) for three different learning rates (19%, 3% and 34%) corresponding,
respectively, to the average ([0) and 95% CL values (O and A).

level in order to become competitive, the cumulated capacity
ought to be expanded by three orders of magnitude.

If the technology costs are expressed per unit of cumulative
production, the total cost of deploying a given capacity can be
found by integrating Eq. (1). The learning investment, I, is defined
as the additional cost required for reaching the competitive
breakeven capacity, that is, the total deployment costs minus the
costs that the same capacity of conventional technology would
have incurred. Written explicitly, the breakeven capacity and
learning investment as function of the normalized breakeven cost,
Cp/Co, are, respectively

o\ /b
Xp = Xo (C—:;) . (3)
and
3 1 Cy\O-VP G
I = Coxg {_l_b |:b (CT)) -1 +C70 . (4)

Fig. 3 illustrates the geometrical meaning of the quantities in
Egs. (3) and (4): I, xo, Cp, X, and Cp. In particular, the monetary
value of the learning investment depends on the capacity already
deployed (or, more precisely, on Cgxp). In other words, translating
the learning curve horizontally to the left or to the right will result
in an investment that is, respectively, smaller or bigger.?

Table 1 shows the normalized breakeven capacity, x,/xo, and
the normalized learning investment, I/Coxo, Necessary to achieve a
given relative cost reduction for three different values of the LR.
This table confirms our observation from Fig. 2 that, with an
average LR of 19%, it is necessary to deploy approximately three
orders of magnitude times the current installed capacity (x,~ 10>
Xo) in order to reduce the current cost by one order of magnitude
(Cp/Co=0.1). It also shows, for example, that to reach this
dramatically reduced cost level one needs to invest the equivalent
of approximately 100 times the current cumulative installed
capacity at current costs (I~10? CgXo). In the case of energy
technologies the unit costs can be considerably high compared
to e.g., consumer electronics (certainly if entire power plants are
considered, but even for modules of PVs). Hence, the required
learning investment can become prohibitively large, especially if a

2 To realize this, just consider that for a given current cost C it is cheaper to
double the cumulative capacity from 1 to 2 MW than from 1 to 2 GW. On a log-log
plot the geometrical area under the curves is the same in the two cases.
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Fig. 3. Graphical illustration of the learning investment, I, required to reach
breakeven cost level Cp.

Table 1

Normalized breakeven capacity (xp/Xo) and normalized learning investment (I/
CoXop) necessary to reach a given normalized breakeven cost (C,/Cp) for different
values of the learning rate.

Breakeven cost Breakeven capacity Learning investment

IR=3% LR=19% LR=34% LR=3% LR=19% LR=34%

CG/Co Xp/Xo Xp/Xo Xp/Xo [/Coxo  1/Coxo 1/Coxo
0.5 >1E+6 10 3 1.6E+5 1 0.4
0.2 >1E+6 199 15 >1E+6 16 5

0.1 >1E+6 1943 47 ~1E+6 84 9
0.05 >1E+6 19E+4 148 >1E+6 1362 16
0.02 >1E+6  3.8E+5 682 >1E+6 3374 18
0.01 >1E+6 >1E+6 2168 >1E+6 17E+4 30

significant capacity has already been deployed. Therefore, the
current cumulative production or installed capacity proves to
be one of the parameters that are fundamental for estimating the
maturity of a technology or product. Note that Eq. (4) shows that
the learning investment depends linearly on Coxo. A systematic
error in the determination of the cumulative production, e.g., as a
result of the omission of early production values for which data
might be lacking, thus typically produces an error in the
calculation of the learning investment that is limited in compar-
ison to the one caused by an uncertainty in the value of the LR
(given the power-law dependence on the latter).

Essentially, for all products or technologies a maximum
production or capacity limit exists due to either market or
resource constraints. If the market for a given product saturates,
new capacity is only needed for the replacement of aged products,
which significantly reduces the scope remaining for increasing the
cumulated capacity and thus limits the opportunities for learning-
by-doing. In particular energy technologies are in addition often
bounded by constraints related to the availability of natural
resources. In fact, for energy technologies resource constraints are
usually more common than those related to the size of the market,
given the large role energy plays in our world economy. When
market constraints are reached, learning phenomena usually
come to a halt, whereas when the constraints reached are related
to the limited presence of some natural resource, costs of the
technology often tend to rise.> Wind energy, for example, may be

3 Note that ‘natural resource’ can have a meaning as diverse as fossil fuels,
heavy metals, wind, sun, or waste disposal options like the atmosphere or the
geological underground.
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limited by the availability of sufficient windy sites. If wind
turbines are placed in a sub-optimal location, the cost of wind
electricity consequently rises. If wind turbines are placed offshore
because of a lack of space on land, electricity costs may increase
due to an augmentation of installation and operation costs.
Biomass is ultimately limited by the availability of land as well as
by issues like competition with food crops. Also the use of fossil
fuels clearly possesses a limiting capacity. During the last decades
we have witnessed impressive improvements in exploration
technology, e.g., through the exploitation of 3D-seismic detection
techniques, and learning curves have been proposed for the costs
associated with oil extraction and pipeline installation activities
(see notably McDonald and Schrattenholzer, 2001). Nevertheless,
corresponding reductions in oil prices have not been observed, or
at least, if available, they have been balanced or shadowed by
resource-related cost increases. It is an accepted notion that, as
cheap oil reserves are being depleted, oil in new resources will be
more expensive to extract, which is likely to offset the effects
of learning-by-doing. For several alternative energy technologies
it appears possible to estimate what in each respective case the
limiting factor or capacity may be (see, e.g., IEA, 2006). While
below we come back to the issue of resource and market
constraints in the context of specific technologies, a detailed
analysis of such limiting capacities for energy technologies at
large is beyond the purpose of this paper.

