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Abstract We analyze climate change in a cost–benefit framework, using the emission
and concentration profiles of Wigley et al. (Nature 379(6562):240–243, 1996). They
present five scenarios that cover the period 1990–2300 and are designed to reach
stabilized concentration levels of 350, 450, 550, 650 and 750 ppmv, respectively. We
assume that the damage cost in each year t is proportional to the corresponding gross
world product and the square of the atmospheric temperature increase (ΔT(t)). The
latter is estimated with a simple two-box model (representing the atmosphere and
deep ocean). Coupling the damage cost with the abatement cost, we interpolate
between the five scenarios to find the one that is optimal in the sense of minimizing
the sum of discounted annual (abatement plus damage) costs over a time horizon of
N years. Our method is simpler than ‘traditional’ models with the same purpose, and
thus allows for a more transparent sensitivity study with respect to the uncertainties
of all parameters involved. We report our central result in terms of the stabilized
emission level Eo and concentration level po (i.e. their values at t = 300 years) of the
optimal scenario. For the central parameter values (that is, N = 150 years, a discount
rate rdis = 2%/year and a growth rate rgro = 1%/year of gross world product) we
find Eo = 8.0 GtCO2/year and po = 496 ppmv. Varying the parameters over a wide
range, we find that the optimal emission level remains within a remarkably narrow
range, from about 6.0 to 12 GtCO2/year for all plausible parameter values. To assess
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the significance of the uncertainties we focus on the social cost penalty, defined as
the extra cost incurred by society relative to the optimum if one makes the wrong
choice of the emission level as a result of erroneous damage and abatement cost
estimates. In relative terms the cost penalty turns out to be remarkably insensitive
to errors. For example, if the true damage costs are three times larger or smaller
than the estimate, the total social cost of global climate change increases by less
than 20% above its minimum at the true optimal emission level. Because of the
enormous magnitude of the total costs involved with climate change (mitigation),
however, even a small relative error implies large additional expenses in absolute
terms. To evaluate the benefit of reducing cost uncertainties, we plot the cost penalty
as function of the uncertainty in relative damage and abatement costs, expressed
as geometric standard deviation and standard deviation respectively. If continued
externality analysis reduces the geometric standard deviation of relative damage cost
estimates from 5 to 4, the benefit is 0.05% of the present value Gtot of total gross
word product over 150 years (about $3.9 × 1015), and if further research reduces the
standard deviation of relative abatement costs from 1 to 0.5, the benefit is 0.03%
of Gtot.

1 Introduction

Even if a comparison of costs and benefits may not be the only relevant criterion for
the design and implementation of environmental policy, it is a crucial input. For the
case of climate change it is thus advisable to quantify the costs and benefits of CO2

emissions abatement as much as possible, as done in the landmark Stern Review
(Stern et al. 2006). The usefulness of cost–benefit analysis (CBA) for assessing
environmental policy such as relating to climate control has often been questioned,
given the notoriously large uncertainties involved. We countered those queries in
earlier work, by showing, for several pollutants including CO2, that the cost penalty
incurred by making the wrong abatement choice because of uncertainties in the
estimates for the costs and benefits of environmental policy is remarkably small (Rabl
et al. 2005; van der Zwaan and Rabl 2009). Hence, CBA can be useful despite large
uncertainties. The present paper extends our earlier static analyses to a dynamic non-
linear CBA model for climate change, which we consider more realistic and more
appropriate.

Ideally climate change CBA should identify the optimal scenario of greenhouse
gas emissions as a function of time, by minimizing the present value of the sum
of damage cost and abatement cost. That would require detailed models for the
time dependence of these costs as function of the (time-dependent) emissions, as
well as the search of an optimal emission path, certainly a complex and challenging
task (Meehl et al. 2007). For a systematic and complete analysis of all uncertainties
involved in climate change CBA we consider the ‘traditional’ highly detailed (multi-
region, multi-gas, multi-technology) models so complicated, that a sensitivity analysis
would become rather opaque and necessarily incomplete. As an alternative we make
the following simplifying assumptions:

(1) We consider only CO2, not the other greenhouse gases such as methane and
nitrous oxide.
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(2) We assume that the optimal emission scenario is a scaled version of the five
scenarios by Wigley et al. (1996) for the period 1990–2300 (here designated
by WRE). The WRE scenarios are designed to stabilize atmospheric CO2

concentrations at levels of 350, 450, 550, 650 and 750 ppmv, respectively. The
corresponding emissions and concentrations are shown in Fig. 1a, b.

(3) We assume that the damage cost cdam(t) in each year t is proportional to the
corresponding gross world product G(t) and the square of the atmospheric
temperature increase ΔT(t). The latter is estimated with a simple two-box model
(representing the atmosphere and deep ocean).

a

b

Fig. 1 The stabilization scenarios of Wigley et al. (1996): a Emissions, b Concentrations
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(4) We assume a simple model for the marginal abatement cost per ton of CO2 as
function of emissions E, based on an extensive review of the literature.

(5) Using the 750 ppmv scenario as reference, the total abatement cost in year t
(denoted by cab(t)) is calculated as the cost of reducing the reference emissions
to the levels of the respective scenarios.

(6) The annual abatement costs cab(t) and damage costs cdam(t) are discounted at
rate rdis and summed over a time horizon of N years to obtain the total costs
Cab and Cdam for each scenario.

(7) We construct functions Cab(E) and Cdam(E) to interpolate the respective costs
between the five scenarios. As scaling variable E for the emission scenarios we
choose the (nearly asymptotic) emissions in year 300.

(8) We find the optimal level Eo by searching for the minimum (with respect to E)

of the total life cycle cost, defined as the sum of Cab and Cdam:

Ctot(E ) = Cdam(E ) + Cab(E ) (1)

We present most of our results for the costs as fraction of gross world product rather
than as monetary values, because the time horizon is so long that the latter would
not be very meaningful. Thus our estimates of marginal abatement costs are also to
be seen relative to gross world product rather than as absolute monetary values.

Since our model involves only few parameters that express the key features of
the problem, we can carry out a CBA that is transparent and shows clearly the
uncertainties due to each of the major factors involved. Our work is complementary
to that of many, notably to recent publications like DEFRA (2004, 2005) and Tol
(2005), in which overviews are given of estimated climate change damage costs
under a specified increase in atmospheric CO2 concentration or average global
temperature. We, by contrast, optimize the emission level E over a large range of
possible parameter values.

