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a b s t r a c t

Here we evaluate the performance and limitations of two frequently used model-types to predict trace
element solubility in soils: regression based “partition-relations” and thermodynamically based “multi-
surfacemodels”, for a large set of elements. For this purpose partition-relations were derived for As, Ba, Cd,
Co, Cr, Cu, Mo, Ni, Pb, Sb, Se, V, Zn. The multi-surface model included aqueous speciation, mineral equi-
libria, sorption to organic matter, Fe/Al-(hydr)oxides and clay. Both approaches were evaluated by their
application to independent data for a wide variety of conditions. We conclude that Freundlich-based
partition-relations are robust predictors for most cations and can be used for independent soils, but
within the environmental conditions of the data used for their derivation. The multisurface model is
shown to be able to successfully predict solution concentrations over awide range of conditions. Predicted
trends for oxy-anions agreewell for both approaches but with larger (random) deviations than for cations.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Solid solution partitioning and solution speciation largely
determine the availability of trace elements to biota and their
mobility in soils. Models are frequently used tools to evaluate trace
metal speciation in soils, for instance in relation with leaching and
runoff (Tipping et al., 2006; Bonten et al., 2008b) and bioavailability
(Thakali et al., 2006). Two distinct approaches are used to describe
solid-solution partitioning in soils: (i) Empirical “partition-rela-
tions” relate the partitioning of elements to soil properties like pH
and SOM. Model coefficients for such relations are generally
derived from data of soil and corresponding solution extracts using
(multiple) linear regression analysis (Sauvé et al., 2000); (ii) Process
based “multisurface models” describe the various processes and
interactions between the soil solution and reactive surfaces by
combining separate models for ion-binding to the distinguished
reactive surfaces (Bonten et al., 2008a). Intrinsic model parameters
are derived from laboratory experiments on isolated or synthesized
model systems (Dzombak and Morel, 1990; Milne et al., 2003). In
the development of these two categories of models different

choices have been made that determine their performance and the
width of their applicability.

1.1. Empirical partition-relations

Sorption data of trace elements to individual soils have been
fitted successfully using Langmuir or Freundlich type models or
a constant distribution coefficient (Kd) for a limited concentration
range. Such empirical partition-relations lump sorption mecha-
nisms including chemisorption, electrostatic sorption and surface
precipitation to various reactive surfaces in soils including organic
matter, clay and metal oxides. Adsorption constants may vary by
orders of magnitude among soils and environmental conditions
(Sauvé et al., 2000). To widen the applicability of partition-relations
to various soils and environmental conditions, distribution coeffi-
cients (Kd-relation) (Janssen et al., 1997; Sauvé et al., 2000) have
been related to soil properties. To account for non-linearity at larger
concentration intervals, also Freundlich type partition-relations
have been derived. Depending on the parameter for which the
relation is optimized, these can be classified (Groenenberg et al.,
2010b) as: (i) CeQ relations directly relating solution concentra-
tions (C) to solid phase concentrations (Q) and soil properties
(Sauvé et al., 2000) or vice versa (ii) QeC relations (Elzinga et al.,
1999) and (iii) Kf-relations by relating the adsorption constant Kf
to soil properties (Groenenberg et al., 2010b). Partition relations are
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available to predict either the total (Janssen et al., 1997; Sauvé et al.,
2000) or the free metal ion concentration in solution (Sauvé et al.,
1997a; Tipping et al., 2003; Groenenberg et al., 2010b). Methodo-
logical aspects are described in two recent publications (Degryse
et al., 2009; Groenenberg et al., 2010b). The empirical approach is
popular because of its simplicity, low data demand and short
computing time, which makes these models easy to use in large
scale (regional) applications (Bonten et al., 2008b; De Vries et al.,
2008) and broadly accessible web-applications.