3. From innovation to products

A way to describe the possible long-term slowing down
of learning-by-doing (including effects of potential resource
constraints) is to consider a product, process or technology as
an aggregate of several components. Naturally, the cost of every
industrial product can be expressed as the sum of the costs of its
components. If one assumes that the cost of each component
decreases over time according to a power-law relation as a result
of learning, it is possible to write the overall cost relation of a
generic product as

—b; —b, —b,
X1 X2 Xtn
=Co|— +C <—> +---4+C (—) 5
01 (X01> 02 X02 On Xon ( )

in which the index i represents a given cost component. Each
component is in principle characterized by a different learning
parameter b; and a different initial cumulative production xq;. For
whether aggregate learning can be broken down into component
learning according to Eq. (5), the value of the cumulative
production of each component is at least as important as the
individual learning parameter. The reason is that between
components xo; may have widely diverging values, and along
with b; also xo; determines how much scope exists for future
learning. For example, the production of wind turbines has a
negligible effect on the historic cumulative production of steel or
aluminum, so that not much cost reduction for these construction
materials (needed for notably components like the support mast
and turbine housing) can be expected by the deployment of
windmills. On the other hand, continued improvements can be
expected for the fabrication of (light-weight) rotor blades that so
far have reached a much more limited cumulative production. It is
therefore necessary to discuss, both in general and for each
technology independently, under what conditions Eq. (1) can be
broken down into the component learning expression of Eq. (5).
Vice-versa, one may question when an equation of the form of
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Fig. 4. Data points (O) calculated with Eq. (6) for parameter values b = 0.3 (i.e.,
LR~19% for the learning component) and o = 0.6, as well as a linear fit (—)
through these points.

Eq. (5), if its validity can be demonstrated, can be approximated
by the expression of Eq. (1), i.e. with only one term.

For ease of exposition we analyze the properties of a simplified
model in which the cost for a product or technology is determined
by only two components, one characterized by learning and one
for which the cost is constant in time (i.e., no cost reduction can
be observed). If « is the share of the total cost that initially can be
attributed to the learning component, then 1-o is in the beginning
the cost share of the second component. The overall cost as a
function of the cumulative production of the learning component
can, in this simplified case, be expressed as

Clxe) = 2Co (;‘—;)

in which Gy is again the total cost at production level xq. Eq. (6)
can be considered a special case of the more elaborate model
presented by Eq. (5), useful to highlight some properties of these
functional relations. Theoretical justification for this model is the
observation (e.g., Schoots et al., 2008; van der Zwaan and Rabl,
2004) that some parts of a technology, such as raw materials and
labor, may not experience fast cost reduction or even become
more expensive in time.* In principle, the value of o can be
accurately calculated for each technology, but this task is left to
further work. Furthermore, we assume that the learning compo-
nent is the innovative part of the new total product so that the
cumulated production of the learning component and the overall
technology are the same. We also suppose that the component
does not improve from simultaneously being part of another
technology, so that the capacity of the composite and its learning
component evolve synchronously. Fig. 4 shows a set of data points
calculated through Eq. (6) and plotted on a double-logarithmic
scale, based on assumptions for b = 0.3 (that is, LR = 19% for the
learning component) and « = 0.6 (that is, 40% of the initial cost
can be attributed to a component that does not involve any cost
reductions).

Fig. 4 also depicts a linear fit through these data points. One
can see that over three orders of magnitude, Eq. (6) can be
accurately fitted with a straight line, that is, a learning curve of the
form of Eq. (1). Indeed, the calculated regression accuracy
(R? = 0.95) is comparable to that of the observed learning curves

b
+ (1 = )Co, (6)

4 Similar arguments are to some extent addressed also in Carlson (1973).
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Fig. 5. As set of gas turbine prices fitted in two different ways, linearly and piecewise linearly. Data from MacGregor et al. (1991).

reported in the literature. The exponent of this linear fit, however,
corresponds to an LR = 7%, which is considerably smaller than the
exponent used in Eq. (6) corresponding to an LR = 19% for the
learning component only. In other words, the combination of a
learning and non-learning component can be approximated by a
single technology that also yields learning, but the corresponding
LR is lower. Similarly, it is possible to make linear fits of data
obtained through Eq. (6) on the basis of a wide range of values for
parameters b and o. For o in between 0.1 and 1, and for many
different LRs (for the learning component), it is possible to
interpolate data generated through Eq. (6) with a straight line on a
double-logarithmic scale with good accuracy. The R? for the fit
becomes less than 0.9 only for low vales of o (typically<0.1), i.e.
when the non-learning component dominates the total cost of the
technology, and for high values of the LR of the learning
component. One can turn this argument around, by stating that
if a product exhibits a high LR it is generally more difficult to
describe it as the sum of a learning and non-learning component,
especially if there are empirical indications that the component(s)
that learn to contribute modestly to the total technology costs.
Indeed, one can only obtain a good linear fit of data along a line
with curvature when this curvature is limited, that is, when the
non-learning component contributes modestly to overall costs or
when the LR of the learning component is low. Otherwise, the data
along the curve (Eq. (6)) and the linear fit (Eq. (1)) will
significantly diverge if further extrapolated.

