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Abstract 

 

Learning curves are extensively used in policy and scenario studies. Progress ratios 

(PRs) are derived from historical data and are used for forecasting cost development of 

many technologies, including photovoltaics (PV). Forecasts are highly sensitive to 

uncertainties in the progress ratio. A progress ratio usually is determined together with 

the coefficient of determination R2, which should approach unity for a good fit of the 

available data. Although the R2 is instructive, we recommend using the error in the PR 

determined from the fit, because it is a direct measure of the range in PR values that is 

recommended to be used in sensitivity analyses within scenario studies. We present a 

simple equation to calculate the error in PR from the fit parameters. 

In the case of crystalline PV module technology development we find a progress ratio 

PR=0.794±0.003 by fitting price data of the period 1976-2006. A moving average 

approach with a 10-year time window shows that PR varies from 0.818±0.017 up to a 

starting year of 1987, and is reduced considerably to a minimum value of 0.704±0.014 

for the starting year 1991. For the most recent starting year 1997, the average PR is 

considerably higher at 0.884±0.022, highlighting the recent silicon feedstock supply 

problem.  

When available, error in individual data points can be used to perform weighted fits in 

order to decrease fitting errors. To illustrate this approach, an analysis of Dutch PV 

system price development over the period 1992-2002 shows that PR is 0.876±0.010, 

where the error is decreased with respect to un-weighted fitting.  

The progress ratio PR=0.794 has been used to analyze the cost targets stated in the 

Strategic Research Agenda as formulated by the European PV Technology Platform for 
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the years 2013, 2020, and 2030. Assuming that such a PR is maintained, it is concluded 

that these targets may be attained at sustained annual growth rates of 21-42%, which 

seems feasible.  

 

 

 

Keywords: Experience curve, learning curve, progress ratio, crystalline silicon PV 

modules, error propagation, fitting, PV technology development 
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1. Introduction 

 

Learning or experience curves are widely used in policy and scenario studies in many 

fields1-6 to account for and forecast technology development. These curves illustrate that 

technical and economic performance of a technology increases substantially as 

producers and consumers gain experience with this technology. Typically, production 

costs are reduced sometimes by orders of magnitude. This phenomenon was first 

described by Wright:7 he reported that unit labour costs in airframe manufacturing 

declined significantly with accumulated experience of the workers, and also that this 

cost reduction was a constant percentage with every doubling of cumulative output. 

Plotted on a double logarithmic scale this empirical relationship constitutes a straight 

line, nowadays referred to as “learning curve”, as only the effects of learning-by-doing 

are measured.8 Of particular interest was to investigate “the possible future of airplane 

cost”7 by extrapolation of this line. Arrow introduced the notion to general economics, 

namely that this learning-induced cost reduction was the product of experience.9 The 

Boston Consultancy Group further extended the learning curve concept in two ways.1 

Firstly, the concept was applied to the total cost of a product, thereby including other 

learning mechanisms (such as RD&D and economies of scale), and other cost factors 

(e.g., cost of capital, marketing, overhead). Secondly, the concept was applied not only 

within a single company, but also to entire industries. In order to distinguish the curves 

based on this broader approach from simple learning curves they were labelled 

“experience curves”. Nevertheless, the term learning curve is sometimes also used as 

synonym for experience curve.  
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Long-range forecasts are used in planning possible future solutions to a range of socio-

economic problems, among which the climate problem is the most pressing.6,10-12
 

Developers of scenarios that include energy supply and demand and the use of 

renewable energy technologies, prefer to use endogenous learning in which only one 

parameter determines the rate of learning. Therefore experience curves are now used in 

most leading climate-economy models, as recently reviewed by Köhler et al..
12 Another 

use is reported by Sandén for the assessment of PV subsidies.13 In many studies 

experience curves have been constructed on the basis of historical data that sometimes 

span 2-3 decades. From these curves one deduces the so-called “progress ratio” PR, 

which is the relative amount of cost reduction per doubling of cumulative output. The 

“learning rate” is then defined as one minus PR. Dutton and Thomas14 have analyzed 

over one hundred experience curves for manufacturing firms and found progress ratios 

between 0.6 and 1.0, with a mean of 0.8. McDonald and Schrattenholzer15 have 

collected data for energy technologies (26 data sets) and found a distribution of progress 

ratios also between 0.6 and 1.0, but with a slightly higher mean of 0.84. 