1.2. Process based multisurface modeling

Multisurface models combine thermodynamic models for inor-
ganic speciation and mineral equilibria with separate models for ion
binding to various reactive surfaces (also referred to as surface
complexation). The explicit consideration of the underlyingmolecular
processes distinguishes multisurface models from the partition rela-
tions in which all these processes are lumped into a single equation.
The ion binding models are based on general thermodynamical
principles. However, the complexity of ion binding to heterogeneous
surfaces, especially organicmatter, requires simplifications in order to
obtainmodels that are feasible in practice (Van Riemsdijk et al., 2006).
Model parameters are obtained by fitting the model to adsorption
data for single reactive surfaces inwell-defined experimental systems.
Althoughby thenature of this parameterization thesemodelsmaynot
be considered truly mechanistic, they distinguish explicitly between
electrostatic and ion-specific binding and account for competition
between ions. This makes these models independent of environ-
mental conditions (e.g. pH, ionic strength) and suitable for predictions
outside the range of conditions at which the parameters were fitted
(Koopal et al., 2001). The intrinsic model parameters of the surface
complexation models are usually derived for a large range of element
concentrations and conditions (Dzombak and Morel, 1990; Milne
et al., 2003). Within model applications to natural waters and soils
(Benedetti et al., 1996; Lofts and Tipping, 1998; Weng et al., 2001;
Tipping et al., 2003; Gustafsson, 2006; Almas et al., 2007; Bonten
et al., 2008a; Butler et al., 2008; Dijkstra et al., 2009) a few models
are notably frequently used. The NICA-Donnan model (Kinniburgh
et al., 1999), WHAM-Model V/VI (Tipping, 1998) and related models
(Gustafsson, 2001) are most often used to describe ion binding to
organic matter. Ion binding to Al/Fe/Mn-(hydr)oxides is frequently
modeled using the generalized two layer model (GTLM) (Dzombak
and Morel, 1990) developed for ion-binding to hydrous ferric oxide
(HFO) and/or CD-MUSIC (Hiemstra and Van Riemsdijk,1996) that was
developed originally for ion-binding to crystalline ferric oxide. The
availability of extended sets of genericmodel parameters for theNICA-
Donnan model (Milne et al., 2003) and the GTLM model (Dzombak
and Morel, 1990) has strongly facilitated their applicability. To date,
multisurface models have been used primarily to aid our under-
standing of complex natural systems. However, their generic basis
makes them also suitable for generic risk assessments, e.g., as
demonstrated for the derivation of limits for contaminant emission
from construction materials to protect soil and groundwater
(Verschoor et al., 2008).

1.3. Generic model application and aim of the study

In this study we compare the performance of both types of
models independently in view of their application in science, risk
assessment and legislation. Although fitting of models may give
better results for individual cases from which the fitted parameters
are derived, it also leads to conditionality. Here we have explicitly
selected generic models because we aim for a generic applicability.
When applying partition models, attention should be paid to
conditionality resulting from: (i) the choice of parameters

incorporated in themodel, whichmay vary from one parameter, e.g.
pH (Sauvé et al., 2000), or few parameters e.g. pH, SOM (Sauvé et al.,
2000; Groenenberg et al., 2010b) to multiple parameters (Janssen
et al., 1997; Elzinga et al., 1999); (ii) the soil types included in the
derivation set, ranging from a specific group of, e.g. organic, soils
(Tipping et al., 2003) to a large variety of soil types (Groenenberg
et al., 2010b); (iii) the simplicity of the model which lumps several
processes, e.g. by using only a single coefficient for the pH depen-
dence of ion-binding to both organic matter and oxides, hydrolysis
and the pH-dependent concentration of important competing
cations such as Al, Fe and Ca, and (iv) the optimizationmethod of the
model, which allows either the prediction of solution concentrations
(CeQ), solid phase concentrations (QeC) or sorption constant (Kd/Kf)
(Groenenberg et al., 2010b). Multisurface models are hypothesized
to be less conditional and give better predictions for awider range of
conditions. In these models, conditionality may arise from specific
choices in model setup and parameterization, e.g. the selection of
reactive surfaces, and appropriatemineral equilibria that control the
element solubility at high concentrations (Bonten et al., 2008a).

It is not yet clear to which extent the conditional character of
partition-relations permits their use to predict trace element solu-
bility in particularly the following situations: (1) for soils that are not
part of the dataset that was used for their derivation; (2) for condi-
tions/soil properties outside the domain of the derivation set; and (3)
at changing environmental conditions (e.g. pH) for individual soils. In
the context of their generic application, the aim of this study is to
independently evaluate both approaches for a large range of
elements, including metal cations and oxy-anions, with regard to
their accuracy to predict solution concentrations, and to identify the
ranges of conditions for which they can be applied. Previous studies
were either limited to the evaluation of multisurface models (Lofts
and Tipping, 1998; Weng et al., 2001; Gustafsson and Van Schaik,
2003; Schröder et al., 2005; Bonten et al., 2008a; Dijkstra et al.,
2009) or partition-relations (Janssen et al., 1997; Sauvé et al., 2000;
Tipping et al., 2003) separately. Moreover, these studies have only
evaluated the performance of partition relations to fit the data from
which they were derived. We found only one study, limited to
a single soil type, inwhich both approacheswere evaluated to predict
the concentrations of four metals (Cd, Cu, Pb, Zn) on independent
data (Vijver et al., 2008). Here we present newly-derived partition-
relations for a large number of elements, i.e. As, Ba, Cd, Co, Cr, Cu, Mo,
Ni, Pb, Sb, Se, V and Zn, and results of both their performance, and
that of amultisurfacemodel, on independent data for a large range of
element concentrations, soils and environmental (yet limited to
moderately oxidized) conditions.