Of course, since our model is based on the emission profiles of Wigley et al.
(1996), it does not indicate the optimal rate at which one should reduce emissions
towards that long-term goal. That question can be answered through the numerous
dynamic studies that have analyzed the time-dependent relation between emission
scenarios and climate impacts (see, notably, Baker 2005; Heal and Kriström 2002;
Keller et al. 2004; Kolstad 1996; Nordhaus and Popp 1997; Peck and Teisberg 1993;
van der Zwaan and Gerlagh 2006).

Whereas the uncertainties of CO2 abatement costs are large, especially when
projected far into the future (typically a factor of 3), those of the damage costs
are significantly larger (as much as an order of magnitude). We therefore first
provide, in Section 2.1, a concise summary of some of the recent literature reporting
estimates for aggregated climate change damage costs. We subsequently develop our
expressions for the damage and abatement costs, in Sections 2.2 and 2.3. In Section 3
we present the solution for the optimal emission level Eo as function of our model’s
key input parameters. To evaluate the consequences of uncertainties, we calculate
in Section 4 the cost penalty, defined as the extra social cost incurred relative to
the social optimum, as function of the error in the estimates of relative damage and
abatement costs. We also estimate the value of reducing these uncertainties through
further research, by plotting the cost penalty as function of the geometric standard
deviation of the damage cost distribution (assumed lognormal) and as function of the



Climatic Change (2009) 96:313–333 317

standard deviation of the abatement cost distribution (assumed normal). In Section 5
we summarize our main results, compare them with the Stern review (Stern et al.
2006), and give recommendations for climate change research and policy making.

2 Damage and abatement costs

2.1 Review of damage cost estimates

A large number of integrated assessment models have been developed to assess
climate change damage costs and their evolution over time.1 Some are based directly
on the impact of ΔT on Gross Domestic Product (GDP) or Gross World Product
(GWP). Others, in particular FUND (Tol 1995) and PAGE (Plambeck and Hope
1996), attempt to simulate climatic impacts in more detail, according to the categories
or economic sectors to which they apply. Quite generally, the reported damage
cost estimates do not cover all possible climate change impacts. In particular they
usually exclude many of the non-market impacts, as well as the possibility of
major catastrophes or socially contingent effects. For the economic assessment of
catastrophic climate change impacts CBA as used in these models is problematic
(see Weitzman 2009 and Yohe 1996).

One of the pioneering models in this field was DICE (Nordhaus 1991, 1994).
DICE optimizes the trade-off between the costs of climate change and the costs
of restricting CO2 emissions. The damage cost simulation of DICE assumes that a
3◦C warming induces a 0.25% loss of GDP in the USA, based on estimates of market
damages such as crop loss, forestry impact, and shoreline erosion. This value is raised
to 1% to account for all probable damages, especially non-market ones that are
generally hard to quantify. In order to render DICE applicable globally the relative
loss is further increased to 1.3% of GWP, as many less developed countries are more
dependent on e.g. agriculture and have as such a more limited ability to adapt to the
effects of climate change. Furthermore, Nordhaus recognizes that for temperature
rises higher than 3◦C disproportionally large damages are likely to result, so that the
use of a quadratic function is appropriate. Most of the subsequent climate-economy
models have adopted a similar climate change damage cost formulation. The non-
linear dependence of climate damage on temperature change has been shown by
many studies, for instance Schlenker and Roberts (2006).

Another widely used climate policy assessment model is MERGE, a multi-region
Ramsey–Solow optimal growth model including greenhouse gas emissions and a
global climate module (Manne and Richels 2004). It can be operated in a cost–
benefit mode, in which a time path is chosen for emissions that maximizes the in-
tegrated discounted utility of consumption, after making allowance for the disutility
associated with climate change. Whereas MERGE includes both market and non-
market damages, it focuses on the latter, as they are considered the largest. In
particular, market and non-market damages are assumed to be linear and non-linear
with temperature increases, respectively, and follow the type of assumptions made

1Most of them are essentially based on a comparison of future consumption trajectories in the
expected utility framework as originally developed by Mirrlees and Stern (1972).
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in DICE (Nordhaus 1994). Thus, the loss resulting from climate change, possibly
even climatic catastrophe, is supposed to increase disproportionally (in this case
again quadratically) if mankind passes beyond an average atmospheric temperature
increase of a few ◦C. While different numerical assumptions are made for different
regions in the world, Manne and Richels (2004) presume that for a ΔT of 2.5◦C an
economic loss of 2% of GDP is incurred in high-income countries (in other words,
the willingness-to-pay to avoid such a temperature increase is 2% of GDP).2 At the
basis of simulations performed with models like FUND and PAGE, and of the other
modeling exercises referred to below (Cline 1992; Fankhauser 1995; Titus 1992), are
damage cost assumptions similar to those made in DICE and MERGE, in some cases
detailed per sector and/or region.3 The parameter choices and the resulting damage
costs, however, often vary substantially (see Table 1 in the next section).

Two recent studies have produced an overview of an important part of the
climate change damage literature and made a comparison of two modeling exercises
determining the marginal damage cost of CO2 and its uncertainties (DEFRA 2004,
2005). They report central estimates for six points in time from 2000 to 2050. As an
indication of the uncertainties they show a set of lower and upper central estimates
as well as a lower and an upper bound (corresponding to 5% and 95% confidence
intervals). We quote some of their results, using an exchange rate conversion of
1.5 e/£, to allow for later comparison. Their central estimate is 23 e/tCO2 in 2000,
increasing to 59 e/tCO2 in 2050. The reported lower and upper central estimates for
2000 are 14 e/tCO2 and 53 e/tCO2, respectively. The lower bound is 4 e/tCO2 (5%
bound of PAGE) and the upper bound 90 e/tCO2 (average of the 95% bounds of
FUND and PAGE). Even though the range from lower to upper bound is enormous,
it does not fully capture all published estimates. Indeed, even some negative values
for the damage cost have been reported (implying net climate change benefits rather
than costs) as well as values a couple of times higher than the upper bound. Tol (2005)
also reviews a large number of climate change impact studies, and combines over
100 estimates for the marginal damage cost of CO2 to form an overall probability
density function. The uncertainty distribution is strongly right-skewed, with a median
of $3.8/tCO2, a mean of $25.4/tCO2, and a 95% CL of $95/tCO2. According to Tol
(2005), under standard assumptions of time discounting, equity weighting, and risk
aversion, the marginal damage cost is unlikely to exceed $14/tCO2, and is probably
smaller. This value is significantly lower than the $85/tCO2 reported by the widely
publicized Stern Review (Stern et al. 2006), on which we will comment in the
conclusion.