 

Given the empirical nature of the experience curve data and related inherent 

uncertainties, the PR may vary somewhat when key parameters are changed such as the 

assumptions about initial capacity installed, the associated start-off costs, the method of 

aggregating annual data, correcting for inflation and varying exchange rates and 

changing the learning system boundaries.16,17 Small changes in the PR value can lead to 

strongly varying results in (long-term) scenarios and energy models, which rely on 

experience curves to model endogenous learning.18,19 In many climate-economy models 
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the lack of uncertainty analysis is considered to be an important deficiency and 

incorporation of uncertainties into such models is viewed as a major challenge.12  

 

As an example why consideration of uncertainty is important we can consider PV 

implementation scenarios. In such scenarios a relatively minor variation of the progress 

ratio for PV has an enormous influence on the total “learning investment”, which is 

defined as the cumulative excess cost for PV generation above the break-even level 

where PV installations become competitive with conventional electricity generating 

plants.20,21 Van der Zwaan and Rabl report that if the break-even system cost is taken as 

1 $/Wp, the learning investment in PV systems is calculated to be 211 billion US$ for a 

PR of 0.80, which is reduced to one-third for a progress ratio of 0.75.20 This example 

clearly shows the sensitivity of the progress ratio, and indicates the need for adding an 

uncertainty indication to the PR value, for example 0.80±0.05. Scenarios using PRs 

should always include sensitivity studies to show the effect of different PRs, and the 

given error should indicate the range of possible values. With the analyses presented in 

this paper we aim to contribute to a better understanding of the uncertainties that are 

introduced by the use of experience curve concepts into all kinds of scenario models. 

 

Progress ratios for photovoltaic (PV) technology have been used to assess the prospects 

and diffusion of PV.4,20-23 Harmon24 and Parente et al.
25 recently updated PV experience 

curves on the basis of crystalline silicon module price data from Maycock up to the year 

2000.26 Harmon reported a PR of 0.798 with R2=0.9927,24 while Parente25 showed that a 

statistically significant break occurs in 1991: in the period 1981-1990 a PR was 

determined of 0.798 (R2=0.977), while in the period 1991-2000 a 3% lower PR was 
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determined of 0.774 (R2=0.978). Fitting the complete curve (period 1981-2000) yielded 

PR=0.772 with R2=0.988. From the given values one is tempted to associate an error of 

one digit, i.e., 0.001. However, this is too accurate, as we will show below. More 

recently, Nemet27 has compared crystalline silicon PV module experience curves on the 

basis of two datasets and found PR values of 0.74 and 0.83, for datasets from 

Maycock28 and Strategies Unlimited29, respectively. Although Nemet27 does not attempt 

to explain the PR differences from these two datasets,  they appear to be primarily 

caused by different data for the beginning of the experience curve, i.e., below 30 MW 

cumulative capacity. A moving average analysis by Schaeffer et al. with a time window 

of 10 years has shown that the PR may vary between 0.84 and 0.7 for 10-year periods 

starting from 1976 to 1992, with low PR values in the most recent time-windows.21 

Associated R2-values are between 0.84 and 0.98.  

 

More recently, Swanson30 has added crystalline silicon module cost data up to 2005, 

and reported a PR of 0.81. The recently occurring silicon feedstock supply shortage 

problem, which results from the sustained high growth of the PV industry31-33 has led to 

module price increases in the past years. This is expected to lead to an increase of the 

progress ratio, as was indeed clearly perceptible in Swanson’s data.30 This effect will 

become even more apparent from moving time analyses, as we will demonstrate below. 

It is generally expected that this price increase is only temporarily, and the PV industry 

will continue riding down the experience curve within a few years. In addition, other 

types of modules based on thin films are expected to increase their present market share 

of about 10%.33 These thin films modules have a lower cost per Wp figure as well as 

lower efficiency, and will definitely contribute to meeting mid- and long-term system 
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cost goals. Although some attempts have been made to construct an experience curve 

separate from the crystalline silicon experience curve,34 in this paper we focus on 

crystalline silicon, as the data set is more complete and gives better insight in 

experience curve development. Therefore, the PV experience curve presented in this 

paper implicitly refers to the crystalline silicon module experience curve. 

 

We can conclude from this review that substantial differences are found in PR values, 

depending on the data source and the considered time period. In none of the reviewed 

analyses the uncertainty in the progress ratio was determined, although the number of 

digits suggest errors as small as 0.01 or even 0.001. 

