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Abstract

Learning curves are extensively used in policy and scenario studies. Progress ratios
(PRs) are derived from historical data and are used for forecasting cost development of
many technologies, including photovoltaics (PV). Forecasts are highly sensitive to
uncertainties in the progress ratio. A progress ratio usually is determined together with
the coefficient of determination R, which should approach unity for a good fit of the
available data. Although the R’ is instructive, we recommend using the error in the PR
determined from the fit, because it is a direct measure of the range in PR values that is
recommended to be used in sensitivity analyses within scenario studies. We present a
simple equation to calculate the error in PR from the fit parameters.

In the case of crystalline PV module technology development we find a progress ratio
PR=0.794+0.003 by fitting price data of the period 1976-2006. A moving average
approach with a 10-year time window shows that PR varies from 0.818+0.017 up to a
starting year of 1987, and is reduced considerably to a minimum value of 0.7041£0.014
for the starting year 1991. For the most recent starting year 1997, the average PR is
considerably higher at 0.88410.022, highlighting the recent silicon feedstock supply
problem.

When available, error in individual data points can be used to perform weighted fits in
order to decrease fitting errors. To illustrate this approach, an analysis of Dutch PV
system price development over the period 1992-2002 shows that PR is 0.87610.010,
where the error is decreased with respect to un-weighted fitting.

The progress ratio PR=0.794 has been used to analyze the cost targets stated in the

Strategic Research Agenda as formulated by the European PV Technology Platform for
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the years 2013, 2020, and 2030. Assuming that such a PR is maintained, it is concluded
that these targets may be attained at sustained annual growth rates of 21-42%, which

seems feasible.

Keywords: Experience curve, learning curve, progress ratio, crystalline silicon PV

modules, error propagation, fitting, PV technology development
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1. Introduction

Learning or experience curves are widely used in policy and scenario studies in many
fields'® to account for and forecast technology development. These curves illustrate that
technical and economic performance of a technology increases substantially as
producers and consumers gain experience with this technology. Typically, production
costs are reduced sometimes by orders of magnitude. This phenomenon was first
described by Wright:” he reported that unit labour costs in airframe manufacturing
declined significantly with accumulated experience of the workers, and also that this
cost reduction was a constant percentage with every doubling of cumulative output.
Plotted on a double logarithmic scale this empirical relationship constitutes a straight
line, nowadays referred to as “learning curve”, as only the effects of learning-by-doing
are measured.® Of particular interest was to investigate “the possible future of airplane

cost”’

by extrapolation of this line. Arrow introduced the notion to general economics,
namely that this learning-induced cost reduction was the product of experience.” The
Boston Consultancy Group further extended the learning curve concept in two ways.'
Firstly, the concept was applied to the total cost of a product, thereby including other
learning mechanisms (such as RD&D and economies of scale), and other cost factors
(e.g., cost of capital, marketing, overhead). Secondly, the concept was applied not only
within a single company, but also to entire industries. In order to distinguish the curves
based on this broader approach from simple learning curves they were labelled

“experience curves’. Nevertheless, the term learning curve is sometimes also used as

synonym for experience curve.
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Long-range forecasts are used in planning possible future solutions to a range of socio-
economic problems, among which the climate problem is the most pressing.®'*"?
Developers of scenarios that include energy supply and demand and the use of
renewable energy technologies, prefer to use endogenous learning in which only one
parameter determines the rate of learning. Therefore experience curves are now used in
most leading climate-economy models, as recently reviewed by Kohler et al..'* Another
use is reported by Sandén for the assessment of PV subsidies.”” In many studies
experience curves have been constructed on the basis of historical data that sometimes
span 2-3 decades. From these curves one deduces the so-called “progress ratio” PR,
which is the relative amount of cost reduction per doubling of cumulative output. The
“learning rate” is then defined as one minus PR. Dutton and Thomas'* have analyzed
over one hundred experience curves for manufacturing firms and found progress ratios
between 0.6 and 1.0, with a mean of 0.8. McDonald and Schrattenholzer'®> have

collected data for energy technologies (26 data sets) and found a distribution of progress

ratios also between 0.6 and 1.0, but with a slightly higher mean of 0.84.