2For low-income countries, like China and India, the ‘hockey-stick’-parameter they use in MERGE
is smaller than 1. This means that at a per capita annual income between $5,000 and $50,000 a region
is only willing to pay 1% of GDP to avoid a 2.5◦C temperature rise, and at $5,000 or below basically
nothing. Above $50,000 the 2% of GDP willingness-to-pay applies.
3Differences may exist though in assumptions on the tolerable temperature rise, defined as the
ΔT below which no climate change damage is expected. While most models suppose a tolerable
temperature of 0◦C, Manne and Richels (2004) assume it to be the temperature level in 2000 (which
was about 0.7◦C higher than the average pre-industrial value) and Plambeck and Hope (1996) 2◦C.
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Table 1 Parameter values for ρ and corresponding ΔTcat as assumed in several widely employed
integrated assessment models of climate change

Source ρ ΔTcat (◦C)

Cline (1992) 0.014 20.7
Fankhauser (1995) 0.018 19.0
Manne and Richels (2004) 0.020 17.7
Nordhaus (1991, 1994) 0.009 26.0
Plambeck and Hope (1996) 0.018 19.0
Titus (1992) 0.013 21.9
Tol (1995) 0.020 17.7

N.B. Most of these authors report damages relative to GDP in the USA for one temperature
increase level only, typically as associated with a doubling of the atmospheric CO2 concentration.
Roughgarden and Schneider (1999) apply Nordhaus’ assumptions to the figures adopted by these
authors in order to obtain expressions for the damage function of Eq. 2 consistent with DICE.

2.2 Damage cost as function of emissions

Following most of the integrated assessment studies (see references in Table 1), we
use a damage cost function with the shape:

cdam/G = ρ
(
�T

/
2.5◦)θ (2)

in which cdam/G is the damage cost expressed as fractional loss of gross world product
G, ΔT the global average temperature change with respect to the pre-industrial
atmospheric temperature, and ρ and θ are coefficients (the factor 2.5◦, often cited as
the temperature rise for a doubling of CO2, is convenient to render ρ dimensionless).
For the current G we take a value of 50 trillion e/year.

Uncertainties about the coefficients ρ and θ abound. The function of Eq. 2 is
usually assumed to be quadratic, so that θ is 2. Roughgarden and Schneider (1999)
investigate values of θ other than 2 (both 1 < θ < 2 and θ > 2) on the basis of a set
of expert views. They conclude, however, that a quadratic damage function is most
plausible: while θ = 2 is not a necessity—the damage function may e.g. be somewhere
in between linear and quadratic or perhaps even cubic—differences of opinion on
climate damage costs show up primarily in the coefficient ρ of the damage function,
rather than in its exponent. Roughgarden and Schneider (1999) argue that allowing
for views from experts of different scientific disciplines—who have differing opinions
on especially the likelihood of extreme climate events—implies variations of ρ by as
much as an order of magnitude, but in most of the literature one finds values for
ρ that typically lie between 0.006 and 0.025. Table 1 summarizes the values of the
coefficient ρ as obtained from a survey of some of the most widely used integrated
assessment models of climate change.

Formulated slightly differently, Manne and Richels (2004) assume in MERGE the
relation:

cdam/G =
(

�Tstab

�Tcat

)2

(3)

in which ΔTcat is the catastrophic temperature change at which all economic activity,
hence the entire world product, is supposed to be wiped out. Combining Eqs. 2 and
3 one finds the ΔTcat implicit in the models behind the references listed in Table 1.
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In view of the above we assume that the damage cost cdam(t) in year t is related to
the global average temperature rise ΔT(t) by

cdam (t) = G(t) ρ

(
�T (t)
2.5◦

)2

(4)

where G(t) is the annual gross world product. To calculate ΔT(t) we use the two-
box model of Schneider and Thompson (1981) as described by Hammitt (1999).
The increase in annual mean surface temperature ΔT(t) is obtained by solving the
following coupled differential equations

d�T (t)
dt

=
[

Q (t) − λ�T (t) − Rd

τd
[�T (t) − �Td (t)]

]/
R

and

d�Td (t)
dt

= [�T (t) − �Td (t)]/τd (5)

where ΔT(t) and ΔTd(t) are the temperature increases of the atmosphere/land/ocean-
mixed layer and of the deep-ocean boxes (relative to their values in 1990),
respectively; Q(t) = 6.3 ln(p(t)/p0) W/m2 is the radiative forcing due to a concen-
tration p(t) of atmospheric CO2 (with p0 = 280 ppmv being the preindustrial value);
λ = 6.3 ln(2)/�T2x W/◦Cm2 is the climate-feedback factor, with climate sensitivity
ΔT2x, the equilibrium increase in ΔT for a doubling of pre-industrial CO2; R = 20.83
and Rd = 223.7 Wyear/◦Cm2 are the thermal inertia of the mixed-layer and deep-
ocean boxes; and τd = 500 years is a parameter describing the rate of heat transfer
between the mixed layer and deep ocean.

Inserting the concentrations of the WRE scenarios of Wigley et al. (1996), shown
in Fig. 1b, these equations can readily be solved by finite differences with a time step
of 1 year. The resulting atmospheric temperature rise ΔT(t) for the WRE scenarios
is plotted in Fig. 2.

Fig. 2 The temperature rise ΔT(t) for the WRE scenarios
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Fig. 3 The annual damage cost cdam(t), according to Eq. 4 with ρ = 0.02, shown as fraction of annual
gross world product G(t)

Figure 3 shows the corresponding annual damage cost cdam(t) as fraction of annual
gross world product G(t), according to Eq. 4 with ρ = 0.02.