2. Materials and methods

2.1. Derivation of partition-relations

We derived Freundlich-type partition-relations, specifically CeQ relations as
being the most representative presently used (Sauvé et al., 2000; Tipping et al.,
2003; Vijver et al., 2008; Groenenberg et al., 2010b; Rodrigues et al., 2010).
Furthermore these relations have been shown to be the best predictor for solution
concentrations (Sauvé et al., 2000; Groenenberg et al., 2010b) because their
parameters are optimized to minimize the error in the predicted solution concen-
tration. We used an extended set of potential model coefficients (Eq. (1)) and
a dataset with a large variety in soil types, soil properties, element concentrations
and environmental conditions for the derivation of the partition-relations, to
minimize the conditionality with respect to points (i, ii) listed in the introduction:

logC¼a0þa1$logQþa2$logSOMþa3$logclayþa4$logAlFeoxþa5$logDOCþa6$pH
(1)

With C¼ element concentration in solution (mol L�1), Q¼ (reactive) element
content, extracted with 0.43 M HNO3 (mol.kg�1), SOM¼ soil organic matter content
(%), DOC¼ dissolved organic carbon (mg L�1), clay¼ clay content (%), and AlFeox the
sum of oxalate extractable Al and Fe (mmol kg�1). The coefficients of Eq. (1) were
derived by multiple regression (Genstat Release 12.1) using dataset NL only
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(Groenenberg et al., 2010b). Soil characteristics are listed in Table 1; correlations
between the parameters are listed in Table S-2 of the supporting information. All
possible combinations of parameters in Eq. (1) were evaluated by stepwise regres-
sion but only those parameters were chosen which added to the explained variance
(Radj2 ) andwere significant at the 0.005 probability level. Dataset NL includes reactive
element contents, soil properties, analyses of various solution extracts (Table S-1
supporting information) for Cd, Cu, Ni, Pb and Zn (118 soils, 403 solution extracts)
and As, Ba, Co, Cr, Mo, Sb, Se, V (70 soils, 70 0.01M CaCl2-extracts,).

2.2. Multisurface model

The multisurface model setup was adopted from Dijkstra et al. (2009). The
model includes the NICA-Donnan model (Kinniburgh et al., 1999) for ion binding to
SOM and dissolved organic matter (DOM), the generalized two layer model (GTLM)
(Dzombak and Morel, 1990) for ion binding to Fe /Al(hydr)oxides and a Donnan
model for binding to clay. Model inputs include (1) “reactive” contents, extracted
with 0.43 M HNO3, of the considered elements including sulfur, which in the form of
sulfate competes for binding with oxy-anions, (2) measured pH and total dissolved
concentrations of major cations and anions including PO4

3�, CO3
2� and H3SiO4

�, to
account for competition effects, (3) concentrations of the different reactive surfaces
(see supporting information), and (4) generic model parameters for the NICA-
Donnan (Milne et al., 2003) and GTLM (Dzombak and Morel, 1990) models with
some parameters for additional elements from Dijkstra et al. (2009). The redox
status of the soil (pe) was set according to pHþ pe¼ 11 which is a representative
value for aerobic soils (Baas Becking et al., 1960).

2.3. Model evaluation

We evaluated the performance of both the partition relations and the multi-
surface model on independent data from three data sets (NB, PRT and pH-stat,
Table 1), without any parameter fitting prior to their application. The performance

was evaluated quantitatively on the basis of the Root Mean Square Error (RMSE) and
Mean Error (ME) of the log transformed predicted solution concentrations. Because
dataset NL was used to derive the partition relations, it was excluded from the
quantitative evaluation of model performance. Measurements and predicted
concentrations of dataset NL are, however, included in the graphs for visual
comparison. The datasets include “reactive” element contents extracted with 0.43 M
HNO3 (Gooddy et al., 1995; Tipping et al., 2003; Dijkstra et al., 2009; Groenenberg
et al., 2010b; Rodrigues et al., 2010), contents of reactive soil constituents and cor-
responding solution data. A detailed description is given in the original publications
and the supporting information. A subset was used of dataset PRT (Rodrigues et al.,
2010), containing various contaminated soils from Portugal, using only the filtered
0.01 M CaCl2-extracts. Dataset NB contains soil data obtained from a wastewater
infiltration field (Koopmans and Groenenberg, 2011); the solution was obtained
both by centrifugation and extraction with 0.002 M CaCl2. Dataset pH-stat contains
solution data obtained from pH-static experiments (pH 2e12) previously used to
evaluate the multisurface model (Dijkstra et al., 2009). This dataset was used to
explicitly test the models on their ability to predict the pH dependent solubility of
individual soil samples.

3. Results and discussion

3.1. Partition-relations

Together with the study by Rodrigues et al. (2010) this is the first
study with partition-relations for such a large set of elements. The
optimized coefficients for the partition-relations are summarized
in Table 2, including the explained variance (Radj2 ) and the Root
Mean Square Error (RMSE) of the fit to the solution concentrations.
Using the stepwise regression method, we found 3e5 significant

Table 1
Overview of soil datasets.