Hence, overall learning can be seen as the result of learning of
one (or several) component(s) while the other component(s)
do(es) not learn in certain circumstances only. We can test these
considerations by inspecting some of the learning curves
published in the literature. Fig. 5 shows that data for the price
of gas turbines from MacGregor et al. (1991) can be fitted in two
different ways. The data points can be fitted with a learning curve
over a range spanning three orders of magnitude with an LR = 13%
and R? = 0.95 (Fig. 5, left plot). It can be observed, however, that
the data present an evident inflection point. Therefore, in the
literature (see notably Seebregts et al., 1999), fitting to such data
with a piecewise-linear learning curve is proposed (Fig. 5, right
plot). In this case, one obtains LR = 19% and 10%, and R? = 0.97
and 0.94, for the two learning curve pieces, respectively. We find
this solution rather unsatisfactory, however, since, given the
empirical nature of learning curves, the fact that the LR changes
over time leads to unavoidable methodological issues: a constant
LR is one of the fundamental assumptions of the learning curve
methodology.

The same set of data can also be fitted with an expression
of the form of Eq. (6) as shown in Fig. 6. For example, the system
can be described as composed of a learning component (with a
relatively high LR = 24%) that makes up 80% of the total cost, and
a non-learning part (hence with constant cost) that accounts for
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Fig. 6. The fit we propose of the gas turbine price data from Fig. 5, based on Eq. (6)
with LR = 24% (for the learning component) and o = 0.8.

the remaining 20% (one can think of the costs associated with the
steel necessary to fabricate the mast and turbine). This fit is
arguably better than both the ones shown in Fig. 5, since it
represents a higher R? = 0.97, while applying to exactly the same
data set. In any case, if for example one deems any fit on the basis
of these available data with an accuracy R?>0.90 acceptable,’
then one cannot convincingly discard any of these potential
regressions from the “phase space of possibilities”, and certainly
not the two-component fit proposed by us. Note that the value we
chose for o derives merely from the fact that it represents the best
fit of Eq. (6) to the data points and is not based on an analysis of
the specific cost components of gas turbines.

While one may find all three fits to the available gas turbine
price data of Figs. 5 and 6 acceptable, clear differences occur when
one uses the corresponding different learning curves to the future.
Extrapolating carelessly cost data over several orders of magni-
tude of cumulative production can lead to significant errors in
both the breakeven capacity and the learning investment when
one uses the wrong learning model. We point this out by Fig. 7, in
which both the fit of the left plot of Fig. 5 and the one of Fig. 6
are depicted, and further extrapolated over three more orders of
magnitude. Indeed, we see that the two lines diverge rapidly for

5 The average R? for the learning curves reported by McDonald and
Schrattenholzer (2001) for energy technologies is approximately 0.81. Therefore,
a fit with R? = 0.9 is well-above average for a learning curve and can hardly be
discarded on the basis of statistical considerations alone. Nonetheless, the choice
of R? = 0.9 remains arbitrary and should not be interpreted as a threshold value to
assess the validity of learning curves.
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higher values of the cumulative production, with obvious
repercussions in terms of such notions as the total capacity or
learning investment needed to reach a given level of deployment
in the future. As the cost of the innovative component is reduced,
the non-learning component gains more in relative weight in
terms of its contribution to the overall cost, and hence slows down
the composite learning process.

For the capacity of energy technologies like wind turbines and
power plants, due to the intrinsic scale of engineering involved,
the first available cost data are normally minimally in units of MW
(with PV modules being one of the very few exceptions). The
fitting exercises shown in Figs. 4-6 suggest that in order to obtain
a reliable interpolation one should be in a position to evaluate cost
data over an extensive set typically spanning several orders of
magnitude of cumulative production. The gas turbines example
illustrates that data covering two orders of magnitude might not
be enough to reveal important trends such as the possibility
of having non-learning components. Extending the data set used
to derive the learning curve presents several difficulties. Even
assuming that a greater number of data points will allow to derive
a reliable learning curve, it will likely be more difficult
to compare costs collected over a longer interval of time (e.g.,
due to inflation or fluctuations of the exchange rate between
currencies). Being aware of the complexity of the problem, we
assume that it is possible to collect and compare cost-cumulative
production data over a wider range of, for example, three orders of
magnitude. Indeed, the three orders of magnitude depicted on the
horizontal axes of Figs. 4-6 allow the determination of learning
curves with an R? close to 1. Three orders of magnitude down the
learning curve from the unit MW one arrives at capacities that
more conveniently can be expressed in GW, which is the unit
commonly used for current large-scale power plants. Today a
couple of TW power generation capacity is installed worldwide.
It is estimated that this value may expand several times, up to an
order of magnitude, over the 21st century. Suppose one wants to
use the learning curve methodology to estimate what the
expected future cost reduction could be with respect to today,
under certain values for the observed LR, for the main technol-
ogies that currently contribute to this global power production
capacity. Then one readily concludes, on the basis of the limits of
the total needs worldwide and given that the dominant power
technologies are currently installed in terms of hundreds of GW
(certainly for nuclear, hydro and fossil-based power generation,
but today almost also for wind power), that for these technologies
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Fig. 7. Two fits for gas turbine prices extrapolated over three more orders of
magnitude: a linear one based on Eq. (1) (—) and one based on Eq. (6) (---).