Given the empirical nature of the experience curve data and related inherent
uncertainties, the PR may vary somewhat when key parameters are changed such as the
assumptions about initial capacity installed, the associated start-off costs, the method of
aggregating annual data, correcting for inflation and varying exchange rates and
changing the learning system boundaries.'®!” Small changes in the PR value can lead to
strongly varying results in (long-term) scenarios and energy models, which rely on

. 181 .
experience curves to model endogenous learning. 19 In many climate-economy models



Progress in Photovoltaics ~ Accuracy of progress ratios  Van Sark ef al.  Page 6 of 48

the lack of uncertainty analysis is considered to be an important deficiency and

incorporation of uncertainties into such models is viewed as a major challenge."?

As an example why consideration of uncertainty is important we can consider PV
implementation scenarios. In such scenarios a relatively minor variation of the progress
ratio for PV has an enormous influence on the total “learning investment”, which is
defined as the cumulative excess cost for PV generation above the break-even level
where PV installations become competitive with conventional electricity generating
plants.?>*' Van der Zwaan and Rabl report that if the break-even system cost is taken as
1 $/Wp, the learning investment in PV systems is calculated to be 211 billion US$ for a
PR of 0.80, which is reduced to one-third for a progress ratio of 0.75.*° This example
clearly shows the sensitivity of the progress ratio, and indicates the need for adding an
uncertainty indication to the PR value, for example 0.80+0.05. Scenarios using PRs
should always include sensitivity studies to show the effect of different PRs, and the
given error should indicate the range of possible values. With the analyses presented in
this paper we aim to contribute to a better understanding of the uncertainties that are

introduced by the use of experience curve concepts into all kinds of scenario models.

Progress ratios for photovoltaic (PV) technology have been used to assess the prospects
and diffusion of PV.**** Harmon®* and Parente ef al.” recently updated PV experience
curves on the basis of crystalline silicon module price data from Maycock up to the year
2000.%% Harmon reported a PR of 0.798 with R2:0.9927,24 while Parente® showed that a
statistically significant break occurs in 1991: in the period 1981-1990 a PR was

determined of 0.798 (R2:0.977), while in the period 1991-2000 a 3% lower PR was
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determined of 0.774 (R°=0.978). Fitting the complete curve (period 1981-2000) yielded
PR=0.772 with R*=0.988. From the given values one is tempted to associate an error of
one digit, i.e., 0.001. However, this is too accurate, as we will show below. More
recently, Nemet”’ has compared crystalline silicon PV module experience curves on the
basis of two datasets and found PR values of 0.74 and 0.83, for datasets from
Maycock®® and Strategies Unlimited”, respectively. Although Nemet?’ does not attempt
to explain the PR differences from these two datasets, they appear to be primarily
caused by different data for the beginning of the experience curve, i.e., below 30 MW
cumulative capacity. A moving average analysis by Schaeffer et al. with a time window
of 10 years has shown that the PR may vary between 0.84 and 0.7 for 10-year periods
1

starting from 1976 to 1992, with low PR values in the most recent time-windows.”

Associated R*>-values are between 0.84 and 0.98.

More recently, Swanson” has added crystalline silicon module cost data up to 2005,
and reported a PR of 0.81. The recently occurring silicon feedstock supply shortage
problem, which results from the sustained high growth of the PV industry31'3 3 has led to
module price increases in the past years. This is expected to lead to an increase of the
progress ratio, as was indeed clearly perceptible in Swanson’s data.*® This effect will
become even more apparent from moving time analyses, as we will demonstrate below.
It is generally expected that this price increase is only temporarily, and the PV industry
will continue riding down the experience curve within a few years. In addition, other
types of modules based on thin films are expected to increase their present market share
of about 10%.” These thin films modules have a lower cost per Wp figure as well as

lower efficiency, and will definitely contribute to meeting mid- and long-term system
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cost goals. Although some attempts have been made to construct an experience curve
. o . 34 . .

separate from the crystalline silicon experience curve,” in this paper we focus on

crystalline silicon, as the data set is more complete and gives better insight in

experience curve development. Therefore, the PV experience curve presented in this

paper implicitly refers to the crystalline silicon module experience curve.

We can conclude from this review that substantial differences are found in PR values,
depending on the data source and the considered time period. In none of the reviewed
analyses the uncertainty in the progress ratio was determined, although the number of

digits suggest errors as small as 0.01 or even 0.001.