2.3 Abatement cost as function of emissions

Like in Rabl et al. (2005), we assume that the marginal CO2 abatement cost, takes
the functional form

cab/ton = α

(
E − β

Es

)γ

(6)

in which α(in e/tCO2), β(in GtCO2/year) and γ are coefficients characterizing the
non-linear convex form of the abatement cost function; cab/ton is the cost per ton
of abated CO2 at a global emission level E, given a starting emission level Es.
We choose the signs in Eq. 6 so that cab/ton is positive for a reduction of E. The
parameters α, β, and γ may be determined by least squares regression if cost data are
available as a function of the abatement level. Alternatively, they may be estimated
on the basis of energy technology assessments or energy systems modeling.

Here we choose the marginal abatement cost curves depicted in Fig. 4, based on an
evaluation of published integrated assessment modeling results (see notably Goulder
and Mathai 2000; Goulder and Schneider 1999; van der Zwaan et al. 2002; Yohe
1996).4 Figure 4 contrasts with near-term abatement cost curves obtained through
detailed engineering energy technology analyses, like with the GAINS model up to
2020 (Klaassen et al. 2005). Over such a short time frame the potential for deep
reductions is limited or exceedingly costly, because many of the technological options
available require long installation lead times or have costs that are unacceptably

4These references typically report shadow carbon prices, which we associate with the efforts needed
to achieve carbon emission reductions or, alternatively, carbon abatement costs.
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Fig. 4 Our choice for the
marginal abatement cost curve
(solid line) and lower and
upper bounds (dashed lines).
The coefficients are α = 7.5,
β = 3, and γ = −1.3 for the
central curve, α = 5, β = 2,
and γ = −1.1 for the lower
limit, and α = 10, β = 4, and
γ = −1.5 for the upper limit
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high at the present time. In the long run, however, major cost reductions are to
be expected as a result of technological progress and learning-by-doing. Thus, our
abatement cost assumptions concern the long run and should not be interpreted as
realistic short-term policy goals.5 Note, however, that our model does not represent
the phenomenon of learning, as a function of time or cumulative installed capacity,
explicitly.

The total cost in year t of reducing CO2 emissions from starting point Es(t) to level
E(t) is the integral of the marginal abatement cost of Eq. 6:

cab(t) = αEs(t)
γ + 1

⌊(
Es(t) − β

Es(t)

)γ+1

−
(

E(t) − β

Es(t)

)γ+1
⌋

for γ �= −1 (7)

For E(t) we take the emission scenarios of Fig. 1a, Es(t) being the reference sce-
nario WRE750. We only consider values of γ < −1, since these provide a sufficiently
broad abatement cost uncertainty range. Since Eq. 6 becomes meaningless for E ≤ β,
we assume an upper bound of 1,000 e/tCO2 for the marginal abatement cost,
corresponding to a technology that could be implemented without limit.

We have carried out a Monte Carlo analysis of Eq. 6, using the CrystalBall
software and assuming that the parameters of the abatement cost curve are normally
distributed, with the means and standard deviations Normal (7.5, 1.0) for α; Normal
(3, 0.5) for β, and Normal (−1.3, 0.1) for γ. The resulting distribution of marginal
abatement costs is approximately normal, except when the emission level drops
below about 8 GtCO2/year. The ratio of standard deviation and damage cost is about
0.15 at E = 25 GtCO2/year, increasing to about 0.25 at E = 10 GtCO2/year.

5Figure 4 shows marginal abatement costs only down to E = 5 GtCO2/year, as below this reduction
level they become much higher than marginal damage costs, such that effectively no mitigation
takes place. Also, below this abatement level the cost uncertainties are too extreme to be of real
significance.
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3 Cost–benefit analysis: solution

The present value of the total life cycle costs for carbon abatement and for climate
damage is calculated as the sum of annual costs cdam(t) and cab (t), respectively, over
a time horizon of N years, discounted at rate rdis:

Cab ,tot =
N∑

i=1

cab (t)(1 + rdis)
−i and Cdam,tot =

N∑

i=1

cdam(t)(1 + rdis)
−i (8)

The damage cost cdam(t) of Eq. 4 contains the gross world product G(t) which
we assume to grow at rate rgro. Carrying out these calculations we obtain five
values of Cab ,tot and Cdam,tot, corresponding to the five WRE scenarios. Since we
want to interpolate between the scenarios, we now construct interpolating functions
Cab ,tot(E) and Cdam,tot(E) where E is an emission label for the scenario. We choose
to label and scale the scenarios by their emission level in year 300, that being almost
their asymptotic level. To relate E to the corresponding asymptotic concentration p
we show the latter versus E in Fig. 5, together with a linear fit; the equation for this
fit is

p = 31.5 E + 241.5 ppmv (9)

Now we are ready to optimize, i.e. to find the interpolated scenario with optimal
emission Eo (in year 300) that minimizes the total life cycle cost in the sense of

d
dE

(Cab ,tot(E) + Cdam,tot(E)) = 0 at E = Eo (10)

p = 31.5 E + 241.5 ppmv
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Fig. 5 Relation between stabilized concentrations p and emissions E in year 300 for the five WRE
scenarios, together with a linear fit
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Table 2 Central values and
ranges of the parameters w for
the damage and abatement
costs in the optimization
problem

The uncertainties in ΔT are
included in the uncertainty
range of ρ

Parameters w wmin wcentral wmax

Global
N [years] 100 150 200
rdis 0.01 0.02 0.03
rgro 0.00 0.01 0.02

Damage cost cdam(t) = G(t) ρ

(
�T(t)
2.5◦

)2

ρ 0.01 0.02 0.03

Abatement cost cab (t) = αEs(t)
γ + 1

[(
Es(t) − β

Es(t)

)γ+1
−

(
E(t) − β

Es(t)

)γ+1
]

α [e/tCO2] 5.0 7.5 10
β [GtCO2/year] 2 3 4
γ −1.5 −1.3 −1.1

We use the NMinimize function of Mathematica® to obtain a numerical solution; all
results in this paper are calculated with Mathematica.