only a rather restricted subset of cells in Table 1 apply, with the
corresponding implications for the expected cost reductions.
Hence, apart from the limits that exist in terms of the
economies-of-scale of single power plant due to upper boundaries
associated with the relevant engineering problem, there also
exists a clear limit to the totality of the sector or industry. This
limit represents the boundaries of the learning system and should
thus be explicitly accounted for when employing learning curves
for the design of future energy technology policy.

Cost data exhibiting a high LR cannot be fit accurately with an
expression of the form of Eq. (6). If, as we claim, the learning
curves reported in the literature can often be described as
composed of multiple components, higher values for the LR
should be relatively less abundant than lower ones. It appears that
the distribution shown in Fig. 1 is slightly right-skewed (i.e.
positively skewed), which indeed in principle means (barring
statistical fluctuations) that more studies have determined
relatively low LRs. An over-abundance of low LRs could point
towards learning of composite systems in which parts of the
overall technology learns with a higher LR than other systems
(that could learn at zero rate). Like in the gas turbine example, a
system with a non-learning component can often be described
with a single learning curve with an overall LR that is lower than
that of the individual learning component. The fact that in Fig. 1,
we observe a higher frequency of LRs in the 10-19% range than in
the 19-28% range suggest that our supposition may be correct.
Given a lack in LR data, however, this conclusion so far cannot be
rigorously demonstrated. A common measure of the asymmetry
of a statistical distribution is the so-called skewness.® For a
random normally distributed data set the skewness tends to zero
as the number of its element tends to infinity. A finite set may
show some level of skewness due to random statistical fluctua-
tions. It proves that the data in Fig. 1 yield a positive skewness of
about 0.23. We believe this value lies in the range of fluctuations
of a random normally distributed set of comparable size. If in the
future the set of LRs is expanded, however, we may be able to
demonstrate that the skewness we then find is statistically
meaningful, which would support our proposal that overall
system learning can often be decomposed into multiple compo-
nent learning.

High LRs have of course been observed for several products.
Such elevated levels of learning may especially apply to radical
innovations possessing new features that did not exist before.
These characteristics make them much more valuable than, e.g.,
the raw materials they are made of. The first airplanes built
constitute an appropriate example in case. Other more recent
examples are several high-tech products that today have become
so important in modern technology-based society, such as
semiconductors. These are so much based on fundamentally
new concepts, related to multiple activities from manufacturing to
engineering, that opportunities for learning multiply, while the
relative weight of non-learning components is minimal. For many
of these radical innovations there is empirical evidence that cost
reductions can be sustained for several decades and over a wide
range of cumulative production spanning several orders of
magnitude, needed to develop a reliable learning curve.

Fig. 8 shows the well-known cost curve for PV modules
(from Harmon, 2000), which at their conception constituted a
fundamentally new method to generate electricity from solar
radiation. The learning curve shows multiple inflections, but
cost reductions are sustained over as much as four orders
of magnitude of cumulative production. Such inflections were

5 For n data with values x, mean u and standard deviation ¢, the skewness is
defined as/nyiL 1(x—p)?/c>.
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explained with the ‘“shake-out” phenomenon (see, e.g., Wene,
2000; Schaeffer et al., 2004): since cost data are normally not
available and price is used to construct learning curves, changes in
the production costs-to-price ratio (due e.g., to the effect of
competition in the market) might affect the observed LR. The
corresponding overall LR is relatively high, given the innovative
nature of PV technology when it was introduced for household
purposes in the 1970s. One can explain the inflection points also
by realizing that competition stimulates innovation, and that the
materialization of possible improvements is naturally focused on
the most costly components. Substituting or improving a critical
expensive component, e.g., step by step through incremental
innovations, allows at each modification a reinvigoration of the
learning process and thus overall for continued learning. This
description remains consistent with the “shake-out” phenomenon
often used to describe the inflections in a curve such as that of
Fig. 8. Indeed, the PV data can also be fit piecewise with
expressions of the form of Eq. (1) or (6). Especially, at these
stages of technology development interactions with continued
R&D prove important, since research may provide the information
needed on how to replace or improve a critical component. The
high cost of crystalline silicon, for example, has stimulated
research on amorphous and thin film modules. The effect of such
R&D, and especially the contribution of incremental innovations,
cannot usually be readily disentangled from other learning effects.
Interestingly, it has been pointed out that economies-of-scale
have so far probably been the greatest factor for cost reductions
of PV modules (Nemet, 2006). Many analysts claim that such
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Fig. 8. Price data for PV modules after Harmon (2000).

economies-of-scale should not be included in the phenomenon of
learning-by-doing per se, while of course importantly contribut-
ing to the realizable cost reductions. It should be noted, however,
that the difference between production cost and price (empirical
data are normally available only for the latter) may complicate the
analysis of “shake-out” phenomena.