The determination of PR involves fitting of historical data that span one of more
decades, and resulting values for PR are given in two or three digits. In many cases, the
correlation coefficient R? associated with reported values for PR is not given,” therefore
data cannot be checked for reliability. In this paper we show that one can easily deduce
the error in PR from the definition of PR: it is expressed in the two constants that result
from the fit. Subsequently, we will present an updated PV experience curve including
data up to the year 2006, and we will determine the error in PR. We continue with a

212425 and deduce the error in PR from that

comparison of our data with reported data,
data. Performing a moving average analysis with a time window of 10 years of the

updated data will show the effect of the recent silicon feedstock shortage problem on the

PR: it approaches 0.9 for the time windows that include the most recent years.
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In most experience curve studies data for one year are plotted as one data point, while
apparently this data point is the result of averaging data collected from several sources
for that particular year. Upon averaging data the standard deviation in the mean can be
calculated, which can be shown in the graph by introducing error bars. Then, knowing
these error margins, a weighted fit can be performed, which may yield a different value
of PR in comparison to an un-weighted fit. We will perform weighted fits using various
errors to study the effect on the error in PR. As a further example, we will compare
weighted and un-weighted fitting for data of PV system price development in the

Netherlands.

Finally, using projected module cost data for the years 2013, 2020, and 2030 from the
recently published Strategic Research Agenda from the European Photovoltaic
Technology Platform,*® we will determine annual PV module market growth rates that
will be needed to reach these module cost targets, based on extrapolation of the

experience curve.
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2. Theoretical considerations

2.1. Experience curve

An empirical relation has been reported to exist between the cost and the cumulative
. . 1-3,5,7-9,14,15 L
production in a wide range of products. A power function is generally used to

describe this relation, although other functions have been proposed as well.”’

Usually
double logarithmic graphs clearly demonstrate a linear relationship, where the slope is a

measure of learning or experience; hence the term learning or experience curves. Such a

curve can be described as:

¢, =ax" orinlogarithmic form logc =loga+mlogx (1)

X

in which ¢, is the costs required to produce the x™ unit of production, x the cumulative

production up to and including the x™ unit of production, a the costs required to produce
the first unit, and m the measure of the rate of costs reduction as cumulative production
increases. The constant parameter m also is denoted learning or experience parameter,

and is used to calculate the progress ratio PR for cumulative doubling of production:

C m
PR=—2="22 2" (forx, = 2x,) )

c ax,

X

The learning rate LR is then defined as
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LR=1-PR 3)
Both progress ratio and learning rate are expressed in ratios or percentages. Values for
progress ratios typically range from 1.0 (100%) to 0.6 (60%), with a mean around 0.8

(80%).'*"> Note that in practice cost data are not readily available, and price is used as a

proxy for cost.

The error o, in the progress ratio can be calculated from error propagation theory as

given by, e.g., Bevington:*®

GPR:{d—mJ c,=In2-2"-0, =In2-PR-0, “4)

m

in which o, is the error in parameter m, as resulting from the fitting procedure.

2.2. Fitting
The experience curve as shown in Eq. (1) can be generalized as:
y = f(x;a,m) 5)

in which y is the dependent variable, x the independent variable, f{) the function

describing the dependency between y and x, and a and m the parameters used in the
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function f{). The chi-square minimization is widely used as a standard way of defining
the best fit: it minimizes the sum of the squares of the vertical deviations between the

experimental curve and a (non)-linear theoretical curve of choice. The reduced chi-

square y?2 is defined as:
2¥am=—1_S ]y~ fam)] (6)
n—ps&

in which n-p is the degrees of freedom, n is the number of data points (x;y;), p the
number of parameters (in this case 2, i.e., a and m), and w; the weight associated with
the " data point. Minimization of z2 is often done by using the Levenberg-Marquardt

39,40
d,

metho which is implemented in many (non)-commercial data analysis software

tools, see e.g. Ref *'. Standard errors in parameters can be calculated as well using co-
variance matrices,38 in which the goodness of the fit is reflected, i.e., small errors

correspond in general to a good fit. The error o, is used in determining the error in PR

Oz as defined in Eq. (4).

Two types of weighting methods will be applied: 1) no weighting, with w, =1, and 2)

instrumental weighting, with w, =1/6? , where o, are the errors in each data point

when available, otherwise o; =1.