Table 2 lists the central values, wcentral , of all parameters of the optimization
problem, as well as their ranges, [wmin, wmax], considered for the uncertainty analysis
in Fig. 7. For the central values of these parameters the optimal emission level is
found to be Eo = 8.0 GtCO2/year, less than a third of the current emission level
of about 30 GtCO2/year. Figure 6 shows the abatement, damage, and total costs
expressed as fraction of total gross world product Gtot versus emission level E for

Fig. 6 Damage, abatement, and total costs expressed as fraction of total gross world product Gtot
versus emissions level E for the central values of all optimization parameters
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Fig. 7 Dependence of the optimal emissions level Eo [in GtCO2/year] (left hand scale) on the
parameters α, β, γ , r, rgro and rdis; right hand scale indicates the corresponding stabilized CO2
concentrations. The uncertainties of ΔT are included in the uncertainty range of ρ. Each curve
shows the effect of varying the parameter under consideration while keeping the others fixed at
their central value. The x-axis shows the variation of each parameter w in non-dimensional form as
x = (2w − wmax − wmin)/(wmax − wmin)

the central parameter values; Gtot is the sum of discounted values of annual gross
world product G(t) over N years

Gtot = G(1)

N∑

i=1

(1 + rgro)
i(1 + rdis)

−i (11)

where rgro is the growth rate of G(t). For the central parameters rdis = 0.02%/year,
rgro = 0.01%/year, and N = 150 years we have Gtot = $3.9 ×1015.

The damage cost curve in Fig. 6 begins to level off beyond 10 GtCO2/year instead
of continuing to increase as it really should. The reason lies in the time limited
horizon of our analysis. The choice of N = 150 years for Fig. 6 is clearly too short for
the higher emission scenarios, as can be seen by looking at the emissions in Fig. 1a
and the damage cost in Fig. 3. Since the higher emission scenarios reach their peak
much later, ΔT and cdam are still far below their asymptotic values after 150 years.

Even though this leveling off implies a significant underestimation of the damage
cost for the high emission scenarios, it is not a problem for the optimization because
Eo is sufficiently low, 8.0 GtCO2/year, and even the uncertainty range in Fig. 7 is
low enough not to be affected: for the scenarios WRE 350 to WRE 550 the damage
cost at 150 years is sufficiently close to the asymptotic value. An alternative approach
would be to extend the time horizon, but the time constant (of e.g. 500 years) of the
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model for ΔT (see Eq. 5) would be is so long that the corresponding estimation of
costs would become more than dubious. Already the horizon of 150 years (and the
uncertainty range, up to 200 years) is problematic, although anything much shorter
would not be appropriate. Because of this underestimation of the damage for the
high emission scenarios we do not take values of Eo above 12 GtCO2/year seriously.

Figure 7 shows our results of our first uncertainty analysis. We vary each para-
meter w over the range [wmin, wmax] as listed in Table 2, wide enough to span any
reasonable possible value of w. To show results in a compact format we choose
to represent w in non-dimensional form as x = (2w − wmax − wmin)/(wmax − wmin).

The central value wcentral equals (wmax + wmin)/2, corresponding to x = 0. We do not
consider the uncertainty of the ΔT calculation explicitly, but include it instead in the
parameter ρ. For the large uncertainty range chosen for the parameters α, β, γ , ρ,
rgro and rdis, we find that Eo varies by less than 20% in most cases.

It may appear surprising that Eo and the corresponding stabilized concentration
do not drop very low, staying above 6 GtCO2/year and 433 ppmv for essentially all
the points in Fig. 7. The reason lies in the very steep rise of the abatement cost
curve as low emission levels are reached. Even if the damage costs were larger
than the maximum considered in Fig. 7, the optimal level Eo would not decrease
very much. Of course, Fig. 7 displays only the effect of varying a single parameter.
To evaluate the uncertainty distribution when all parameters can vary over the
ranges in Table 2 we have carried out a Monte Carlo calculation. The resulting
distribution has a relatively heavy tail at high emissions, but that is unrealistic because
the corresponding damages are underestimated as mentioned above. Not counting
therefore the cases where Eo corresponds to the reference scenario WRE750 (i.e.
no reduction at all), the standard deviation is about 2 GtCO2/year. In the following
section we take another approach and consider even larger uncertainties.

4 Cost penalty and value of research

The optimal emission level may well be determined incorrectly as a result of
uncertainties in damage and abatement costs. Consequently, the real cost borne by
society when establishing a desirable CO2 emission level is larger than at the true
optimum obtainable with perfect information. Of course, various political processes
may also preclude the choice of the optimal emission level, but here we are interested
in errors in Eo resulting from erroneously estimated damage and abatement costs.
In particular, we examine by how much the total social cost increases above the
optimum due to damage and abatement cost estimation errors. Rather than looking
at the uncertainty in each of the parameters of Table 2 and Fig. 7, as we did in the
previous section, we here take a simplified approach by considering overall errors in
respectively the damage and abatement cost.

Suppose that damage costs have been estimated as Cdam,est(E), while the true
damage cost is Cdam,true(E). Likewise, we assume that the abatement cost has been
guesstimated as Cab ,est(E), whereas it is really Cab ,true(E). The optimal emission level
corresponding to the estimated costs is Eo,est, instead of the true optimum Eo,true.
We represent damage and abatement cost uncertainties by random variables, xdam

and xab :

xdam = Cdam,true(E)
/

Cdam, est(E) (12)
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and
xab = Cab ,true(E)

/
Cab ,est(E) (13)

We look at variations of xdam and xab separately because their magnitudes and
probability distributions are fundamentally different. Uncertainties in the abatement
cost are much smaller than those in the damage cost. Also, for the former a normal
distribution seems most plausible. We therefore characterize the distribution of
xab by a Gaussian with mean 1 and standard deviation σab . Since for large σab a
significant portion of the Gaussian corresponds to negative values of xab , i.e. negative
abatement costs, we truncate the Gaussian at zero and replace it by a normalized
distribution that is proportional to the Gaussian at positive xab .