Data set Nr soils System Elements Measurements reactive soil constituents Reference

NL 118 CaCl2 and Ca(NO3)2 extracts,
centrifugated pore water

Cd,Cu, Ni, Pb, Zn LOI, DOC, clay, Al and Fe oxalate (Groenenberg, et al., 2010b)

NL 70 CaCl2 extracts Cr, Co, Ba, As, Se, Sb, Mo, V LOI, DOC, clay, Al and Fe oxalate,
pH-stat 8 pH-stat (pH 2-12) Cd, Cu, Ni, Pb, Zn, Cr, Co, Ba,

As, Se, Sb, Mo, V
HAþ FA (soil), DOC, Fe-dithionite/ascorbate,
Al-oxalate, clay

(Dijkstra, et al., 2009)

NB 30 (2 profiles) 0.002 MCaCl2 and
centrifuged pore water

Cd, Cu, Ni, Pb, Zn, Cr, Co, Ba,
As, Se, Sb, Mo, V

HAþ FA (soil and solution), DOC,
Fe-dithionite/ascorbate, Al-oxalate, clay

PRT 15 0.01 M CaCl2 extracts Cd, Cu, Ni, Pb, Zn, Cr, Co, Ba, S,
As, Se, Sb, Mo, V

SOC, DOC, Al and Fe oxalate, clay (Rodrigues, et al., 2010)

Overview of datasets with ranges of soil properties and reactive element contents (mmol kg�1)

System pH-stat NL PRT NB

pH-static titration Dried soils Dried soils Field moist soils

# Samples 8 118/70a 15 30 (2 profiles)
# Solution extracts 48 403/70d 15 48d

Alox (mmol kg�1) 2.36e109 1.3e160 8.04e240 25.6e80.0
Feox (mmol kg�1) 5.99e105 6.6e155 11.3e159 4.11e48.0
SOM (%) 0.33e4.5 0.5e36 2.2e10.6 0.1e11.1
Lutum (%) <1e9 0.8e42 3.6e33 2e13
pH 2e12 3.7e7.3 4.3e7.2 4.0e6.1
DOC (mg L�1) 1.3e1966 2.31e1325 4.4e39.3 0.64e175
As 3.74e42.3 0.13e318 4.10e1032 1.74e182
Ba 25.2e224 0.28e1915 30.8e836 13.9e1164
Cd 0.12e46.8 0.18e155 0.085e6.17 0.18e17.9
Co 3.25e79.2 0.17e114 1.18e120 0.34e26.3
Cr 3.64e2081 0.38e835 3.79e96.9 29.0e9366
Cu 6.13e1198 0.94e4413 19.3e1727 9.92e1039
Mo 0.17e3.23 0.08e0.92 0.11e0.41 <dlc

Ni 7.89e2932 0.17e302 5.53e143 8.86e1119
Pb 5.72e656 0.58e7228 14.1e456 5.07e676
Sb 0.009e6.40 0.0004e18.1 0.056e3.65 0.47e1.37
Se 0.71e3.44 0.003e5.07 0.15e3.86 0.01e28.2
Sn 0.001e5.31 <dl 0.019e0.99 <dl
V 9.26e224 1.24e626 nmb 8.45e106
Zn 24.8e17002 1.89e148,415 33.7e1404 22.9e4174

a 118 soils Cd, Cu, Ni, Pb and Zn; 70 soils with all elements.
b nm¼ not measured.
c <Detection limit.
d There are also data based on pore water obtained by centrifugation of field moist soils for a subset of 49 soils in dataset NL and 12 samples in dataset NB.
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parameters for most elements. Other studies have generally
reported regression relations with fewer parameters, either
because the available datasets included less parameters (e.g. Sauvé
et al., 1997b, 2000; Tipping et al., 2003) or less soil samples (e.g.
Janssen et al., 1997). In a study with a similar set of parameters,
Anderson and Christensen (1988) derived Kd-relations with four
significant (p< 0.001) parameters. Results of the stepwise regres-
sion method (Table S-3 supporting information) indicate that the
most important parameters for the metal cations Ba, Cd, Co, Ni, Pb
and Zn are the reactive metal content (Q) and pH, whereas for Cu
and Cr, DOC was the most important parameter. For the oxy-anions
and V, the reactive metal content (Q) and DOC were the most
important parameters. The explained variance and RMSE are
generally good (Radj2 > 0.62, RMSE< 0.41), except for Cu, Mo (low
Radj
2 ) and Pb (high RMSE¼ 0.67) and similar to previous studies for