Another way of determining a best fit involves the use of the coefficient of

determination R? (also known as goodness-of-fit parameter), which is defined as the

ratio of the regression sum of squares to the total sum of squares:3 8



Progress in Photovoltaics  Accuracy of progress ratios  Van Sark ef al. Page 13 of 48

2
Z{f(xi;a,m)—,l,Zyi] 7)
R2=¢ 12

o

1

The coefficient of determination R? varies between 0 and 1 and denotes the strength of

association between y and f(x;a,m). Fitted data with R? values larger than 0.8 are

considered strongly correlated, whereas fitted data with R2<025 are weakly

correlated.*®
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3. Results and discussion

3.1 Updated global PV experience curve

The recent silicon feedstock supply shortage has had, and still has, a large influence on
the feedstock price, and consequently on the module price. The theory underlying
experience curves does not account for an increase in raw material costs. Instead, it is
implicitly assumed that raw material prices (e.g. silicon, steel, copper, plastics, etc.)
remain constant, and that production cost can be lowered incrementally by either
becoming more and more efficient in the use of the material (thinner wafers), or
substituting one material by another. Nemet has reported that indeed plant size and
module efficiency together account for 73% of the module price reductions in the period
1980-2001; only 12% reduction is due to silicon feedstock price reductions.”” A module
cost analysis in the year 2000 showed that the feedstock constitutes about 30% to the
module cost.*” Considering the present high feedstock price, an updated bottom-up
study on cost distribution is warranted. It is desirable to update the PV experience on a
regular basis to assess the progress in the PV industry, and to show how especially the
crystalline silicon PV industry has coped with the feedstock problem. High material
costs have already prompted a faster development in reducing wafer thickness leading
to silicon usage of 10 g/Wp, compared to about 13 g/Wp a few years ago.’® When
feedstock supply capacity is extended to cater for the growing needs of the crystalline
silicon PV industry, the module price is expected to be decreasing faster than projected

due to the wafer thickness developments.
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For the construction of an updated crystalline silicon module experience curve including
data up to 2006, we used as a starting point the data that were used in the PHOTEX
project,'® which were based on the Strategies Unlimited dataset (1976-2001),> which
consists of average selling prices of photovoltaic power modules as a function of
cumulative shipments. We then added data reported by Swanson for the years 2002 to
2005.%° For the year 2006 we have used the market volume data reported by Photon
International.*> Following the price trends of the average module price as revealed on
the Solarbuzz website,”’ we assumed that the module price of 2006 is equal to that of
2005, as reported by Swanson.’® Thus, we arrive at the updated crystalline silicon PV
module experience curve, as shown in Fig. 1. Note that the data have been converted to
2006 US$, using appropriate deflators.** Fitting the complete dataset vyields

PR=0.794+0.003, where we have determined the error using Eq. (4).

3.2. Dependence of progress ratio error on R

In this section the effect of fit quality as expressed by the correlation coefficient R’asa
function of data spread around the best-fitted line is studied. The data used are the
average selling prices of photovoltaic power modules in 2006 US$ as a function of
cumulative shipments as shown in Fig. 1. Fit results for the original data points are used

as the starting data, and are depicted as the solid line in Fig. 2.

Data spread is introduced by changing the original data y; according to:
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v =y 14| randO-% |- (10)
Lot 21100

where rand() is a function that generates a random number between O and 1, r is the
randomness parameter. In Fig. 2 seven datasets are shown that were generated with
values of the randomness parameter r ranging from 1 to 200. Generally, the larger r, the

wider the data spread around the original data. Results of fitting these seven curves are

given in Table 1, where 7, R?, PR, Oy, and |Ap| are listed. Here,

Apg| is the
difference of the progress ratio determined from data with various randomness
parameters with the progress ratio determined from the original data. For most of the

data in Table 1 |Ap| is larger than the error o, determined from the fits. Note that

O, 1ncreases for increasing randomness of the data, while R2 decreases, as could be

expected.

The dataset presented in Fig. 2 was extended by generating more sets with randomness

parameters in the range of 1-200. The progress ratio and associated error as a function

of correlation coefficient R? for fits of these datasets are shown in Fig. 3. It can be
inferred that a larger randomness parameter generally leads to worse fits. In addition,
Fig. 3 illustrates that associated errors in progress ratio can be larger than the difference

between original and generated data.

The errors in PR determined from the fit reflect the quality of the fit. This can be clearly

seen in Fig. 4 in which the dependence of progress ratio error o, on correlation

coefficient R? is shown. Progress ratios with associated R°<0.9 have appreciable errors
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larger than 0.01. Such apparently small errors may lead to significant differences in
scenario outcomes. From our data we infer that fits with R°~0.95 lead to an error of
close to 0.01 in the value of PR. Fits with R°~0.98 lead to an error of 0.005 in PR.
Hence, values of PR reported in three digits such as by Parente et al.”> of PR=0.772
with R?=0.988 for the period 1981-2000 are less accurate than suggested. Based on their

R? value an error of at least 0.003 seems reasonable.