 

The determination of PR involves fitting of historical data that span one of more 

decades, and resulting values for PR are given in two or three digits. In many cases, the 

correlation coefficient R2 associated with reported values for PR is not given,35 therefore 

data cannot be checked for reliability. In this paper we show that one can easily deduce 

the error in PR from the definition of PR: it is expressed in the two constants that result 

from the fit. Subsequently, we will present an updated PV experience curve including 

data up to the year 2006, and we will determine the error in PR. We continue with a 

comparison of our data with reported data,21,24,25 and deduce the error in PR from that 

data. Performing a moving average analysis with a time window of 10 years of the 

updated data will show the effect of the recent silicon feedstock shortage problem on the 

PR: it approaches 0.9 for the time windows that include the most recent years.  
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In most experience curve studies data for one year are plotted as one data point, while 

apparently this data point is the result of averaging data collected from several sources 

for that particular year. Upon averaging data the standard deviation in the mean can be 

calculated, which can be shown in the graph by introducing error bars. Then, knowing 

these error margins, a weighted fit can be performed, which may yield a different value 

of PR in comparison to an un-weighted fit. We will perform weighted fits using various 

errors to study the effect on the error in PR. As a further example, we will compare 

weighted and un-weighted fitting for data of PV system price development in the 

Netherlands. 

 

Finally, using projected module cost data for the years 2013, 2020, and 2030 from the 

recently published Strategic Research Agenda from the European Photovoltaic 

Technology Platform,36 we will determine annual PV module market growth rates that 

will be needed to reach these module cost targets, based on extrapolation of the 

experience curve.  
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2. Theoretical considerations 

 

2.1. Experience curve 

 

An empirical relation has been reported to exist between the cost and the cumulative 

production in a wide range of products.1-3,5,7-9,14,15 A power function is generally used to 

describe this relation, although other functions have been proposed as well.37 Usually 

double logarithmic graphs clearly demonstrate a linear relationship, where the slope is a 

measure of learning or experience; hence the term learning or experience curves. Such a 

curve can be described as: 

 

m

x axc =    or in logarithmic form   xmacx logloglog +=   (1) 

 

in which xc  is the costs required to produce the xth unit of production, x the cumulative 

production up to and including the xth unit of production, a the costs required to produce 

the first unit, and m the measure of the rate of costs reduction as cumulative production 

increases. The constant parameter m also is denoted learning or experience parameter, 

and is used to calculate the progress ratio PR for cumulative doubling of production: 
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The learning rate LR is then defined as  
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PRLR −= 1         (3) 

 

Both progress ratio and learning rate are expressed in ratios or percentages. Values for 

progress ratios typically range from 1.0 (100%) to 0.6 (60%), with a mean around 0.8 

(80%).14,15 Note that in practice cost data are not readily available, and price is used as a 

proxy for cost. 

 

The error PRσ  in the progress ratio can be calculated from error propagation theory as 

given by, e.g., Bevington:38  
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in which mσ  is the error in parameter m, as resulting from the fitting procedure. 

 

 

2.2. Fitting 

 

The experience curve as shown in Eq. (1) can be generalized as: 

 

  ),;( maxfy =         (5) 

 

in which y is the dependent variable, x the independent variable, f() the function 

describing the dependency between y and x, and a and m the parameters used in the 
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function f(). The chi-square minimization is widely used as a standard way of defining 

the best fit: it minimizes the sum of the squares of the vertical deviations between the 

experimental curve and a (non)-linear theoretical curve of choice. The reduced chi-

square 2
rχ  is defined as:38 

 

22 1
( , ) ( ; , )r i i i

i

a m w y f x a m
n p

χ  
  

= −
− ∑     (6) 

 

in which n-p is the degrees of freedom, n is the number of data points (xi,yi), p the 

number of parameters (in this case 2, i.e., a and m), and wi the weight associated with 

the ith data point. Minimization of 2
rχ  is often done by using the Levenberg-Marquardt 

method,39,40 which is implemented in many (non)-commercial data analysis software 

tools, see e.g. Ref 41. Standard errors in parameters can be calculated as well using co-

variance matrices,38 in which the goodness of the fit is reflected, i.e., small errors 

correspond in general to a good fit. The error mσ  is used in determining the error in PR 

PRσ  as defined in Eq. (4). 

 

Two types of weighting methods will be applied: 1) no weighting, with 1=iw , and 2) 

instrumental weighting, with 21 iiw σ= , where iσ  are the errors in each data point 

when available, otherwise 1iσ = . 