Cd, Cu, Ni, Pb and Zn (Elzinga et al., 1999; Sauvé et al., 2000).
Coefficients for solid phase concentrations are always positive but
low for Cr, Mo, Sb and Se, indicating only a small influence of the
solid phase concentration on solution concentrations. The sign of
the regression coefficients is consistent with the known soil
chemistry of the different elements. For the cationic metals, coef-
ficients for pH are always negative, reflecting an increasing metal
bindingwith pH resulting from a decreasing competition of protons
for binding to SOM and Al/Fe-(hydr)oxides. Remarkably, pH is not
a significant parameter for the Cu concentration, which was
observed also by Sauvé et al. (1997b). This is possibly due to its
particularly high affinity for organic matter and the very similar
influence of pH on Cu binding to both SOM and DOM. Conversely,
pH-coefficients for oxy-anions, when significant, are always posi-
tive, reflecting a decreasing sorption due to a decrease of positive
surface charge of Al/Fe-(hydr)oxides with increasing pH. Despite
the fact that SOM and DOM were strongly correlated (Table S-2
supporting information) we always found significant and plau-
sible coefficients for both SOM and DOM for metal cations and only
significant coefficients for DOC for oxy-anions (i.e., not for SOM).
Coefficients for SOM were always negative for cationic species,
consistent with their binding to organic matter. Coefficients for
DOC were positive for both cations and oxy-anions. For cationic
metals, this relationship is consistent with their binding affinity for
DOC, with high coefficients for Cu, Pb and V which have a particu-
larly high affinity to bind to organic matter. The positive relation of
oxy-anion concentrations with DOC is probably due to the very
similar binding of the oxy-anions and (anionic) DOC to oxide
surfaces and their mutual competition in that process (Gustafsson,
2006; Van Riemsdijk et al., 2006; Weng et al., 2009). The small
values of the regression-coefficients for the reactive solid phase
concentrations of Cr, Mo, Sb and Se could reflect either depletion of

these elements in the solid phase, as a result of the high liquid to
solution ratio (LS10), or solubility control by a mineral phase.
However, depletion is more likely for Sb, of which on average 45% of
reactive metal was dissolved, than for Cr and Se for which disso-
lutionwas 10% or less. Further, concentrations of Sb and Se are most
likely regulated by sorption reactions (McBride, 1994) and not by
mineral equilibria. Although Cr has been reported to be controlled
by the solubility of Cr-containing oxides (McBride, 1994), the used
multisurface model resulted in adequate predictions of Cr
concentrations by sorption to organic matter (Dijkstra et al., 2009).
Altogether this means that we have no plausible explanation yet for
the very small values of the regression-coefficients for the solid
phase concentrations of Cr, Mo, Sb and Se.

3.2. Evaluation partition-relations

Fig. 1 shows predictions of the partition-relations as a function of
pH for the pH-stat data and shows predicted vs. measured
concentrations for both the partition-relations and multisurface
model for all data sets. Model performance is quantified using the
RMSE and ME of the predictions (Fig. 2). The partition-relations
predict the concentration level of the metal cations Cd, Cu, Ni, and
Zn well (RMSE� 0.45). Predicted concentrations of the oxy-anions
As, Mo, Sb and Se showed somewhat higher deviation from the
measured values (0.55� RMSE� 0.69) in the most relevant pH
range 3e8, without any trend in the errors with pH (Fig. S-1
supporting information). This performance is also reflected by the
remarkably well predicted pH dependence for individual soils
(Fig. 1), which allows the use of partition-relations in predictive
simulations under changing pH. The latter was not a priori expected,
because the pH-coefficient is optimized by comparing different
samples at their natural pH, rather than by optimizing the solution
concentration for individual soils over a range of pH (Tipping et al.,
2003; Groenenberg et al., 2010b). Predictions for the other cations
Ba, Co, Cr, Pb, V (predominantly present as VO2þ under acidic
conditions according to speciation calculations (Dijkstra et al.,
2009)), have a larger RMSE (Fig. 2). The partition-relation fails for
Ba, likely because of the different mechanisms which control its
solubility at different pH: according to the multisurface model
calculations, Ba solubility is controlled by barite and sorption to clay
under acidic conditions and sorption to SOM under neutral and
alkaline conditions (Dijkstra et al., 2009). Predicted concentrations
of Co are generally good below pH 6 but too low at higher pH:
according to the multisurface model calculations, Co solubility is
controlled by sorption to organic matter under acidic conditions and
sorption to Al/Fe-(hydr)oxides under neutral and alkaline conditions
(Dijkstra et al., 2009). The partition model overestimates Cr and Pb
concentrations in the low concentration range whereas it underes-
timates concentrations in the higher concentration range. This effect
is most pronounced for Cr. The high RMSE for V is particularly due to
the large deviations for dataset NB for which we do not have an
explanation.

