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A key aspect in modeling the (future) competition between biofuels is the way in which

production cost developments are computed. The objective of this study was threefold: (i)

to construct a (endogenous) relation between cost development and cumulative production

(ii) to implement technological learning based on both engineering study insights and an

experience curve approach, and (iii) to investigate the impact of different technological

learning assumptions on the market diffusion patterns of different biofuels. The analysis

was executed with the European biofuel model BioTrans, which computes the least cost

biofuel route. The model meets an increasing demand, reaching a 25% share of biofuels of

the overall European transport fuel demand by 2030. Results show that 1st generation

biodiesel is the most cost competitive fuel, dominating the early market. With increasing

demand, modestly productive oilseed crops become more expensive rapidly, providing

opportunities for advanced biofuels to enter the market. While biodiesel supply typically

remains steady until 2030, almost all additional yearly demands are delivered by advanced

biofuels, supplying up to 60% of the market by 2030. Sensitivity analysis shows that (i)

overall increasing investment costs favour biodiesel production, (ii) separate gasoline and

diesel subtargets may diversify feedstock production and technology implementation, thus

limiting the risk of failure and preventing lock-in and (iii) the moment of an advanced

technology’s commercial market introduction determines, to a large degree, its future

chances for increasing market share.

ª 2009 Elsevier Ltd. All rights reserved.
1. Introduction compared to the current (2007) 2.6% [2]. With such turbulent
Driven by general sustainable energy targets and specific

biofuel targets to curb green house gas (GHG) emissions,

concerns regarding security of supply and especially in recent

years rising oil prices, the production and use of biofuels have

been steadily increasing globally in the last decades. The EU

encourages developments to achieve an ambitious 10% share

of biofuels by 2020 [1]. Driven by this target the demand for

biofuels in Europe can be expected to face a strong increase
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short-term development comes the need for an integrated

long-term vision for biofuels, as set in the REFUEL project [3].

Amongst other aspects, the role of technological learning (and

associated cost reductions) is a crucial factor affecting the

possible market diffusion of various 1st and 2nd generation

biofuels.

Given the complex interactions between the various bio-

fuels and fossil transportation fuels, the use of models for

biofuel market penetration can be a useful tool for policy
.
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Nomenclature

FT Fischer–Tropsch synthetic diesel

LE lignocellulose ethanol

DME dimethylether

SNG substitute natural gas

WEC Western European Countries

CEEC Central and Eastern European Countries

Conversion factors

tonne 1.0 Mg

31.71 GW 1.0 EJ y�1
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makers, market actors and scientists. The use of energy

models is not new – a wide variety of energy models have been

constructed to provide policy makers with a better insight into

the complexities of energy system development under various

policy objectives. Many describe the complete energy system

either with a technical ‘bottom–up’ (systems engineering)

approach or with a macro-economic ‘top–down’ approach [4].

Specifically regarding the market penetration of biofuels,

a limited number of models exist, e.g. the ESIM and LEITAP

models [5], the BioTrans model [6] (used in this study) for

Europe or the biodiesel model [7] for the US.

A crucial aspect of these models is how technological

learning and subsequent cost reductions over time are taken

into account, as these can drastically change the economic

competitiveness and thus market share of a biofuel compared

to other (fossil and renewable) fuels. Some energy models

tend to define future cost levels ex ante, i.e. cost reductions are

independent of market developments. This approach ignores

demand driven market dynamics and the notion that tech-

nological learning (and subsequent cost reductions) depend

on the degree to which a technology is utilized; a phenomenon

which has been observed numerous times, and that can be

quantified using the experience curve approach. For this

reason, endogenous learning has increasingly been incorpo-

rated in many energy models but this has not been attempted

for models specifically focusing on biofuels for transport.

Analysis for this study is executed with the BioTrans

model, which assesses the European biofuel mix that estab-

lishes given a target-driven biofuel demand. The model fills-in

the yearly demand by computing the least cost biofuel mix.

The development of production cost can be modeled endog-

enously which makes BioTrans particularly suitable to assess

the influence of specific learning parameter values on

competition between fuels over time.