 

Another way of determining a best fit involves the use of the coefficient of 

determination 2R  (also known as goodness-of-fit parameter), which is defined as the 

ratio of the regression sum of squares to the total sum of squares:38  
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The coefficient of determination 2R  varies between 0 and 1 and denotes the strength of 

association between y  and ( ; , )f x a m . Fitted data with 2R  values larger than 0.8 are 

considered strongly correlated, whereas fitted data with 2 0.25R <  are weakly 

correlated.38  
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3. Results and discussion 

 

3.1 Updated global PV experience curve 

 

The recent silicon feedstock supply shortage has had, and still has, a large influence on 

the feedstock price, and consequently on the module price. The theory underlying 

experience curves does not account for an increase in raw material costs. Instead, it is 

implicitly assumed that raw material prices (e.g. silicon, steel, copper, plastics, etc.) 

remain constant, and that production cost can be lowered incrementally by either 

becoming more and more efficient in the use of the material (thinner wafers), or 

substituting one material by another. Nemet has reported that indeed plant size and 

module efficiency together account for 73% of the module price reductions in the period 

1980-2001; only 12% reduction is due to silicon feedstock price reductions.27 A module 

cost analysis in the year 2000 showed that the feedstock constitutes about 30% to the 

module cost.42 Considering the present high feedstock price, an updated bottom-up 

study on cost distribution is warranted. It is desirable to update the PV experience on a 

regular basis to assess the progress in the PV industry, and to show how especially the 

crystalline silicon PV industry has coped with the feedstock problem. High material 

costs have already prompted a faster development in reducing wafer thickness leading 

to silicon usage of 10 g/Wp, compared to about 13 g/Wp a few years ago.36 When 

feedstock supply capacity is extended to cater for the growing needs of the crystalline 

silicon PV industry, the module price is expected to be decreasing faster than projected 

due to the wafer thickness developments.  
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For the construction of an updated crystalline silicon module experience curve including 

data up to 2006, we used as a starting point the data that were used in the PHOTEX 

project,16 which were based on the Strategies Unlimited dataset (1976-2001),29 which 

consists of average selling prices of photovoltaic power modules as a function of 

cumulative shipments. We then added data reported by Swanson for the years 2002 to 

2005.30 For the year 2006 we have used the market volume data reported by Photon 

International.32 Following the price trends of the average module price as revealed on 

the Solarbuzz website,43 we assumed that the module price of 2006 is equal to that of 

2005, as reported by Swanson.30 Thus, we arrive at the updated crystalline silicon PV 

module experience curve, as shown in Fig. 1. Note that the data have been converted to 

2006 US$, using appropriate deflators.44 Fitting the complete dataset yields 

PR=0.794±0.003, where we have determined the error using Eq. (4).  

 

3.2. Dependence of progress ratio error on R
2
  

 

In this section the effect of fit quality as expressed by the correlation coefficient R2 as a 

function of data spread around the best-fitted line is studied. The data used are the 

average selling prices of photovoltaic power modules in 2006 US$ as a function of 

cumulative shipments as shown in Fig. 1. Fit results for the original data points are used 

as the starting data, and are depicted as the solid line in Fig. 2.  

 

Data spread is introduced by changing the original data yi according to:  
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where rand() is a function that generates a random number between 0 and 1, r is the 

randomness parameter. In Fig. 2 seven datasets are shown that were generated with 

values of the randomness parameter r ranging from 1 to 200. Generally, the larger r, the 

wider the data spread around the original data. Results of fitting these seven curves are 

given in Table 1, where 2
rχ , 2R , PR, PRσ , and PR∆  are listed. Here, PR∆  is the 

difference of the progress ratio determined from data with various randomness 

parameters with the progress ratio determined from the original data. For most of the 

data in Table 1 PR∆  is larger than the error PRσ  determined from the fits. Note that 

PRσ  increases for increasing randomness of the data, while 2R decreases, as could be 

expected. 

 

The dataset presented in Fig. 2 was extended by generating more sets with randomness 

parameters in the range of 1-200. The progress ratio and associated error as a function 

of correlation coefficient 2R  for fits of these datasets are shown in Fig. 3. It can be 

inferred that a larger randomness parameter generally leads to worse fits. In addition, 

Fig. 3 illustrates that associated errors in progress ratio can be larger than the difference 

between original and generated data.  

 

The errors in PR determined from the fit reflect the quality of the fit. This can be clearly 

seen in Fig. 4 in which the dependence of progress ratio error PRσ  on correlation 

coefficient 2R  is shown. Progress ratios with associated R2<0.9 have appreciable errors 
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larger than 0.01. Such apparently small errors may lead to significant differences in 

scenario outcomes. From our data we infer that fits with R
2~0.95 lead to an error of 

close to 0.01 in the value of PR. Fits with R
2~0.98 lead to an error of 0.005 in PR. 

Hence, values of PR reported in three digits such as by Parente et al.
25 of PR=0.772 

with R2=0.988 for the period 1981-2000 are less accurate than suggested. Based on their 

R
2 value an error of at least 0.003 seems reasonable. 