Outside the pH range 3e8, i.e. outside the range of the data from
which the partition relations were derived, the partition-relations
show a clearly lower performance especially in the high pH range.
At high pH the partition-relations underestimate cation concentra-
tions which increase due to hydrolysis reactions and stronger
binding to DOM. Cu concentrations were, however, remarkably well
predicted because of their strong correlation with (measured) DOC.
At very low pH the model underestimates concentrations of Cu, Pb
and V, i.e. the cations which bind very strongly to SOM. Predicted
concentrations of weakly binding cations such as Cd, Co and Zn now
sometimes exceed the total amount present because the partition
relations do not account for the mass balance. Remarkably, the
partition relations adequately predict pH-dependent solubility of Se

Table 2
Coefficients partition relations (Eq. 1)

a0 a1
(Q)

a2
(SOM)

a3
(Clay)

a4
(AlFe)

a5
(DOC)

a6
(pH)

R2
adj RMSE

As e4.64 0.59 e e e0.72 0.91 e 0.72 0.35
Ba e2.16 0.71 e e0.30 e e e0.15 0.67 0.35
Cd 1.60 1.11 e0.62 e e0.39 0.29 e0.41 0.82 0.34
Co 1.49 0.93 e0.20 e e e e0.79 0.90 0.25
Cr e5.64 0.32 e e e0.24 0.49 e0.15 0.76 0.18
Cu e3.74 0.60 e0.28 e e0.79 0.79 e 0.56 0.42
Mo e8.78 0.36 1.54 e0.52 e0.98 e 0.64 0.63 0.38
Ni e1.95 0.80 e0.77 e0.17 e 0.63 e0.25 0.62 0.40
Pb e2.08 0.79 e0.40 e e0.83 0.88 e0.29 0.63 0.67
Sb e6.43 0.20 e e e0.29 0.33 e 0.62 0.18
Se e8.56 0.11 e e e 0.57 0.07 0.69 0.20
V e2.67 0.98 e e0.64 e1.06 1.24 e 0.71 0.43
Zn 0.93 0.99 e0.43 e0.22 e0.14 0.12 e0.46 0.83 0.39
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and As also at low and high pH. This is especially clear from the pH-
stat data (Fig.1). Given that the pH-coefficient of these elementswas
either insignificant or very small, the high value for the DOC coef-
ficient supports our previously stated hypothesis that this perfor-
mance results from the similar, and therefore strongly correlated,
pH dependence of DOC and oxy-anion binding to oxide-surfaces.

For Mo and Sb a somewhat different relation was found, including
a positive pH-coefficient. However, their concentrations are
increasingly underestimated with decreasing pH.

We evaluated a possible improved performance of the partition
relations over a wider pH range by inclusion of the pH-stat data in
the derivation set. The coefficients of the derived relations

Fig. 1. Left panels: predictions partition relations of the pH-stat data as function of pH (symbols represent measurements, lines represent model predictions), total reactive
concentrations, recalculated to mol/L, are shown at pH 0.5; Middle and right panels comparison of predictions for all datasets by the partition-model (middle panels) and mul-
tisurface model (right panels). Open symbols represent measurements outside pH range 3e8.
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(Table S-4, supporting information) show an increasing impor-
tance of DOC together with a decreasing importance of the coef-
ficient for pH. Similar to our previous observation for the
oxyanions, the pH dependence of the solubility for both metal
cations and oxy-anions is now largely accounted for by the coef-
ficient for DOC which shows a similar pH-dependence. Remark-
able is the decreasing importance of the coefficients for AlFeox,

together with an increasing importance of clay and SOM, both for
the metal cations and oxy-anions, which cannot be explained
mechanistically. Inclusion of the pH-stat data in the derivation set
improves the model performance for all elements in the pH range
2e12 (Fig. S-2 in the supporting information) in terms of the RMSE
(Fig. 2). Inclusion of the pH-stat data improved predictions also in
the pH range 3e8 for those cations which form strong complexes

Fig. 1. (continued).
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with DOC, i.e. Cu and Cr, and for most of the oxy-anions: As, Se and
Mo. For cations which solubility depends on pH rather than on
DOC concentration (Cd, Ni and Zn), the model performance,
however, decreases between pH 3e8, but remains still acceptable.
For those elements for which the predictions were rather poor i.e.
Co, Pb and Sb, model performance remains about the same in the
pH range 3e8.

3.3. Evaluation multisurface model

Fig.1 comparesmodel predictionswithmeasurements for all data
sets. Model performance in terms of RMSE is presented in Fig. 2. The
model predicts concentrations well over the entire pH-range (2e12)

for most divalent cations, i.e. Cd, Cu, Ni and Zn. For other cations,
results are generally poorer. For Pb, predicted concentrations are
generally too high in the pH range 2e5 where the multisurface
model predicts Pb to bind predominantly to SOM. Conversely,
concentrations are underestimated above pH6where Pb is predicted
to bind predominantly to Al/Fe-(hydr)oxides. Concentrations of Ba
are predicted well in case the multisurface model predicts equilib-
rium with barite but Ba is over-predicted when the solubility is
predicted to be controlled by sorption to SOM. Binding of Ba to OM is
thus likely stronger than the current NICA-Donnan parameters
predict. For Co both sorption to SOM (the dominant process at low
pH) and sorption to HFO (the dominant process at high pH) are likely
underestimated.