The objective of this study is threefold, it aims to

(i) Construct the (endogenous) relation between cumulative

installed capacity andassociated production cost reductions,

or if this is not possible construct an (exogenous) relation

following a hybrid approach, in which insights from engi-

neeringstudies (mainlyregardingscaleeffects)arecombined

with a scale-independent experience curve approach for

both 1st and 2nd generation feedstocks and 1st and 2nd

generation biomass-to-biofuel conversion technologies,

(ii) implement these relations in the BioTrans model and

(iii) illustrate the consequences of these assumptions on the

rate of technological learning, its effect on market
Please cite this article in press as: de Wit M, et al., Competition
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diffusion and determine the future biofuel mix as a result

of the market competition.
2. Methodology

2.1. Technological learning and cost reductions in
feedstock production

Feedstock production costs can reduce over time, mainly by

gaining experience with its production. The lack of historical

production cost data prohibits the possibility to model cost

developments endogenously. In principle, however, feedstock

production costs can be modeled endogenously, i.e. relating

annual production volumes (as a proxy for gained experience)

to decreasing production costs. Analyses performed for

sugarcane in Brazil [8], for corn in the US [9] and for rapeseed

in Germany [10] demonstrated that indeed cost reductions of

(food) crops do follow an experience curve pattern. Unfortu-

nately, for all (other) crops considered in the study, no such

studies are available which could provide the necessary time

series and trend lines. However, the studies mentioned show

that an increase in productivity is the single-most important

driver for decreasing production costs for feedstocks,

contributing between 65% and 85% to total cost decline,

therefore making it a suitable parameter for estimating future

cost reduction potentials. Increased productivity is an

important measure for cost reduction as it shows the results

of improving management (e.g. adequate pest control, opti-

mized fertilizer application etc.). Another aspect contributing

to reducing costs is economies of scale in transportation, e.g.

the use of larger trucks, trains or ships [8].

The productivity increase of agricultural commodity crops

was modeled on the basis of a fixed annual increase, with the

annual increment being developed from a time series analysis

of the specific crop [11]. Despite there being a physical limit to

this approach over a long duration, this trend is amply

confirmed for Europe over the last four decades [12,13]. An

equation

Ye ¼ fY$ty þ b (1)

was fitted to the historical data. The relative yield improvement

(% y�1) decreases over time as shown in Fig. 1. We have equated

yield improvement rate to be the same as the production cost

decrease during the period of our analysis from 2005 to 2030

with the initial crop production costs taken from [14].

Lignocellulosic crop productivity development curves are

generally unavailable except for some experimental tree crops

such as Poplar, Willow and Eucalyptus [15,16] and herbaceous

species such as Miscanthus and Switchgrass [17,18]. Instead of

fitting a curve to empirical data, literature data [19,20] have

been used to project the maximum productivity (and thus cost

reductions) for 2030.
2.2. Technological learning and cost reductions for
conversion technologies

An experience (or learning) curve, as this empirical causality

relation is often referred to, expresses the cost decline by
between biofuels: Modeling technological learning and cost
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Relative yield improvement as a proxy for production cost reduction, in %
per annum
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Fig. 1 – Production costs improvement potential over time.
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a constant factor with each doubling of cumulative number of

units (or capacity) produced or installed [21]. This relation can

be written as:

Costcum ¼ Cost0$productionb
cum (2)

PR ¼ 2b (3)

Future production costs (Costcum) can be projected with the

experience curve (Eq. (3)) if the costs (Cost0) are known at the

start of production and the cumulative (unit) production

(productioncum) at a future moment in time. The progress ratio

(PR) is a parameter that can be derived from the experience

index (Eq. (4)), that expresses the rate at which costs decline

for every doubling of cumulative production. For example,

a progress ratio of 80% equals a 20% cost decrease for each

doubling of the cumulative capacity. Production cost decrease

over time due to improvements in the process (incremental

innovations), scaling up of individual units, experience gained

by operation and maintenance etc. [22]. The use of experience

curves for estimation of the progress ratio is often used for

analysis of (historic) cost data coupled to (cumulative)

production figures. Based on production cost developments

over cumulative production, progress ratios have been

derived for a multitude of energy technologies, including

biomass combustion and biomass anaerobic digestion tech-

nologies [22] and 1st generation biofuel conversion technolo-

gies [8–10]. A meta-overview of these data and progress ratios,

based on (bottom-up) studies, is presented in Section 3.2.

These data are applied in the BioTrans model to endogenously

model cost development of 1st generation conversion as

a function of cumulative produced biofuels.