 

 

3.3. Analysis of global PV experience curve  

 

The global crystalline silicon PV module experience curve is further analyzed by a 

moving average analysis. This is performed by moving a time window of 10-year 

duration over the data and by determining PRs from the best fits. The result is shown in 

Fig. 5. Three periods can be discerned of apparent constant PR. In the first period, with 

starting years from 1976 to 1983 the average PR is 0.810 ± 0.014. In the second period 

(starting years 1984-1987) we find an average PR of 0.834±0.005. Although the 

difference in PR values is significant, it is small. When averaging over the two periods 

we arrive at a PR of 0.818±0.017. For the period with starting years 1989 to 1992 the 

average PR is considerably lower at 0.717±0.004. Although the PRs of the first two 

periods do not differ much, albeit significant, the PR in the period 1989-1992 clearly is 

much lower. This break already appears in the starting year 1988, to be full from 1989 

onwards. From the starting year 1992 onwards, the PR is steadily increasing to reach 

0.75±0.02. For later starting years (1995-1997) the increase is more rapidly, due to the 

price increase in the years 2004-2006 resulting from the silicon feedstock problem. 
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Note, that also 2R  decreases for the later starting years. For a moving average analysis 

a duration of 10 years may be too short, as market effects such as a varying price-cost 

difference may be too influential. We have also used a 15 and 20 year time period and 

found smaller variations in both PR and R2 compared to the 10-year period.  

 

The analysis presented by Parente et al. also showed, using the Chow structural break 

test, that a statistically significant break occurs in the learning curve, however they 

reported the break to occur in 1991.25 Our analysis (Fig. 5) showed that the break 

already started in 1988. Further, Parente et al. reported for the period 1981-1990 a PR of 

0.798 (R2=0.977), while in the period 1991-2000 a 3% lower PR is determined of 0.774 

(R2=0.978).25 As they reported errors in the fitting parameter m, we can use these to 

determine the error in PR with Eq. (4). We thus arrive at the values shown in Table 2, in 

which also results of our own analysis of the original29 data of Fig. 1 are given for the 

indicated periods. Clearly, there are considerable differences between the analysis 

results. One possible explanation of this is the sources of data, which are not the same; 

however, this can not be ascertained.  

 

An open issue is whether or not progress ratios remain constant over time. Some authors 

assume that experience curves will flatten out with increasing market penetration.45 This 

has also been predicted for crystalline silicon modules,34 however present data for PV 

technology contradict this, when regarding data up to the starting year 1992. This 

improvement of progress ratio in the 1990s coincides with a period of relatively more 

R&D support in the early 1990s and a relatively lower market growth rate, see for more 

details Refs. 16,21,23. The increase in PR in the most recent years is entirely due to price 
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increase due to the silicon feedstock shortage, and not to a large market penetration, as 

electricity generated by PV constitutes a share which is far below 1%. 

 

 

3.4. Effect of errors in data on weighted fits 

 

We introduce various errors in the original data to assess the importance of weighting 

the fits and the influence of errors on the fitting results. The used errors for each data 

point are shown in Figure 6. Constant relative errors are used for all data of 1, 5, 10, 15, 

20, and 25%. In addition, linearly varying errors are used such that older data are 

considered more unreliable. Also, a combination of constant relative and linearly 

decreasing errors is used, denoted ‘slow linear’, to add another error series. A Poisson-

type error is calculated as 1
iy iyσ = . A random error is generated between 0 and 50%. 

Finally, a constant error of 1 $2006/Wp is used.  

 

The results of fitting the data where the errors are used as weights according to 

21 iiw σ=  are shown in Table 3. Using a constant error of 1 $2006/Wp is equivalent to 

using weights equal to unity, and therefore should yield identical results as obtained 

with non-weighted fitting. The results confirm this. An increasing value of the relative 

error, which is the same for every data point, yields increasing errors in PR; the value of 

PR and R2 do not change. This is in correspondence with the definition of 2
rχ .  

 

For the constant relative error cases, the error in the progress ratio PRσ  is smaller or 

similar than the difference PR∆  of the progress ratio determined from the weighted fits 
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with the progress ratio determined from the original data, except for the result with a 

constant relative error of 25%.  

 

Actual errors in the data points are not known. Assuming larger errors in earlier years 

and smaller errors in more recent years may be reasonable, if we assume that data 

quality is better for more recent years. The fitting results for the linearly decreasing 

errors show a quite low 2R  of 0.425 and a large PR∆  of 0.0103. This result is entirely 

due to the inclusion of the data of the years 2003-2006, with relatively small error. If we 

leave out the latter period and only fit the data between 1976 and 2002 we obtain 

2R =0.95978 and PR=0.789±0.007 with PR∆ =-0.005. The Poisson-type and constant 

error lead to larger errors in later years. This may be warranted by the fact that the 

present variation in system size and price may be larger than in earlier years, which may 

be substantiated by the fact that fitting the data leads to a smaller error in PR than in the 

case of smaller errors in the data in later years.  