Fig. 1. (continued).
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Fig. 2. Root Mean Square Error (RMSE) for the predictions of solute concentrations of the independent datasets for the partition relations (PR), multisurface model (MS) and
partition relations derived from the extended dataset including the pH-stat data (lines) for the pH range 3e8 (left) and 2e12 (right).
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Despite the fact that the binding-constants for Cr are uncertain,
given their origin in linear free energy relations (LFER) (Milne et al.,
2003) the model gives very good predictions for the total solution
concentration. We observed that these predictions were rather
insensitive to the exact value of the binding constants. Varying the
Cr-HA binding-constants in the NICA-Donnanmodel by a factor 100
around their nominal value leads to a change of only �9% and þ2%
in the total solution concentrations. For elements with such high
affinity, the model predicts almost complete binding to organic
matter and the solution concentration is therefore largely deter-
mined by the ratio of DOM and SOM. Khai et al. (2008), however,
found large deviations between modeled and measured total Cr
concentrations using the NICA-Donnan model. Different from our
approach in which both SOM and DOM were modeled as HA, they
modeled SOM as HA and DOM as a mixture with equal amounts of
HA and FA. The large deviations in their predictions are possibly
due to the difference between the highly uncertain model param-
eters for HA and FA estimated byMilne et al. (2003) using LFER. The
uncertainty in NICA-Donnan parameters, also resulted in large
deviations between predicted and measured free Cr3þ-ion
concentrations in soil solution (Koopmans and Groenenberg, 2011).

Predictions for the oxy-anions As, Mo, Sb and Se reflect the trend
of the solubility well but with a relatively large deviation (RMSE
0.7e1) compared to the cations. The (competitive) influence of
DOM on oxy-anion binding (Gustafsson, 2006; Weng et al., 2009),
which is not included in themodel, may be a confounding factor. No
specific relations were found between the error in the prediction
and pH, except for As that is underestimated at high pH. Concen-
trations for Sb were systematically overestimated.

3.4. Comparison between partition-relations and the multisurface
model and implications for their use in risk assessment

Within the relevant pH range for most soils, i.e. pH 3e8,
partition-relations and the multisurface model showed equal
performance for metal cations according to the similar RMSE’s of
their predictions (Fig. 2). Partition-relations derived for the pH
range 3e8 are less useful under extreme conditions (i.e. outside
the range from which they were derived) such as at very low pH,
e.g. after oxidation of sulfidic sediments, and under alkaline
conditions, e.g. calcareous soils and soils in contact with cemen-
titious construction materials or after cement-stabilization. In
such cases the multisurface model provides better predictions.
Partition-relations are, however, shown to be robust predictors for
concentrations of most of the evaluated divalent cations (Cd, Cu,
Ni, Pb and Zn) for a large variety of soils and conditions, e.g. with
liquid to solid ratios varying between 0.2 and 10. The derived
coefficients of the relations complywith ourmechanistic picture of
the controlling processes as described above. Furthermore,
partition-relations are able to describe the pH-dependence of
divalent cation concentrations adequately within pH 3e8.
Considering these pH boundaries, this performance legitimates
the use of such relations in large scale applications of risk
assessment models for these elements.

Predictions for oxy-anions seem to be somewhat less successful
both by the partition-relations and the multisurface model, with
larger deviations (Fig. 2), although the concentration trends are
predictedwell (Fig.1). Predictions of the partition-relation for these
elements are sensitive to the concentration of DOC that is input to
the model, but this dependency does not necessarily have a mech-
anistic basis. In this respect, the multisurface model is mechanis-
tically more transparent than the partition-relations.

For the elements which are already predicted well, i.e. the metal
cations Cd, Cu, Ni, Pb andZn, no large improvements can be expected
with extension of datasets for derivation of CeQ relations because

the dataset used in this study already covers a large range of element
concentrations and soil properties. This is also reflected by the
similar good model performance for the independent datasets and
the derivation set. Partition relations of the elements for which the
predictions are relatively poor and for which the concentration
ranges are relatively small, as for the oxy-anions and Cr, can possibly
be improved by extension of the datasets. For these elements model
performance for the independent data-setswas systematically lower
than that for the derivation set. It was expected that the simplicity of
the present partition-relations puts some general constraints on
their potential improvement. Although the dominant solubility
controlling mechanisms vary with pH, extension of the derivation
set with data in the range pH 2e12 leads to a substantial improve-
ment of the fit to the data in this range, indicating a potential for
improvement of these relations for predictions over a wider pH-
range. Despite the fact that the various solubility controlling mech-
anisms are modeled explicitly in the multisurface approach, parti-
tion relations calibrated for the extended pH range generally show
smaller RMSE’s formost elements, except Cd, Cr, Cu, Ni and Zn, in the
pH range 2e12 (Fig. 2) than the independent predictions of the
multisurface model. It should be noted however that these partition
relations were not tested on independent data. Furthermore, the
solution data in data set “pH-stat”were obtained by adding acid and
base to arrive at pH-values which were far from the original pH of
the soils. This pH change will also lead to changes in parameters
influencing trace element solubility, not accounted for in the parti-
tion relations, such as the concentrations of Al and P. At extreme pH,
these parameters might be far from steady state values in the field.
We therefore recommend further testing of these (extended) rela-
tions before applying them for predictions of trace element solu-
bility in field soils.