For uncertainties in the damage cost function we assume a lognormal distribution.
A variable has a lognormal distribution if the distribution of the logarithm of the
variable is Gaussian. The lognormal distribution is strongly skewed, with a long
tail of high values with low probability. It is usually characterized in terms of its
geometric mean μg and its geometric standard deviation σg. Its geometric mean μg

is equal to the median. If a quantity with a lognormal distribution has a geometric
mean μg and a geometric standard deviation σg, the probability is approximately
68% for the true value to be in the interval [μg/σg, μg, σg] and 95% for it to be in
the interval [μg/σ

2
g , μg, σ

2
g ]. Thus the confidence intervals (CI) of the lognormal are

multiplicative, in contrast to the additive ones of the Gaussian.6

The highly skewed distribution of damage cost estimates in the literature
(DEFRA 2004 and Tol 2005) is fairly consistent with a lognormal function, even
though a few studies claim negative damages. Indeed, global climate change probably
produces both winners and losers, at least at moderate temperature increases, but
we do not believe that the net world-wide damage cost could be negative for any
increase of the atmospheric CO2 concentration. As representation of the estimates
found in the literature we therefore take a lognormal distribution, and choose for
its parameters a median μg = $3.8/tCO2 and upper limit μg σ 2

g = $95/tCO2 of the
95% CI, that is, σg = 5.7 In view of the limitations of currently available studies—
notably the fact that some of the most troubling potential impacts, such as a change
in the thermohaline circulation, rapid non-linear ice-sheet disintegration, or methane
release from permafrost melting, have not yet adequately or hardly at all been taken
into account—we realize that the uncertainty range may well be larger than σg = 5.

Since we focus in this section on variations in xdam and xab , we use these variables
as arguments of the true optimal emission level Eo,true(xdam, xab ) as well as of the
difference ΔC(xdam, xab ) between the total cost at Eo,est and that at Eo,true:

�C(xdam, xab ) = [
Cdam, true(Eo,est) + Cab , true(Eo, est)

]

− [
Cdam, true(Eo, true) + Cab , true (Eo, true)

]
(14)

ΔC(xdam, xab ) is the cost penalty due to errors in the damage and abatement cost
functions. The results in this section are complementary to those of Fig. 7. We
here cover a wider range of uncertainties than considered there, but present less

6See Spadaro and Rabl (2007) for more information on the use of lognormal distributions for the
uncertainty analysis of environmental damage costs.
7This median and the upper limit of the 95% confidence interval are from the review by Tol (2005).
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detail about the specific role of individual parameters. Starting from the quantities
Cdam,est(E), Cab ,est(E), and Eo,est as calculated with the central values of the parame-
ters in Table 2, we now assume that the true costs are obtained by multiplication by
the factors xdam and xab as per Eqs. 12 and 13. As can be seen from Eqs. 4 and 7, the
variation of xdam is equivalent to variations in ρ and ΔT2, while the variation of xab

is equivalent to a variation in α.
The variation of the true optimal emission level Eo,true(xdam, xab ) is plotted in

Fig. 8, in part a) as function of xdam, keeping xab = 1, and in part b) as function of

a
Eo,true (x dam,xab=1) 

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5

0 1 2 3

xdam

242

305.5

369

432.5

496

559.5

623

686.5

750

ppmv

b
Eo,true (x dam=1, xab) [GtCO 2/yr]

0

2

4

6

8

10

12

14

16

xab

242

305.5

369

432.5

496

559.5

623

686.5

750

ppmv

Fig. 8 Effect of uncertainties on the optimal emission level Eo,true(xdam,xab ); the right hand scale
indicates the corresponding stabilized CO2 concentration. a True optimum if true damage cost is
xdam times larger than the estimate, keeping xab = 1. b True optimum if true abatement cost is xab
times larger than the estimate, keeping xdam = 1
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Fig. 9 The cost penalty
ΔC(xdam,xab = 1) if the true
damage cost is a factor xdam
times the damage cost
estimate, as fraction of total
gross world product Gtot
(solid line, left scale) and as
fraction of the total global
warming cost C(xdam,xab = 1)

at the optimum (dashed line,
right scale)

xab , keeping xdam = 1. Since we think that the abatement cost uncertainty is smaller
than the damage cost uncertainty, the depicted range of xab is smaller than that of
xdam (up to a maximum of 3 and 5, respectively). These plots display the same trends
as Fig. 7, but cover wider ranges.

Figure 8 confirms our finding that optimal emission level Eo is within about 25% of
the central estimate 8.0 GtCO2/year for the plausible range of uncertainties. Levels
above 10 GtCO2/year are found only if the damage cost is very low and/or the
abatement cost very high, cases that we do not consider seriously because of the
above mentioned underestimation of the damage costs at high emissions. Compared
to the reference scenario WRE 750 a deep cut in CO2 emissions is clearly necessary.

The cost penalty �C(xdam, xab = 1) resulting from damage cost errors is shown in
Fig. 9 as function of xdam, keeping xab = 1. To get a sense for the magnitude of the
cost penalty with respect to the total costs incurred at the optimum, it is instructive
to show the cost penalty both as fraction of total gross world product Gtot (solid
line and left hand scale) and as fraction of the total global warming cost as ratio
ΔC/C (dashed line and right hand scale), with in this case �C = �C(xdam, xab = 1)

and C = C(xdam, xab = 1). Analogously, the cost penalty ΔC(xdam = 1, xab ) due to
abatement cost errors is shown in Fig. 10, in the same format. Like for Fig. 8, given
that the uncertainty range for abatement costs is probably smaller than for damage
costs, we think it justified to depict a smaller x-axis span for xab than for xdam.

Like in Rabl et al. (2005), we find that the cost penalty is relatively small near the
optimum, or, in other words, the optimum is fairly broad. The cost penalty becomes
substantial only when the damage and abatement cost errors get large. Figure 9 shows
that when the true damage cost is five times the estimated one, the cost penalty

Fig. 10 The cost penalty
ΔC(xdam = 1,xab ) if the true
abatement cost is a factor xab
times the abatement cost
estimate, as fraction of total
gross world product Gtot
(solid line, left scale) and
as fraction of the total
global warming cost
C(xdam = 1,xab = 1) at the
optimum (dashed line,
right scale)
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amounts to about 0.5% of the total gross word product Gtot (and 26% of the total
global warming cost at the optimum). Figure 10 shows that when the true abatement
cost is three times the estimated one, the cost penalty amounts to about 0.2% of
Gtot (and 30% of the total global warming cost at the optimum). These percentages
may still be considered modest, but in absolute terms the cost penalty can become
enormous. The explanation is that the stakes involved in global climate change, i.e.
the costs both at the damage and abatement side of the problem, are very high: 0.5%
of Gtot is about $20 trillion for our central assumptions (rdis = 0.02, rgro = 0.01 and
N = 150 year).