3.3. Analysis of global PV experience curve

The global crystalline silicon PV module experience curve is further analyzed by a
moving average analysis. This is performed by moving a time window of 10-year
duration over the data and by determining PRs from the best fits. The result is shown in
Fig. 5. Three periods can be discerned of apparent constant PR. In the first period, with
starting years from 1976 to 1983 the average PR is 0.810 = 0.014. In the second period
(starting years 1984-1987) we find an average PR of 0.834%0.005. Although the
difference in PR values is significant, it is small. When averaging over the two periods
we arrive at a PR of 0.81810.017. For the period with starting years 1989 to 1992 the
average PR is considerably lower at 0.717£0.004. Although the PRs of the first two
periods do not differ much, albeit significant, the PR in the period 1989-1992 clearly is
much lower. This break already appears in the starting year 1988, to be full from 1989
onwards. From the starting year 1992 onwards, the PR is steadily increasing to reach
0.75%0.02. For later starting years (1995-1997) the increase is more rapidly, due to the

price increase in the years 2004-2006 resulting from the silicon feedstock problem.
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Note, that also R? decreases for the later starting years. For a moving average analysis
a duration of 10 years may be too short, as market effects such as a varying price-cost
difference may be too influential. We have also used a 15 and 20 year time period and

found smaller variations in both PR and R’ compared to the 10-year period.

The analysis presented by Parente et al. also showed, using the Chow structural break
test, that a statistically significant break occurs in the learning curve, however they
reported the break to occur in 1991.*° Our analysis (Fig. 5) showed that the break
already started in 1988. Further, Parente et al. reported for the period 1981-1990 a PR of
0.798 (R2:0.977), while in the period 1991-2000 a 3% lower PR is determined of 0.774
(R’=0.978).” As they reported errors in the fitting parameter m, we can use these to
determine the error in PR with Eq. (4). We thus arrive at the values shown in Table 2, in
which also results of our own analysis of the original® data of Fig. 1 are given for the
indicated periods. Clearly, there are considerable differences between the analysis
results. One possible explanation of this is the sources of data, which are not the same;

however, this can not be ascertained.

An open issue is whether or not progress ratios remain constant over time. Some authors
assume that experience curves will flatten out with increasing market penetration.*” This
has also been predicted for crystalline silicon modules,”* however present data for PV
technology contradict this, when regarding data up to the starting year 1992. This
improvement of progress ratio in the 1990s coincides with a period of relatively more
R&D support in the early 1990s and a relatively lower market growth rate, see for more

details Refs. '®*"**. The increase in PR in the most recent years is entirely due to price
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increase due to the silicon feedstock shortage, and not to a large market penetration, as

electricity generated by PV constitutes a share which is far below 1%.

3.4. Effect of errors in data on weighted fits

We introduce various errors in the original data to assess the importance of weighting
the fits and the influence of errors on the fitting results. The used errors for each data
point are shown in Figure 6. Constant relative errors are used for all data of 1, 5, 10, 15,
20, and 25%. In addition, linearly varying errors are used such that older data are
considered more unreliable. Also, a combination of constant relative and linearly
decreasing errors is used, denoted ‘slow linear’, to add another error series. A Poisson-

type error is calculated as oy, = 1/ JYi - A random error is generated between 0 and 50%.

Finally, a constant error of 1 $00¢/Wp is used.

The results of fitting the data where the errors are used as weights according to
w, = 1/ O'f are shown in Table 3. Using a constant error of 1 $500¢/Wp is equivalent to

using weights equal to unity, and therefore should yield identical results as obtained
with non-weighted fitting. The results confirm this. An increasing value of the relative

error, which is the same for every data point, yields increasing errors in PR; the value of

PR and R? do not change. This is in correspondence with the definition of 2.

For the constant relative error cases, the error in the progress ratio o, is smaller or

similar than the difference |Ap| of the progress ratio determined from the weighted fits
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with the progress ratio determined from the original data, except for the result with a

constant relative error of 25%.

Actual errors in the data points are not known. Assuming larger errors in earlier years
and smaller errors in more recent years may be reasonable, if we assume that data

quality is better for more recent years. The fitting results for the linearly decreasing
errors show a quite low R? of 0.425 and a large |Apg| of 0.0103. This result is entirely

due to the inclusion of the data of the years 2003-2006, with relatively small error. If we

leave out the latter period and only fit the data between 1976 and 2002 we obtain

R?=0.95978 and PR=0.789+0.007 with |Apg|=-0.005. The Poisson-type and constant

error lead to larger errors in later years. This may be warranted by the fact that the
present variation in system size and price may be larger than in earlier years, which may
be substantiated by the fact that fitting the data leads to a smaller error in PR than in the

case of smaller errors in the data in later years.