Given the expected importance of economies-of-scale for
energy technologies at large, the expectation about future
demand and, ultimately, public opinion also play a key role in
bringing about cost reductions. Dutton and Thomas (1984) do not
distinguish between scale effects and learning-by-doing per se, so
that it is likely that scale effects are included in at least some (and
probably many) of the studies reported in Fig. 1. Of course, it is not
granted that the costs for PV modules will continue to improve
indefinitely with a 20% LR (see, for generic arguments in this
context, Sagar and van der Zwaan, 2006). For PV there are clear
signs that component learning is at work. If learning cost
equations apply for single components, then necessarily an overall
expression similar to Eq. (5) must be employed. Thus, over a wider
scale the cost of PV modules can exhibit the behavior described by
the dotted line in Fig. 7. This supports the notion that learning-by-
doing may fade out as production or time proceeds, as suggested
by Sagar and van der Zwaan (2006).

As also described in Grubler et al. (1999), the full learning cycle
for a new product can now tentatively be described with the
graph in Fig. 9. In the first stage, the innovative components, for
which most opportunities for improvements exist, dominate the
overall cost of the technology. The learning process develops fast
and the cumulated capacity remains relatively small initially,
which simplifies in principle the collection of reliable data. In this
stage, it is easiest to develop a well-behaved learning curve. In the
maturity stage the cost share of non-learning components, such as
raw materials, becomes significant, so that the learning curve
diverges from a straight line on a double-logarithmic plot, as was
shown in the examples of Figs. 4 and 6. In some cases (but not
necessarily in all), the non-learning components can be sub-
stituted or improved, which implies that, after a slowdown, the
cost reduction process may continue. If, at this stage, the new
product becomes competitive on the market, or establishes some
sort of niche market, the incentives for continued innovation
might be reduced and the learning curve bends towards the
horizontal. When a product starts to reach the limiting capacity in
terms of natural resource availability or market constraints, a
similar effect may take place and the further deployment may be
halted at current prices. At this stage limited cost reductions for
single components may still persist, but do not necessarily
translate into observable improvements for the final product.
Fig. 9 shows qualitatively the overall learning process, divided into
three main stages, both on a double-log scale (left) and a double-
linear scale (right). The latter could also be interpreted as showing
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Fig. 9. Qualitative description of the learning cycle as a function of cumulated production (left, logarithmic scale; right, linear scale).
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Fig. 10. Frequency of observed learning rates for wind turbines, respectively, for manufacturing costs (left, sample of 7) and turnkey costs (right, sample of 8) for different

manufacturers, models and countries. Source: (Neij et al., 2003).

cost reductions as a function of time, rather than the cumulative
production.

We observe that the later stages of product evolution, maturity
and notably senescence, are normally not reported in the learning
curve literature. For energy policy making, however, it is
important to point out their existence, since they may have
considerable implications for the design of specific policy
instruments and their effects. We also note that bottom-up and
top-down energy-economy-environment modelers may well
want to consider accounting for these latter stages. In fact, van
der Zwaan et al. (2002) in their DEMETER model do so, through
their assumption that in the long run a minimum price for energy
options exists below which learning-by-doing cannot fall. Another
relevant issue in this field is that, due to market fluctuations and
the long-time span often required to increase significantly the
cumulated production, it might be difficult to observe a clear
trend for the corresponding part of the learning curve, even while
learning may be at work. Indeed, it proves that in the case of
hydrogen production total cost data are too scattered and the
available capacity scale too limited (even while the time frame
inspected is large) to determine any meaningful LR (Schoots et al.,
2008).

4. Estimating future costs

Many of the learning curves reported in the literature were
developed for a specific firm or production plant only. For
example, the distribution of observed LRs shown in Fig. 1 was
compiled from studies that essentially all focused on a specific
product within a given company (Dutton and Thomas, 1984). For
energy policy purposes, however, we are often interested in
evaluating the potential of a new technology for an entire country
or region, or even the world at large. In view of our assessment
whether learning curves can be used as a reliable tool for strategic
planning in the energy sector, we therefore here discuss if the
learning curves as observed for single firms can be aggregated into
an industry-wide power-law for learning-by-doing that may be
applicable on a national or international level. Wind energy
technology offers an appropriate example in case.

Learning curves have been proposed for the costs of several
activities related to wind energy, among which are notably the
production costs of wind turbines from different manufacturers
and the installation costs of distinct types of turbines in different
countries. A recent study reports several such kinds of learning
curves for wind power (Neij et al., 2003). Fig. 10 summarizes the
values of a selection of LRs from this analysis, for, respectively,
the production costs and total installation costs of wind turbines

(Neij et al., 2003). The installation costs include the combined
contributions from manufacturing, assembling and putting in
place, together referred to as the turn-key costs. Both in the case
of manufacturing and installation costs the R? associated with the
learning curve fits (>0.9) is high compared to the typical value
observed for learning curves (see e.g. McDonald and Schratten-
holzer, 2001), which implies a good statistical correlation between
costs and cumulated production. As we see in Fig. 10, the average
LR is slightly higher for the total installation costs than for the
manufacturing costs only: 9% against 7%.