Uncertainties in damage and abatement costs can be reduced by further research.
To assess the value of such research we calculate the expectation value of the cost
penalty < �C(xdam, xab = 1 > (we use brackets < > to designate expectation values)
as function of the geometric standard deviation σgdam of the damage cost, with xdam

characterized by a distribution Lognormal(1, σgdam). Likewise, we determine the
expectation value < �C(xdam,=, xab ) > as function of the standard deviation σab of
the abatement cost, with xab characterized by a distribution Normal(1, σab ). Even
though abatement options exist with negative costs, we do not believe that on a global
scale total long term abatement costs could be negative. We therefore truncate the
normal distribution at xab = 0. The results are shown in Fig. 11.

Figure 11 provides an indication of the value of improved information on the
damage and abatement costs. For example, if continued externality analysis reduces
the geometric standard deviation of relative damage cost estimates from 5 to 4, the
benefit is 0.05% of the total Gtot over 150 years (about $3.9 × 1015), and if further
research reduces the standard deviation of relative abatement costs from 1 to 0.5, the
benefit is 0.03% of Gtot. We thus conclude that research to reduce the uncertainty
of damage and abatement cost estimates can be extremely cost-effective. We also

Fig. 11 Expectation value
of the cost penalty.
a < ΔC(xdam, xab = 1 > as
function of the geometric
standard deviation σg,dam
of the damage cost;
b < ΔC(xdam = 1, xab ) > as
function of the standard
deviation σab of the
abatement cost

a

b
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observe that the possible gains from continued climate change damage cost analyses
(i.e. climatic externality studies) may be significantly higher than those obtainable
by increasing our understanding of the nature of abatement technologies and their
prospected costs. The reason lies in the long tail of the lognormal distribution of the
damage cost uncertainty, due to the possibility of extreme climate events with small
likelihood but very high costs.

5 Conclusions and recommendations

We have carried out a cost–benefit analysis of climate change mitigation, with a
focus on the uncertainties associated with both sides of the problem: the damage
costs of CO2 emissions and abatement costs of CO2 emission reductions. To keep
the analysis transparent we have introduced several major simplifications, especially
by assuming emission scenarios that are scaled versions of the scenarios of Wigley
et al. (1996). Thus we do not consider the optimization of the detailed time profile of
the emissions. Based on a review of the literature, we have formulated elementary
approximations for the damage and abatement cost functions. For the most plausible
choice of the model parameters, we find that the optimum corresponds to an
asymptotic emission level Eo = 8.0 GtCO2/year, far lower than the current level of
about 30 GtCO2/year.

Varying the model parameters over a wide range, we evaluate the sensitivity of Eo

and find that our central result is surprisingly robust. Eo changes by less than 25%
for almost all of the plausible parameter ranges. Interestingly, our results imply that
the optimal emission level is almost certainly not lower than Eo = 6.0 GtCO2/year,
i.e. about a fifth of current CO2 emissions, the explanation for which is that the
abatement costs become too high at this mitigation plateau.

Ultimately it is not only the optimal emission level and its uncertainty that matters,
but the cost penalty, i.e. the extra social cost incurred due to an erroneously chosen
Eo. Since the optimum is broad, the cost penalty is relatively small even for large
errors in the estimation of relative damage and abatement costs. For example, if the
true damage cost is five times the estimated one, the cost penalty amounts to about
0.5% of the total gross word product Gtot (and 26% of the total global warming
cost at the optimum), and if the true abatement cost is three times the estimated
one, the cost penalty amounts to about 0.2% of Gtot (and 30% of the total global
warming cost at the optimum). Although these percentages are relatively small, even
a fairly small relative error implies a large cost difference in absolute terms because
of the enormous magnitude of Gtot (about $3.9 × 1015 for our central parameter
values Nyear = 150 years, rgro = 0.01 and rdis = 0.02). We have therefore calculated
the benefit of reducing these uncertainties. For example, if continued externality
analysis reduces the geometric standard deviation of relative damage cost estimates
from 5 to 4, the benefit is 0.05% of the total gross world product Gtot over 150 years,
and if further research reduces the standard deviation of relative abatement costs
from 1 to 0.5, the benefit is 0.03% of Gtot. Clearly, the value of information provided
by increased climate change damage research can be enormous.

With Eo = 8.0 GtCO2/year as optimal central emissions level and an uncertainty
range of about 2.0 GtCO2/year, we derive from Fig. 5 an optimal stabilized CO2

concentration of po = 496 ppmv with an uncertainty range of about 60 ppmv.
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This result is consistent with the recommendation of Stern et al. (2006) that the
optimal climate stabilized concentration is around 500 ppmv CO2 (equivalent) with
an uncertainty range of about 50 ppmv. Of course, there are many differences in
methodology between Stern et al. (2006) and the present paper. For instance, Stern
et al. (2006) include all greenhouse gases (as CO2 equivalent). But we strongly
agree with the Stern review’s overall conclusion that a deep cut in CO2 emissions
is required to avert the risk of excessive costs due to climate change.

From the above climate change cost–benefit analysis, and the description of the
uncertainties involved, it is evident that much more work is required in the field of
CO2 damage and abatement cost calculations. Especially climate change damage re-
search really has only barely started off. In order to reduce damage cost uncertainties
and exploit the value of the corresponding information, it is particularly important
to perform detailed analyses of regional climatic impacts and associated economic
costs. These are needed to complement the highly aggregated studies produced so
far, like the one presented in this paper. We thus agree with the recommendation
by DEFRA (2004) that the disaggregation and valuation of damage costs by sector
and region should be forcefully pursued. Determining the possible physical impacts
of CO2 emissions in all areas of economic and social activity should be vigorously
continued, since the ensuing findings can effectively profit long-term policy making.
The classical challenges of mitigation timing, social discounting, equity weighting,
and risk aversion remain on the agenda, as well as the question how policy makers
should confront the uncertainties associated with climate change damage and CO2

abatement costs. To the latter, this article has attempted to contribute a step forward.
As in the future more understanding on all the above fields emerges, the type of
analysis presented here should be revisited. For the moment at least our study has
shown how drastic the CO2 emission reductions are that need to be reached.