 

From the weighted fits presented here we tentatively infer an absolute error of between 

0.005 and 0.010 to be a reasonable estimate for the error in PR, which is around 1%. 

Even if the errors in the data points are of the order of 10-20%, the resulting error in PR 

is an order of magnitude lower. We therefore can conclude that a relatively large 

variance in the individual data points (i.e., yearly averages) can be accepted without 

compromising the accuracy of the overall PR value. Further, from the table we can 

conclude that using weighted fits when errors are available leads to increased values of 

PRσ  with respect to un-weighted fitting for errors in data points larger than about 10%.  
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3.5. PV system price development in the Netherlands 

 

As an illustration of the weighted fitting approach described above we present an 

experience curve analysis of systems installed in the Netherlands in the period 1991-

2002. Data are taken from a database, which was constructed in the framework of the 

European PHOTEX project.16,23 The database contains price data for modules, system 

components and complete grid connected systems. Some 3500 records are available, 

being a representative sample for PV systems installed in France, Germany, Italy, the 

Netherlands. The original price data, in various local currencies, were converted to Euro 

of the year 2000, Euro2000. Most of the data are end-user prices of typical rooftop 

systems. Additional data was compiled from Dutch sources.46 It should be noted that 

determining a PR from system prices may not be correct as learning can be different for 

the various parts that constitute the system. Module price development takes place on a 

global level, whereas inverter and mounting development is much more local.16 

Nevertheless, the analysis here serves purely as an example of applying weighted 

fitting. 

 

Figure 7 shows the development of Dutch PV system price as a function of cumulative 

installed capacity, price information of 173 individual systems is depicted. For every 

year of installation the data were averaged to one data point. The standard deviation of 

the mean is used as error bars in these data points, see Fig. 7. Three ways of fitting are 

performed: 1) using individual data points; 2) un-weighted fitting of averaged data 

points; 3) weighted fitting of averaged data points where the errors are used for 
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weighting according to 21 iiw σ= . Results are shown in Table 4. The progress ratio 

determined from fitting all individual data points is somewhat larger than the one 

determined from averaged data, as a result of the fact that the majority of data points is 

of recent date, which emphasizes the recent data. Weighted fitting yields a PR of 

0.876±0.010. Weighting in this case lowers the associated error of PR from 0.016 to 

0.010. Note that the global module progress ratio is considerably lower, suggesting that 

in this case study either module prices did not follow world market prices or that 

balance-of-system (BOS) components such as inverter and mounting structure learned 

at a slower rate than modules.  

 

 

3.6. PV technology development outlook 

 

Using the experience curve as shown in Fig. 1, one can extrapolate the price 

development beyond the 1000 GW range, assuming that the PR will remain constant, 

within say 5%. Figure 8 shows an extrapolation up to 10000 GWp cumulative installed 

capacity, which would constitute about 1% of the global energy demand in 2050.47 It is 

then interesting to compare the extrapolated data with presently used PV technology 

R&D roadmaps. As an example, the Strategic Research Agenda as formulated by the 

European PV Technology Platform36 specifies cost targets for systems, modules, and 

BOS to be realistically reachable in the short (2013), medium (2020), and long (2030) 

term. The cost targets for modules are used for all flat-plate PV module technologies 

considered. They are 0.8-1.0 €/Wp, 0.60-0.75 €/Wp, and 0.3-0.4 €/Wp, for 2013, 2020, 

and 2030, respectively, and are shown in Fig. 8 as horizontal lines. For the conversion 
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from € to US$ we used the 2006 annual average interbank exchange rate of 1 

US$=0.797043 €.48 The cost ranges reflect the ranges in efficiency. Modules with lower 

efficiency need to be cheaper than modules with higher efficiency to yield comparable 

overall system cost.  