This study also reports a set of learning curves developed for
total wind electricity generation costs (including turn-key plus
operation and maintenance costs) in two different countries,
Denmark and Germany (Neij et al., 2003). Of all learning curves
reported, the total power production costs exhibit the fastest
progress through learning-by-doing, with an average LR of
approximately 13%.” The observation that power production
learns faster than wind turbine installation and that the latter
learns (somewhat) faster than the wind turbine manufacturing
suggests that the more activities one considers together, the more
learning this combined activity reveals. Indeed, the combined
processes of manufacturing, assembling, placing and using
(operating and maintaining) wind turbines in this example prove
to involve a steeper learning curve than when one omits one or
more of these single activities or “components”. For wind energy
the cost components manufacturing, assembling, placement and
use of wind turbines (the latter also referred to as variable costs)
are each part of an overall learning process that together multiply
the possibility for optimizing the final product, electricity in this
case. Even when the overall design of a new wind turbine involves
the introduction of a more costly component, the use of the total
system may imply stronger learning than before this component
was included, and learning for the total technology may be higher
than for each of the individual constituents. For example, a more
advanced blade can be more expensive to fabricate, but produce
cheaper electricity because of improved aerodynamics. This is a
striking observation, because in the previous section we argued
that non-learning components in principle lead to the opposite
result, that is, a lower LR for the compound system. Our
conclusion is that which of these two mechanisms is at work
depends very much on the technology or system under con-
sideration. Depending on the way cost components interact, the
overall LR can be higher than that of the components, as in the
above example of wind power, or lower, as in the cases discussed

7 Note that installation maintenance and electricity costs are normally
measured in different units (e.g., €/ MW and €/kWh). However, the learning curve
in Eq. (1) does not depend on the units used.
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in Section 3. Note that, more generally, our examples demonstrate
that the overall LR cannot necessarily be derived from the LRs of
the individual components, activities, economic sub-sectors or
individual firms—in any case not immediately or in a straightfor-
ward manner.

Another appropriate example that at present receives great
attention from scientists and policy-makers alike, relates to
carbon dioxide capture and storage (CCS). Several cost compo-
nents can be identified for CCS technology, among which notably
separation of CO, from the exhaust stream, transport of CO,, its
injection in the geological reservoir and monitoring of the storage
site. The relative shares of individual cost components depend on
several parameters. For example, CO, separation from the outlet
stream of large point sources usually constitutes the greatest
share of the total costs of CCS implementation, if the transport
costs can be held within a range of typically hundreds of
kilometers. The overall LR for total CCS application will probably
depend on the interaction between its individual constituents in a
non-trivial way. As in the case of wind power, the learning-by-
doing for CCS technology could be significantly higher than for its
single components, and it may well be that the costs of some of
them may need to increase in order to minimize the costs or
maximize the efficiency of the whole system. For example, higher
transport costs may be incurred in order to reach a secure storage
site, that is, one with negligible risk for leakage of CO, from the
underground repository, but farther from the emissions source
than close-by less-safe options. This might nevertheless induce an
overall cost decrease, if hereby the monitoring costs that
guarantee safe storage are minimized. On the other hand, as
discussed in Section 3, it may also be well possible that a non-
improving component reduces the cost reduction possibilities for
the overall CCS process. For instance, the capture part of CCS
equipment may so closely resemble similar separation technolo-
gies such as flue gas desulphurization (FGD) that little improve-
ment can be expected to take place for CCS deployment, since FGD
has already reached a high level of maturity. The large total
cumulative capacities installed for related technologies like FGD
probably need to be taken into account when estimating the
learning potential for a technique like CO, capture. At this stage
of development of CCS, it might not be possible to estimate the
overall LR for this technology, given that today many of these sorts
of effects are likely to interfere.

The results for PV (Fig. 8) and wind power (Fig. 10) proffer
evidence for the notion that at least some products are
characterized by industry-wide learning. Hence, for such tech-
nologies it should be possible to develop industrial learning
curves, i.e. linear power-law fits of industry-wide costs plotted
against national, regional or global cumulated production. Several
studies have attempted to estimate the reliability of learning
curves for forecasting possible future cost reductions of a range of
different technologies. Often these analyses focus on specific
products or factories only. Alchian (1963), for example, derives
learning curves for the amount of labor required for the
production of several types of airframes (i.e. essentially airplanes
without their turbines) at different facilities. He evaluates
learning curves by using fairly consistently available data from
the first production phase of each model investigated. This start-
off period lasts for about one year, during which typically a few
hundred airframes are produced of each model. The LRs derived
on the basis of this first phase are used to forecast future labor
requirements for each of the different airframes beyond that
phase. Thus, the learning curves are extrapolated and the results
compared with the actual labor (cost) data recorded for the
second production phase, during which typically thousands of
airframes are produced. The total size of the data set available
differs for each model, but, on average, the learning curves can be

drawn over 2.7 doublings of cumulative production during that
second period.® Alchian then points out that extrapolating
learning curves involves considerable uncertainty: the estimated
amount of labor required is either significantly in excess or falls
short of the true level of labor employed, and the average absolute
value of the error is as high as approximately 22% (with variations
depending on the airframe model under consideration). Of course,
Alchian’s analysis covers learning curves derived for specific
products (airframes) in particular manufacturing facilities (of the
respective airplane construction companies). His findings, how-
ever, bear great relevance for attempts to estimate possible
uncertainties in future expected cost reductions on the basis of
industry-wide learning curves, notably for new energy technol-
ogies candidate to succeed incumbent products.