From the weighted fits presented here we tentatively infer an absolute error of between
0.005 and 0.010 to be a reasonable estimate for the error in PR, which is around 1%.
Even if the errors in the data points are of the order of 10-20%, the resulting error in PR
is an order of magnitude lower. We therefore can conclude that a relatively large
variance in the individual data points (i.e., yearly averages) can be accepted without
compromising the accuracy of the overall PR value. Further, from the table we can
conclude that using weighted fits when errors are available leads to increased values of

o With respect to un-weighted fitting for errors in data points larger than about 10%.
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3.5. PV system price development in the Netherlands

As an illustration of the weighted fitting approach described above we present an
experience curve analysis of systems installed in the Netherlands in the period 1991-
2002. Data are taken from a database, which was constructed in the framework of the
European PHOTEX project.'®® The database contains price data for modules, system
components and complete grid connected systems. Some 3500 records are available,
being a representative sample for PV systems installed in France, Germany, Italy, the
Netherlands. The original price data, in various local currencies, were converted to Euro
of the year 2000, Euroypp. Most of the data are end-user prices of typical rooftop
systems. Additional data was compiled from Dutch sources.*® It should be noted that
determining a PR from system prices may not be correct as learning can be different for
the various parts that constitute the system. Module price development takes place on a
global level, whereas inverter and mounting development is much more local.'®

Nevertheless, the analysis here serves purely as an example of applying weighted

fitting.

Figure 7 shows the development of Dutch PV system price as a function of cumulative
installed capacity, price information of 173 individual systems is depicted. For every
year of installation the data were averaged to one data point. The standard deviation of
the mean is used as error bars in these data points, see Fig. 7. Three ways of fitting are
performed: 1) using individual data points; 2) un-weighted fitting of averaged data

points; 3) weighted fitting of averaged data points where the errors are used for
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weighting according to w, = 1/ o’ . Results are shown in Table 4. The progress ratio

determined from fitting all individual data points is somewhat larger than the one
determined from averaged data, as a result of the fact that the majority of data points is
of recent date, which emphasizes the recent data. Weighted fitting yields a PR of
0.87620.010. Weighting in this case lowers the associated error of PR from 0.016 to
0.010. Note that the global module progress ratio is considerably lower, suggesting that
in this case study either module prices did not follow world market prices or that
balance-of-system (BOS) components such as inverter and mounting structure learned

at a slower rate than modules.

3.6. PV technology development outlook

Using the experience curve as shown in Fig. 1, one can extrapolate the price
development beyond the 1000 GW range, assuming that the PR will remain constant,
within say 5%. Figure 8 shows an extrapolation up to 10000 GWp cumulative installed
capacity, which would constitute about 1% of the global energy demand in 2050.*” 1t is
then interesting to compare the extrapolated data with presently used PV technology
R&D roadmaps. As an example, the Strategic Research Agenda as formulated by the
European PV Technology Platform™ specifies cost targets for systems, modules, and
BOS to be realistically reachable in the short (2013), medium (2020), and long (2030)
term. The cost targets for modules are used for all flat-plate PV module technologies
considered. They are 0.8-1.0 €/Wp, 0.60-0.75 €/Wp, and 0.3-0.4 €/Wp, for 2013, 2020,

and 2030, respectively, and are shown in Fig. 8 as horizontal lines. For the conversion
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from € to US$ we used the 2006 annual average interbank exchange rate of 1
US$=0.797043 €.*® The cost ranges reflect the ranges in efficiency. Modules with lower
efficiency need to be cheaper than modules with higher efficiency to yield comparable

overall system cost.

The amount of cumulative installed capacity required to attain the SRA cost targets can

be calculated using Egs. (1) and (2) to find:

1
— Ct "
X = X2006 3)
C2006

where x, and x,,, are the cumulative capacities corresponding to the target year ¢ and
the year 2006, respectively, and ¢, and c,,, the cost targets in $/Wp corresponding to

the target year and the year 2006, respectively. Note that two cost targets are set per

target year. Assuming a constant annual market growth rate r, one can find this rate

knowing that the cost targets are set at a certain target year ¢, as follows:

(1—2006)
T, =[ ~ ] -1 ©)
X2006

We thus derive a range in installed capacity of 49-96, 117-228, and 774-1841 GWp, for
2013, 2020, and 2030, respectively. To reach these large amounts a sustained annual

growth rate of the PV module capacity would be needed of 29-42, 21-27, and 21-25 %,
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for 2013, 2020, and 2030, respectively. These numbers are somewhat lower than the 30-