Acknowledgements This work has been supported by the EC DG Research under the CASES
(Cost Assessment for Sustainable Energy Systems) project of the ExternE series (Contract no.
518294) as well as the EXIOPOL (A New Environmental Accounting Framework Using Externality
Data and Input-Output Tools for Policy Analysis) project. We would like to thank Erin Baker, Jae
Edmonds, Geoffrey Heal, James Mirrlees, Jos Sijm, and Richard Tol, as well as the CASES project
members, for providing us with their expertise, opinions, and suggestions. We also acknowledge the
feedback given by many participants of the International Energy Workshop (IEW) 2008, held from
30 June–2 July in Paris (IEA), where this work was presented in the plenary session.

References

Baker E (2005) Uncertainty and learning in a strategic environment: global climate change. Resour
Energy Econ 27:19–40

Cline WR (1992) The economics of global warming. Institute for International Economics, Washing-
ton DC

DEFRA (2004) The social costs of carbon (SCC) review—methodological approaches for using SCC
estimates in policy assessment. Department for Environment, Food and Rural Affairs, London

DEFRA (2005) Social cost of carbon: a closer look at uncertainty. Department for Environment,
Food and Rural Affairs, London

Fankhauser S (1995) Valuing climate change: the economics of the greenhouse. Earthscan, London
Goulder LH, Mathai K (2000) Optimal CO2 abatement in the presence of induced technological

change. J Environ Econ Manage 39:1–38
Goulder LH, Schneider SH (1999) Induced technological change and the attractiveness of CO2

abatement policies. Resour Energy Econ 21:211–253



Climatic Change (2009) 96:313–333 333

Hammitt JK (1999) Evaluation endpoints and climate policy: atmospheric stabilization, benefit–cost
analysis, and near-term greenhouse-gas emissions. Clim Change 41:447–468

Heal G, Kriström B (2002) Uncertainty and climate change, working paper. Columbia Business
School, New York

Keller K, Bolker BM, Bradford DF (2004) Uncertain climate thresholds and optimal economic
growth. J Environ Econ Manage 48:723–741

Klaassen G, Berglund C, Wagner F (2005) The GAINS model for greenhouse gases, version 1.0:
carbon dioxide, IIASA interim report IR-05-53. International Institute for Applied Systems
Analysis, Laxenburg

Kolstad CD (1996) Learning and stock effects in environmental regulation: the case of greenhouse
gas emissions. J Environ Econ Manage 31:1–18

Manne AS, Richels RG (2004) MERGE: an integrated assessment model for global climate change.
www.stanford.edu/group/MERGE

Meehl GA et al (2007) Global climate projections, in climate change 2007: the physical science basis.
In: Solomon S et al (eds) Contribution of working group I to the fourth assessment report of
the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp
747–845

Mirrlees JA, Stern NH (1972) Fairly good plans. J Econ Theory 4(2):268–288
Nordhaus WD (1991) To slow or not to slow: the economics of the greenhouse effect. Econ J

101:920–937
Nordhaus WD (1994) Managing the global commons. MIT, Cambridge
Nordhaus WD, Popp D (1997) What is the value of scientific knowledge? An application to global

warming using the PRICE model. Energy J 18(1):1–45
Peck SC, Teisberg TJ (1993) Global warming uncertainties and the value of information: an analysis

using CETA. Resour Energy Econ 15(1):71–97
Plambeck EL, Hope CW (1996) PAGE-95: an updated valuation of the impacts of global warming.

Energy Policy 24(9):783–794
Rabl A, Spadaro JV, van der Zwaan BCC (2005) Uncertainty of air pollution cost estimates: to what

extent does it matter? Environ Sci Technol 39(2):399–408
Roughgarden T, Schneider SH (1999) Climate change policy: quantifying uncertainties for damages

and optimal carbon taxes. Energy Policy 27:415–429
Schlenker W, Roberts MJ (2006) Nonlinear effects of weather on corn yields. Rev Agric Econ

28(3):391–398
Schneider SH, Thompson SL (1981) Atmospheric CO2 and climate: importance of the transient

response. J Geophys Res 86:3135–31470
Spadaro JV, Rabl A (2007) Estimating the uncertainty of damage costs of pollution: a simple

transparent method and typical results. Environ Impact Asses Rev 28:166–183
Stern N et al (2006) The economics of climate change: the Stern review. Cambridge University Press,

Cambridge
Titus JG (1992) The cost of climate change to the United States. In: Majumdar SK et al (eds) Global

climate change: implications, challenges, and mitigation measures. Pennsylvania Academy of
Science, Easton

Tol RSJ (1995) The damage costs of climate change: towards more comprehensive calculations.
Environ Resour Econ 5:353–374

Tol RSJ (2005) The marginal damage costs of carbon dioxide emissions: an assessment of the
uncertainties. Energy Policy 33(16):2064–2074

van der Zwaan BCC, Gerlagh R, Klaassen G, Schrattenholzer L (2002) Endogenous technological
change in climate change modelling. Energy Econ 24:1

van der Zwaan BCC, Gerlagh R (2006) Climate sensitivity uncertainty and the necessity to transform
global energy supply. Energy 31(13):2235–2251

van der Zwaan BCC, Rabl A (2009) Uncertainties of external costs: how large are they and to what
extent do they matter? In: Markandya A, Bigano A, Porchia R (eds) (2009) The social cost of
electricity: scenarios and policy implications, Fondazione Eni Enrico Mattei, Mimeo, Milan, Italy

Weitzman ML (2009) On modeling and interpreting the economics of catastrophic climate change.
Rev Econ Stat 91:1–19

Wigley TML, Richels RG, Edmonds JA (1996) Economic and environmental choices in the stabi-
lization of atmospheric CO2 concentrations. Nature 379(6562):240–243

Yohe G (1996) Exercises in hedging against extreme consequences of global change and the expected
value of information. Glob Environ Change 6(2):87–100

http://www.stanford.edu/group/MERGE

	Cost--benefit analysis of climate change dynamics: uncertainties and the value of information
	Abstract
	Introduction
	Damage and abatement costs
	Review of damage cost estimates
	Damage cost as function of emissions
	Abatement cost as function of emissions

	Cost--benefit analysis: solution
	Cost penalty and value of research
	Conclusions and recommendations
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