The LRs for wind power shown in Fig. 10 are derived from fairly
recent data reported in Neij et al. (2003), but an earlier reference,
with the same first author, provides detailed cost data for wind
power in the year 1995 (Neij, 1997). This prior data set proves
more suitable to test the reliability of extrapolating learning
curves. The cost of wind power in 1995 was estimated at 0.066
$(1995)/kWh, which is possibly the central value of a range of cost
figures (although such a range is not reported in Neij, 1997). The
total installed capacity in that year was reported to be 5GW
worldwide, and the installation costs amounted to 1333 $(1995)/kW
(Neij, 1997). This same reference derives LRs as observed in
1995 for wind power installation and electricity costs of 4%
and 9%, respectively. These LRs are significantly smaller than those
reported by the same author in the more recent paper 9% and 13%,
respectively (Neij et al., 2003). The European Wind Energy
Association estimates that in 2004, the globally installed capacity
of wind turbines had grown to some 47 GW (Morthorst, 2004),
that is, 3.2 doublings of the cumulated installed capacity with
respect to the 1995 level. By 2004 the installation costs were in
the range of 900-1100 €(2004)/kW depending, among other
factors, on the country where the turbines were deployed
(Morthorst, 2004). The cost of wind electricity in medium
wind areas in the same year were estimated in the 0.05-0.06
€(2004)/kWh range. We now use the 1995 LRs to extrapolate
the costs observed in that year, and correct for inflation and
currency exchange rates. This implies a forecast for 2004 of 1160
€(2004)/kW for installation costs and 0.049 €(2004)/kWh for
electricity costs. Table 2 summarizes these figures.

As we see from the numbers listed in Table 2, for both the
installation and electricity costs of wind energy, the estimates for
2004 based on the cost data known and LRs determined in 1995
lie outside the ranges that actually materialized in 2004. Recently
the installation costs of wind turbines were observed to progress
with a LR of 9% (Neij et al., 2003). If this LR had been used instead
of the 4% as calculated in 1995, then the cost level of 1160
€(2004)/kW would not have been reached at cumulative installed
capacity of 47 GW but of about 14 GW instead. Also, based on an
installation cost target of 1160 €(2004)/kW, the learning invest-
ment required to reach this level as forecasted in 1995 with a LR of
4% was about 3 billion €(2004). But given the observed LR of 9%
the actual learning investment has only been about 600 million
€(2004). In particular, the industry-wide learning curves derived
for wind energy in these two references appear to be at least as
reliable as the firm-level learning curves investigated by Alchian.
Yet this example demonstrates that one has to be wary of
uncertainties. Overall, with the data available in 1995, the docking
of wind energy to the market could reliably be estimated over
approximately 2-3 doublings of the cumulative installed capacity.

8 For the model with the largest available data set the learning curve can be
extrapolated over 4.2 doublings of cumulated production.
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Table 2

Comparison between learning curve estimates and actual installation and electricity costs for wind power (1995-2004).

1995

2004 Learning curve estimate

Cumulative capacity 5GW
Installation costs 1333 $(1995)/kW
Electricity cost 0.066 $(1995)/kWh

47GW -
900-1100 €(2004)/kW 1160 €(2004)/kW
0.05-0.06 €(2004)/kWh 0.049 €(2004)/kWh

Interestingly, in this case the estimate for the investment costs of
wind power proved to be higher than the actual costs in 2004,
while the predicted cost of wind electricity was lower than the
actually measured cost range for that same year (or in any case
hovering around the lower side of that cost range). A comparison
between the forecasted and actual data suggests that in this
case the overall induced policy error is dominated as much by
difficulties encountered in converting cost data and estimating
cost ranges (depending here on, e.g., wind availability) as by the
uncertainties with which the LR is known. The differences
between learning curve estimates and the actual data would
change significantly if, for example, a different base year was
chosen to compare cost quotes, or if a different value for the
average wind speed was assumed. In other words, over the cost
and time range we considered here, the errors resulting from
observed uncertainties in values for the LR are comparable to (and
may even be shadowed by) those from annual variations in, for
instance, the exchange rate between the US dollar and the Euro.