40% annual increase of capacity as realized in the past 5-10 years,”'*

and may
therefore be considered as feasible. Note that the experience curve used is based on
price data, as cost data are not available. Assuming costs to be lower than prices, the
numbers presented here would have to be adjusted accordingly, i.e., lowered somewhat,
which brings the targets even closer in reach. A variation in PR of 1 or 5% up- or
downwards yields values shown in Table 5, again illustrating the large effect of varying
PR. Clearly, lower values of PR yield lower cumulative capacities for a specific target,
with concomitant lower annual growth rates. The 0.8 €/Wp target in 2013 for 1 or 5%

larger values of PR yields unrealistically large annual growth rates. Overall, the 2013

targets constitute a large challenge for the industry to reach.

4. Conclusion

The consequences of a small variation of the assumed progress ratio for PV technology
can be enormous in forecasting energy scenarios, such as the prediction of the societal
cost of reaching break-even. Inclusion of an error in the progress ratio provides scenario
developers with the smallest necessary range over which sensitivity studies should be

done.

The determination of progress ratio from experience curves should go along with
determination of its error. This can easily be done in standard spreadsheet software, and

we have presented the equation that can be used for the calculation of the error oy .
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Fitting of data always yields a coefficient of determination R’, which should approach
unity for a good fit. We have studied the relation of the error in the progress ratio with
R’. This error was found to be as large as 0.005 for R? values of 0.98, while such values

are considered representative of an excellent fit.

In the case of crystalline silicon PV module technology development we have fitted the
available price data of the period 1976-2001 and have determined PR=0.794+0.004. A
moving average approach with a 10-year time window showed that the progress ratio is
not constant. It varies from 0.818 = 0.017 up to a starting year of 1987. For the period
up to a starting year of 1992, the average PR is considerably lower at 0.717£0.004. This
has been explained by an increased R&D support in the early 1990s and a relatively
lower market growth rate leading to weak prices.'®*'** For the most recent starting year
1997, the average PR is considerably higher at 0.884+0.022, which can be explained by
the silicon feedstock supply problem and capacity bottlenecks that causes module prices

to rise.

When available, error in individual data points can be used to perform weighted fits to
lower the error in PR. An analysis of Dutch PV system price development over the

period 1992-2002 shows that PR is 0.8761£0.010, where the error is improved with

respect to un-weighted fitting.

The found progress ratio of PR=0.794 has been used to analyze the cost targets stated in

the Strategic Research Agenda as formulated by the European PV Technology
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Platform.”® Meeting these targets for the years 2013, 2020, and 2030 requires sustained
annual growth rates of 21-42%, which is realistic. However, an increase of only 5% of
the value of the progress ratio reaching 0.818 implies unrealistically high growth rates.
Further, none of our analyses included non-crystalline silicon PV technologies, which

also have large potential to meet the stated European targets.
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Table 1. Results of fitting the data of Fig. 2 as a function of randomness parameter r.

Experience curve data refer to the data in Fig. 1.

|p Randomness parameter r [Experience]
arameter|Starting datal
1 5 10 50 100 150 200 [curve data
Ve 0 0.00094{ 0.0686/0.30429 2.592(15.10668|31.14189(77.89322] 1.66594
R? 1 1.00000§0.9997010.99839|0.98738| 0.89775| 0.88557| 0.63282] 0.99246
PR 0.79440 [0.79467| 0.7919| 0.7948| 0.797] 0.814]  0.800 0.83 0.794
Opr 0 0.00008[ 0.0007| 0.0014{ 0.004f 0.011] 0.014 0.02 0.003
|Ape| 0 0.00030(-0.0025| 0.0004{ 0.003[ 0.020, 0.006 0.03 -
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Table 2. Comparison of progress ratios determined from fitting various time periods.
The errors in the results from Parente et al. are calculated from their data.”” The present
study uses original data for the periods indicated as reported by Strategies

Unlimited.'%?

1981-1990 1991-2000 1981-2000
PR 0.798+0.010 0.774£0.011 0.772+0.010
Parente et al
R2 0.977 0.978 0.988
PR 0.834+0.016 0.70410.015 0.816+0.009
Present study
R2 0.913 0.975 0.954
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Table 3. Results of weighted fitting of the experience curve data of Fig. 1 with the errors used as shown in Fig. 5.