However, for 2nd generation biofuel plants, the problem of

data availability arises. Currently, only experimental-scale

and pilot plants for both FT and LE production exist. First

commercial units are expected to go online in the next few

years [23,24]. Consequently, it is not possible to empirically

determine progress ratios for 2nd generation biofuel conver-

sion technologies. A solution to this could be to take a ‘best

guess’ progress ratio. But as the progress ratio is often one of
Please cite this article in press as: de Wit M, et al., Competition
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the most sensitive parameters for model outcomes, this was

not deemed an option. A more refined possibility would be to

estimate progress ratios for separate component of a biofuel

plant, as done earlier for example for Biomass Integrated

Gasification Combined Cycle plants [25,26]. Still, this method

relies on expert judgments to estimate progress ratios.

Therefore, for this study, a hybrid approach was devel-

oped, in which insights from engineering studies (mainly

regarding scale effects) were combined with a scale-inde-

pendent experience curve approach. Both are described in

more detail below.
2.2.1. Scale-dependant learning
A widely applied concept in engineering studies is the use of

scaling laws. The scale learning approach describes a relation

between increases in plant scale and associated decreasing

production costs, according to a scale law [27,28] which can be

written as:

CostP2

CostP1
¼
�

ScaleP2

ScaleP1

�R

(4)

The capital cost for a process configuration CostP2 is deter-

mined by the current cost of the installation CostP1 and by the

ratio of the future scale and the current scale to the magnitude

of the scale factor R, following Eq. (4). Future cost can be

estimated by applying an empirical determined or theoreti-

cally derived scale factor. Typically, empirically determined

scale factors vary between 0.6 and 0.9. Note that for many

plant components maximum sizes exist, which dampen or

even stall the reduction of costs with increasing scales. Also,

for (biomass) plants, larger plant sizes require larger amounts

of feedstock, typically increasing average feedstock costs.

Thus, conversion plants have an optimum scale at which

specific fuel production costs are minimal [29].

As engineering studies have been published for 2nd

generation biofuels which specify the (expected) scale effects,

it is possible to integrate the scale effect into BioTrans. To

incorporate scaling in the model, three boundary conditions

had to be included:
between biofuels: Modeling technological learning and cost
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Fig. 2 – Schematic overview of the doubling-time approach

with two restrictions (maximum scale and maximum

market share).
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(i) First, there is a maximum speed with which technologies

can be scaled-up. This is primarily related to technolog-

ical learning–larger plants often display new problems,

which have to be solved before further scaling can take

place. Another requirement is a growing market, which

allows producers to increase production by building

a bigger plant (or by operating facilities, with a similar or

smaller scale, in series). This phenomenon has been

observed for many energy technologies [30] e.g. natural

gas turbines [31], wind turbines [32] and fluidized bed

boilers [33]. Typical doubling times for these technologies

are 3–5 years.

(ii) Second, as argued above, an absolute maximum plant

size is postulated:

(iii) Third, a restriction is introduced that a single plant cannot

supply more biofuels than a fixed percentage of the total

market capacity (e.g. 5%) at any given moment. This

restriction is necessary to prevent that in the model runs,

a single plant could supply unrealistic high shares of the

market. These limitations can be modeled using Eq. (5)

Scalet ¼ Scale0$e

� LNð2Þ
doublingtime

$t

�
(5)

with Scalet� Scalemax and Scalet� x%$MarketCapacity.

Fig. 2 illustrates the consequences of these limitations,

following the line segments indicated with letter symbols.

Section A–B is the potential scale-up until limited by the

maximum market share supplied by a single plant. Section

B–C is the assumed market growth rate with the plant scale

following 5% of the market share. The plateau, from C to D,

represents the physical limiting scale for the plant considered.

At slower up-scaling (2� and 4�) it is more likely that the

physical limit limits plant scale rather than the growth rate of

the market.

2.2.2. Scale-independent learning
In addition to scale-dependant cost projections, additional

reductions can occur through technological process improve-

ments which are not related to scale. Examples are increased

efficiency, lifetime prolongation of catalysts, the use of

advanced materials etc. Scale-independent learning has
Please cite this article in press as: de Wit M, et al., Competition
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reduced the costs of ethanol production from corn [9], and