 

The amount of cumulative installed capacity required to attain the SRA cost targets can 

be calculated using Eqs. (1) and (2) to find: 

 

1

2006

2006

 
=  

 

m
t

t

c
x x

c
       (8) 

 

where 
t

x  and 2006x  are the cumulative capacities corresponding to the target year t and 

the year 2006, respectively, and 
t

c  and 2006c  the cost targets in $/Wp corresponding to 

the target year and the year 2006, respectively. Note that two cost targets are set per 

target year. Assuming a constant annual market growth rate 
a

r  one can find this rate 

knowing that the cost targets are set at a certain target year t, as follows:  

 

( )

1

2006

2006

1
− 

= − 
 

t
t

a

x
r

x
      (9) 

 

We thus derive a range in installed capacity of 49-96, 117-228, and 774-1841 GWp, for 

2013, 2020, and 2030, respectively. To reach these large amounts a sustained annual 

growth rate of the PV module capacity would be needed of 29-42, 21-27, and 21-25 %, 
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for 2013, 2020, and 2030, respectively. These numbers are somewhat lower than the 30-

40% annual increase of capacity as realized in the past 5-10 years,31,32 and may 

therefore be considered as feasible. Note that the experience curve used is based on 

price data, as cost data are not available. Assuming costs to be lower than prices, the 

numbers presented here would have to be adjusted accordingly, i.e., lowered somewhat, 

which brings the targets even closer in reach. A variation in PR of 1 or 5% up- or 

downwards yields values shown in Table 5, again illustrating the large effect of varying 

PR. Clearly, lower values of PR yield lower cumulative capacities for a specific target, 

with concomitant lower annual growth rates. The 0.8 €/Wp target in 2013 for 1 or 5% 

larger values of PR yields unrealistically large annual growth rates. Overall, the 2013 

targets constitute a large challenge for the industry to reach.  

 

 

4. Conclusion 

 

The consequences of a small variation of the assumed progress ratio for PV technology 

can be enormous in forecasting energy scenarios, such as the prediction of the societal 

cost of reaching break-even. Inclusion of an error in the progress ratio provides scenario 

developers with the smallest necessary range over which sensitivity studies should be 

done.  

 

The determination of progress ratio from experience curves should go along with 

determination of its error. This can easily be done in standard spreadsheet software, and 

we have presented the equation that can be used for the calculation of the error PRσ .  
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Fitting of data always yields a coefficient of determination R2, which should approach 

unity for a good fit. We have studied the relation of the error in the progress ratio with 

R
2. This error was found to be as large as 0.005 for R2 values of 0.98, while such values 

are considered representative of an excellent fit.  

 

In the case of crystalline silicon PV module technology development we have fitted the 

available price data of the period 1976-2001 and have determined PR=0.794±0.004. A 

moving average approach with a 10-year time window showed that the progress ratio is 

not constant. It varies from 0.818 ± 0.017 up to a starting year of 1987. For the period 

up to a starting year of 1992, the average PR is considerably lower at 0.717±0.004. This 

has been explained by an increased R&D support in the early 1990s and a relatively 

lower market growth rate leading to weak prices.16,21,23 For the most recent starting year 

1997, the average PR is considerably higher at 0.884±0.022, which can be explained by 

the silicon feedstock supply problem and capacity bottlenecks that causes module prices 

to rise.  

 

When available, error in individual data points can be used to perform weighted fits to 

lower the error in PR. An analysis of Dutch PV system price development over the 

period 1992-2002 shows that PR is 0.876±0.010, where the error is improved with 

respect to un-weighted fitting.  

 

The found progress ratio of PR=0.794 has been used to analyze the cost targets stated in 

the Strategic Research Agenda as formulated by the European PV Technology 
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Platform.36 Meeting these targets for the years 2013, 2020, and 2030 requires sustained 

annual growth rates of 21-42%, which is realistic. However, an increase of only 5% of 

the value of the progress ratio reaching 0.818 implies unrealistically high growth rates. 

Further, none of our analyses included non-crystalline silicon PV technologies, which 

also have large potential to meet the stated European targets.  
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Table 1. Results of fitting the data of Fig. 2 as a function of randomness parameter r. 

Experience curve data refer to the data in Fig. 1.  

 

 

Randomness parameter r 

Parameter Starting data 

1 5 10 50 100 150 200 

Experience 

curve data 

2
rχ  0 0.00094 0.06860.30429 2.592 15.1066831.1418977.89322 1.66594

2R  1 1.00000 0.999700.998390.98738 0.89775 0.88557 0.63282 0.99246

PR 0.79440 0.79467 0.7919 0.7948 0.797 0.814 0.800 0.83 0.794

PRσ  0 0.00008 0.0007 0.0014 0.004 0.011 0.014 0.02 0.003

PR∆  0 0.00030 -0.0025 0.0004 0.003 0.020 0.006 0.03 - 
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Table 2. Comparison of progress ratios determined from fitting various time periods. 

The errors in the results from Parente et al. are calculated from their data.25 The present 

study uses original data for the periods indicated as reported by Strategies 

Unlimited.16,29  

 

 

  1981-1990 1991-2000 1981-2000 

PR 0.798±0.010 0.774±0.011 0.772±0.010 

Parente et al 
2R  0.977 0.978 0.988 

PR 0.834±0.016 0.704±0.015 0.816±0.009 

Present study 
2R  0.913 0.975 0.954 
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Table 3. Results of weighted fitting of the experience curve data of Fig. 1 with the errors used as shown in Fig. 5.  