Original | Constant | Constant relative error (%) Linear Linear Poisson | Random

data error 1 5 10 15 20 25 decreasing | decreasing

(1 $/Wp) error error, slow
x| 1.66594 1.66594 | 114.262 | 4.57048 | 1.14262 | 0.50783 | 0.28566 | 0.18282 5.51392 2.33622 | 1.94139 | 0.84941
R? | 0.99246 0.99246 | 0.96278 | 0.96278 | 0.96278 | 0.96278 | 0.96278 | 0.96278 0.42531 0.79193 | 0.99652 | 0.97038
PR 0.794 0.794 | 0.8029 0.803 0.803 0.803 0.803 0.803 0.898 0.817 0.764 0.803
Opr 0.003 0.003 | 0.0004 0.002 0.004 0.006 0.008 0.010 0.007 0.007 0.002 0.003
[Ag| | - 0| 0.0085| 0.0085| 0.0085| 0.0085| 0.0085 | 0.0085 0.103 0.022 | -0.030 0.0085
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Table 4. Results of fitting the Dutch system price data as depicted in Fig. 6.

Accuracy of progress ratios  Van Sark et al.

Averaged data with error bars
[ParameterfIndividual data points
Un-weighted | Weighted

Ve 4.58689 5.48399 0.7734

R? 0.53853 0.86144 0.93798

PR 0.899 0.879 0.876
Opr 0.005 0.016 0.010

[ A 0.023 0.002 0

Page 37 of 48
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Table 5. The effect of a small (1 and 5%) up and downward variation in progress ratio on the cumulative installed capacity and sustained
annual growth rate for the target years 2013, 2020, and 2030 as specified in the Strategic Research Agenda from the European Photovoltaic

Technology Platform.*® The 2006 data used are 8.07 GWp installed capacity at 2.28 $/Wp.

Cumulative capacity
Cost target (€/Wp) Annual growth rate (%)
(GWp)
PR variation 5% | -1% - +5% | +3% | -5% | -1% - +1% | +5%
PR value 0.771 | 0.786 | 0.794 | 0.802 | 0.818 | 0.771 | 0.786 | 0.794 | 0.802 | 0.818
2013 1.0 13.87 | 31.20 | 49.02 | 79.85 | 240.7 | 8.05 | 21.3 | 294 | 38.7 | 624
0.8 25.11 15939 19598 | 161.2 | 5203 | 17.6 | 33.0 | 424 | 534 | 81.3
2020 0.75 29.82 | 71.55 | 116.6 | 197.4 | 650.3 | 9.78 | 169 | 21.0 | 25.7 | 36.8
0.6 53.98 | 136.2 | 228.3 | 398.6 | 1406 | 14.5 | 224 | 26.9 | 32.1 | 44.6
2030 0.4 158.7 | 438.9 | 774.0 | 1428 | 5707 | 13.2 | 18.1 | 209 | 24.1 | 314
0.3 341.0 | 1007 | 1841 | 3532 | 15421 | 169 | 222 | 254 | 28.8 | 37.0
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Figure captions

Figure 1. Updated crystalline silicon PV module experience curve showing average
module price in 2006 US$ as a function of cumulative power module shipments. Data

from Strategies Unlimited.” are combined with data from Swanson™ and Hirschman et

32
al.

Figure 2. Effect of randomness parameter r on the average selling price in 2006 USS$ as
a function of cumulative power module shipments (MWp). Experience curve data refer

to the data in Fig. 1.

Figure 3. Calculated progress ratio and associated error as a function of correlation

coefficient R? for fits of data generated with various randomness parameters in the

range of 1-200. The right-hand side figure is an expansion of the left-hand side figure

for 0.9<R?<1.

Figure 4. Dependence of progress ratio error o, on correlation coefficient R?.

Figure 5. Consecutive set of PRs and associated R° values determined from fits using

10-year time windows over the experience curve data presented in Fig. 1.

Figure 6. Relative errors used in comparing weighted and un-weighted fitting of the

experience curve data of Fig. 1.
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Figure 7. System price in Eurospo/Wp of PV systems installed in the Netherlands

between 1992 and 2002 as a function of cumulative installed capacity (MWp).

Figure 8. Extrapolated experience curve up to a cumulative installed capacity of 10000
GWp, extending Fig. 1. Also indicated are the cost targets for the years 2013, 2020, and
2030 as specified in the Strategic Research Agenda (SRA) from the European
Photovoltaic Technology Platform,” and the effects of a 1% and 5% up- and downward

variation of the progress ratio.
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