This example for wind energy shows that extrapolating cost
reductions over long-time frames or capacity expansions, while
providing valuable insight, requires caution. For PV technology
these issues become even more apparent, since an increase of
several orders of magnitude (rather than several doublings) in
installed capacity is needed in order for this electricity option to
reach a competitive cost target. Over the necessary expansion
range associated with PV, uncertainties in estimates of the LR
carry a larger weight than in the case with wind power. Even if
cost data can be reliably fitted with a straight line on a double-
logarithmic scale, this does not necessarily mean that, given the
statistical errors involved, the slope of the fit is constant for every
subset of the data. If for the case of PV depicted in Fig. 8 the cost
data for only the first two orders of magnitude of installed
cumulated capacity are used, the estimated LR is 22.5% rather than
20.2%. Assuming a cost target of 0.05 €(2004)/kWHh, the breakeven
capacity can be calculated to amount to 90 GW for LR = 22.5%
and 190 GW for LR = 20.2%, corresponding to a learning invest-
ment of 42 billion € and 71 billion €, respectively (for comparable
calculations of the learning investment for PV required to reach
competitive breakeven, see notably Nemet, 2006 and van der
Zwaan and Rabl, 2004). In this case for PV, due to the large
extrapolation involved, it is evidently more important to have a
precise estimate for the value of the LR, and uncertainties have a
larger impact on cost forecasts and thus energy policy making,
than in the case of wind power.

5. Conclusions

In this paper, we have reviewed some of the possible caveats of
the use of learning curves for energy policy purposes. Learning
curves may provide insight in future cost trends for energy
technologies and are, once the limitations of the methodology are
taken into account, an attractive tool for both scientific analysts
and public policy-makers (see also Neij, 2008, for a discussion of
the limitations of learning curves for energy policy making).
Learning curves provide a phenomenological description of the

relation between past costs and cumulated production, and thus
allow for the estimation of future cost reductions by simple
extrapolation. Likewise, they can be employed to calculate the
investments needed to bring a technology down to a competitive
level, which may be welcome or even necessary to diffuse it on a
large scale in the market. Many examples of learning curves have
been reported in the literature. To good approximation, it is found
that the observed LRs are normally distributed. We confirm that,
based on a large set of investigated energy technologies, on
average the LR amounts to approximately 19%, with 3% and 34% as
lower and upper levels spanning a 95% confidence interval. It
should be pointed out, however, that the sample of technologies
and products for which learning curves are available might be
biased (as discussed for example in Sagar and van der Zwaan,
2006) and more studies should be included before rigorous
conclusions can be drawn about the distribution of LRs.

One of our important observations is that in order to derive
reliable learning curves, one ought to apply the analysis to an
extensive set of cost-cumulative production data (e.g., greater
then two orders of magnitude of cumulative output). For example,
the learning curve for PV cells depicted in Fig. 8 could involve a
rather different LR if data had been fitted over two orders of
magnitude of cumulated capacity only (i.e. a subset of the total
data set shown). In other words, determining a learning curve on
the basis of two orders of magnitude of cumulative capacity data,
or less, implies a sizeable uncertainty in the corresponding LR,
with a comparable error in the energy policy gauged on this LR.

Our primary finding is that, even when the learning curve is
evaluated over a wide range (i.e., three orders of magnitude of
cumulated production) quite different fits of the same set of data
are imaginable and at least equally justifiable. We point out that
products can often be described as the sum of a learning
component and one for which no cost reductions occur. This
claim can be based on the inspection of the technology under
consideration and an appreciation of its specific features, includ-
ing for instance the resources and materials needed to build or
operate it. In this article we proffer a second argument supporting
this thesis, which we demonstrate through a study of publicly
available cost data for gas turbines. This example shows that
representing a product as the sum of two components, each
learning at a different rate (one of which, for gas turbines, with
zero value), yields a better fit than considering the technology as
one indivisible entity. The learning of individual components
separately may also explain why learning curves are often
observed to bend towards the horizontal i.e. slow down when a
technology matures.

This result yields important implications for the evaluation of
the prospects of energy technologies on the basis of learning
curves. Indeed, our component learning hypothesis produces cost
estimates significantly different from those with the standard
learning-by-doing framework, especially when the learning curve
is extrapolated far into the future. Evaluating the relative weight
of different cost components might ameliorate the estimation of a
technology’s cost reduction potential. For example, if non-learning
components such as the required fossil fuel feedstock constitute a
great share of the overall cost, then the prospect for learning is
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probably limited. The possibility of skewness observed for the
probability density function of LRs—although statistically not
(yet) significant—may support our component learning proposal.

For an analysis of the future costs and potential of a new
energy technology, an understanding of the scope for future
deployment is important and should thus be carefully evaluated.
We demonstrate that for quite some energy technologies, like
state-of-the-art wind turbines, the potential for growth is
typically limited to only a couple of doublings with respect to
the currently installed capacity. This is due to the fact that their
cumulative deployment is already approaching the 100 GW level
and the overall electricity industry has a finite size. This means
that the potential capacity increase is limited to few cells of Table
1, that is, only under a high LR can one still expect fairly sizeable
cost reductions but never by an order of magnitude. For other
energy technologies similar qualitative arguments regarding their
growth potential can be made, which implies that it might more
generally not be possible to observe cost reductions once they
approach a technology-specific upper bound for deployment. Of
course, for the learning curve methodology not only the value of
the LR is primordial but also the cumulated capacity already
deployed. The present cumulated capacity can be considered a
proxy for the maturity of a technology. If a large cumulative
production has already been realized, the investments required to
achieve further substantial cost reductions can become prohibi-
tive. Furthermore, the time required to increase significantly the
cumulated production may become too long to observe cost
reductions distinguishable above all sorts of ‘background’ effects
like market fluctuations of resource inputs.
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