 

Constant relative error (%)  Original 

data 

Constant 

error  

(1 $/Wp) 

1 5 10 15 20 25 

Linear 

decreasing 

error 

Linear 

decreasing 

error, slow 

Poisson Random 

2
rχ  1.66594 1.66594 114.262 4.57048 1.14262 0.50783 0.28566 0.18282 5.51392 2.33622 1.94139 0.84941 

2R  0.99246 0.99246 0.96278 0.96278 0.96278 0.96278 0.96278 0.96278 0.42531 0.79193 0.99652 0.97038 

PR 0.794 0.794 0.8029 0.803 0.803 0.803 0.803 0.803 0.898 0.817 0.764 0.803 

PRσ  0.003 0.003 0.0004 0.002 0.004 0.006 0.008 0.010 0.007 0.007 0.002 0.003 

PR∆  - 0 0.0085 0.0085 0.0085 0.0085 0.0085 0.0085 0.103 0.022 -0.030 0.0085 
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Table 4. Results of fitting the Dutch system price data as depicted in Fig. 6.  

 

Averaged data with error bars 

Parameter Individual data points

Un-weighted Weighted 

2
rχ  4.58689 5.48399 0.7734

2R  0.53853 0.86144 0.93798

PR 0.899 0.879 0.876

PRσ  0.005 0.016 0.010

PR∆  0.023 0.002 0
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Table 5. The effect of a small (1 and 5%) up and downward variation in progress ratio on the cumulative installed capacity and sustained 

annual growth rate for the target years 2013, 2020, and 2030 as specified in the Strategic Research Agenda from the European Photovoltaic 

Technology Platform.36 The 2006 data used are 8.07 GWp installed capacity at 2.28 $/Wp. 

 Cost target (€/Wp) 
Cumulative capacity 

(GWp) 
Annual growth rate (%) 

PR variation  -5% -1% - +5% +3% -5% -1% - +1% +5% 

PR value  0.771 0.786 0.794 0.802 0.818 0.771 0.786 0.794 0.802 0.818 

2013 1.0 13.87 31.20 49.02 79.85 240.7 8.05 21.3 29.4 38.7 62.4 

 0.8 25.11 59.39 95.98 161.2 520.3 17.6 33.0 42.4 53.4 81.3 

2020 0.75 29.82 71.55 116.6 197.4 650.3 9.78 16.9 21.0 25.7 36.8 

 0.6 53.98 136.2 228.3 398.6 1406 14.5 22.4 26.9 32.1 44.6 

2030 0.4 158.7 438.9 774.0 1428 5707 13.2 18.1 20.9 24.1 31.4 

 0.3 341.0 1007 1841 3532 15421 16.9 22.2 25.4 28.8 37.0 
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Figure captions 

 

Figure 1. Updated crystalline silicon PV module experience curve showing average 

module price in 2006 US$ as a function of cumulative power module shipments. Data 

from Strategies Unlimited.29 are combined with data from Swanson30 and Hirschman et 

al.
32 

 

Figure 2. Effect of randomness parameter r on the average selling price in 2006 US$ as 

a function of cumulative power module shipments (MWp). Experience curve data refer 

to the data in Fig. 1. 

 

Figure 3. Calculated progress ratio and associated error as a function of correlation 

coefficient 2R  for fits of data generated with various randomness parameters in the 

range of 1-200. The right-hand side figure is an expansion of the left-hand side figure 

for 20.9 1R< < . 

 

Figure 4. Dependence of progress ratio error PRσ  on correlation coefficient 2R .  

 

Figure 5. Consecutive set of PRs and associated R2
 values determined from fits using 

10-year time windows over the experience curve data presented in Fig. 1. 

 

Figure 6. Relative errors used in comparing weighted and un-weighted fitting of the 

experience curve data of Fig. 1. 
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Figure 7. System price in Euro2000/Wp of PV systems installed in the Netherlands 

between 1992 and 2002 as a function of cumulative installed capacity (MWp). 

 

Figure 8. Extrapolated experience curve up to a cumulative installed capacity of 10000 

GWp, extending Fig. 1. Also indicated are the cost targets for the years 2013, 2020, and 

2030 as specified in the Strategic Research Agenda (SRA) from the European 

Photovoltaic Technology Platform,36 and the effects of a 1% and 5% up- and downward 

variation of the progress ratio.  
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Figure 1. 
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