The multisurface model generally gives better predictions for
the elements for which the model parameters are based on
extended data sets: Cd, Cu, Ni and Zn (Fig. 2). However for the oxy-
anions and cations for which the parameterization is derived from
relatively few data or LFER, the predictions by the multisurface
model were less successful than those by the extended partition
model. This finding further stresses the need to develop or improve
(intrinsic) model parameters for these elements; suggestions are
listed in (Dijkstra et al., 2009). Further improvements can be made
by including the interaction of DOM with oxide surfaces and its
effect on oxy-anion binding (Gustafsson, 2006; Weng et al., 2009).
For the metal cations that are already predicted well, the extent of
further improvements will be limited by intrinsic uncertainties
related to the heterogeneous character of natural organic matter
(Groenenberg et al., 2010a) and other reactive soil constituents.

A particular advantage of multisurface models, which widens
their potential use, is their process based character, including their
explicit account for interactions between elements, in combination
with “generic” parameters that have been derived over a wide
domain of conditions such as pH and ionic strength (Dzombak and
Morel, 1990; Milne et al., 2003). These features make them suitable
as research tools (i.e. to test hypotheses) and applicable beyond the
domain of (presently available) partition-relations Examples are
the use of multisurface models for very acid and alkaline systems,
e.g. acid-mine-drainage (Butler et al., 2008) and waste materials
such as MSWI-bottom ash (Dijkstra et al., 2008). Furthermore the
explicit account of interactions between trace elements and major
elements (Ca, Al, Fe, P, S) enables the use of multisurface models for
a wider range of conditions as well as for changing conditions, e.g.
to predict the effect of P-fertilization on trace element solubility.

However, various choices are to be made when applying mul-
tisurface models to natural systems, which lead to a certain
conditionality. Examples are the different choices made to quantify:
(1) reactive element contents using various acidic extracts
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(Schröder et al., 2005; Almas et al., 2007; Dijkstra et al., 2009) or
EDTA (Bonten et al., 2008a); (2) Al/Fe/Mn-(hydr)oxide contents
using various extracts, e.g. oxalate (Bonten et al., 2008a) or
a combination of dithionite and ascorbate (Dijkstra et al., 2009) and
(3) the concentrations of HS which are usually estimated to be
a fraction of SOM and DOM between 50% (Lofts and Tipping, 1998)
and 100% (Almas et al., 2007). Bonten et al. (2008a) have shown
that multisurface models may also obtain conditionality at high
element concentrations when appropriate minerals are to be
chosen in the absence of independent mineralogical analyses.
Therefore, insight is needed in the model sensitivity to these
different choices and quantification of the resulting model uncer-
tainty, in particular when models are used for (generic) risk
assessment purposes.

Apart from the aforementioned advantages and constraints,
multisurface models provide predictions of the speciation of
elements in the solid and the solution phase. Such information is
required in (terrestrial) Biotic Ligand Models (Thakali et al., 2006)
and in models which account for kinetic binding to a certain
constituent, e.g. the slow kinetic binding of trace metals by hydrous
oxides (Buekers et al., 2008). Another potential is the use of mul-
tisurface models in the dynamic forward prediction of the macro
chemistry of natural systems and its subsequent effect on the
solubility of trace elements, e.g. in case of acidification (Fest et al.,
2005; Bonten et al., 2011). In this respect one of the greatest chal-
lenges is to adequately predict the concentration of DOM, especially
of the most reactive components therein with respect to ion-
binding, i.e. humic and fulvic acids, which are currently major
influential model input parameters (Groenenberg et al., 2010a).

4. Conclusions

1. Partition relations and process based multisurface models
showed similar performance in their prediction of trace
element concentrations in soil solutions in the most relevant
pH range for soils of 3e8.

2. The coefficients of the derived partition relations for metal
cations comply with the common mechanistic understanding
of cation binding in soils.

3. The pH dependence of the partition relations for oxy-anions is
largely accounted for by the DOC coefficient in these regres-
sion relations. This relationship stems from a very similar pH
dependent solubility of oxy-anions and dissolved organic
carbon.

4. Multisurface models in combination with generic parameters
can be used to predict element solubility for a very wide range
of pH (2e12) without any parameter fitting. In addition, mul-
tisurface models provide predictions of the speciation of
elements in the solid and the solution phase.

5. Partition relations can be derived for a similar wide pH range,
but the adjusted parameters in these relations then often
become more difficult to interpret mechanistically.

6. Predictive calculations with both type of models would
strongly benefit from developments which would allow
prediction of DOC concentrations in soils rather than relying on
measurements of this frequently unavailable parameter.
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