sugarcane [8,34] by 25–50%. These scale-independent cost

reductions where related to the cumulative volumes of ethanol

produced. Thus it was possible to derive experience curves

(and PRs) for scale-independent learning. Due to the lack of any

more adequate data, the PR-ranges of the 1st generation bio-

fuels technologies were used in Biotrans to model scale-inde-

pendent cost reductions of the 2nd generation technologies.
3. Data input

3.1. The BioTrans model

The BioTrans model is utilized for optimizing full supply chain

allocation. In the fuel supply chain, BioTrans considers four

steps (i) feedstock production, (ii) biomass-to-biofuel conver-

sion, (iii) fuel distribution and (iv) end-use. The transport costs

are dependant on transport distance, the distribution of fuels

and expenses for end-use is considered fixed and only fuel

dependant [6]. Due to lower average density and hygroscopic

characteristics additional costs for bioethanol and biodiesel

compared to fossil equivalent fuels are respectively 0.88 and

0.12 V GJ�1. The cost for feedstock production and the

conversion of feedstocks to fuel change over time, as a result

of cumulative produced volumes. The model essentially aims

at finding the minimal cost allocations along the supply chain

given projections of demand (e.g. based on biofuel policy

targets), potentials and technological progress. Between the

different steps in the supply chain, trade is possible between

member states. The model uses as input a wide range of

(mainly techno-economic) parameters regarding the current

European biofuel situation, as well as macro-economic and

technological projections. The output of the BioTrans model

includes detailed allocations of production, processing,

transport and distribution of energy crops and biofuels.

Biotrans can model 1st generation fuels (biodiesel based on

vegetable oil crops and used fats, and ethanol based on sugar

and starch crops) and a number of 2nd generation fuels:

Fischer–Tropsch diesel (FT) and DiMethylEther (DME) through

gasification, substitute natural gas (SNG) through either gasi-

fication & methanation or anaerobic digestion and lignocel-

lulose ethanol (LE) through fermentation. Note that, at least

for the European situation 1st generation biofuels are gener-

ally produced from expensive feedstocks in established and

optimized technologies, while the 2nd generation is expected

to use relatively lower cost feedstocks and what are presently

capital intensive multistep process technologies.

The synthesis paper in this volume [3] develops three bio-

fuel target scenarios. Of the three developed scenarios the

high target scenario is used in this study. The demand for

biofuels as a share of overall transport fuels develops as

follows: 5.75% by 2010, 14% by 2020, and 25% by 2030.

3.2. Feedstock production cost development

3.2.1. Oil, starch and sugar crops
Time series data on the productivity development of crops are

used for the period 1961–2005 [35]. The data are available for

country level aggregates, taken for 30 European countries
between biofuels: Modeling technological learning and cost
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(EU27, Norway, Switzerland and Ukraine). Crops included in

this study are rapeseed, sunflower (seed), sugar beet, wheat,

rye and corn.

For this analysis, developments are described on a national

level and for the larger regions of the Western European

Countries (WEC) and the Central and Eastern European

Countries (CEEC). Rationale for the division between WEC and

CEEC is that developments in the agricultural sectors between

these two regions have been significantly different, while

developments within these regions have been relatively

comparable. The WEC have for the last decades made great

progress in increasing its agricultural productivity by

modernization and up-scaling. Much of these developments

have been made possible by a EU focus on and funding for the

agriculture sector. The CEEC have dominantly been under

centrally planned agricultural policy which initially did raise

agricultural output. In the transition to market economies

around the 1990s, however, production fell sharply. Distinct

differences in these developments have led to considerable

differences to the current day with respect to cost levels,

mainly for land and labour, affecting crop production costs.

3.2.2. (Herbaceous) lignocellulose crops
Production costs to date have been relatively high, mostly

because their production is geographically spread-out and

typically small-scale. Estimates on the potential to reduce

production costs for (herbaceous) lignocellulose crops vary

from 9% on average for Switchgrass [36], 19% for willow in

Sweden [20] and 35% on average for lignocellulose crops [19].

All references state preconditions that have to be met in

order to reach the estimated cost reductions, such as up-

scaling of production, improved and extended machinery

use, breeding optimization, improved management through

more adequate crop-specific knowledge. Barriers are formed

by the limited size of farms, geographical fragmentation etc.

[19]. Furthermore, the production costs for the base year

(2005) are taken from results presented elsewhere in this

volume [14].

3.3. Biomass-to-biofuel conversion cost development

All data presented are in 2004 euros. Where necessary data

provided in different currencies (e.g. US$) have been con-

verted to euros using the average exchange rate in the year of

the publication of the data source. No attempt was made to

correct for inflation for the period 2000–2004.

3.3.1. Vegetable oil to biodiesel
Three process steps are considered to produce biodiesel (i) oil

extraction, (ii) transesterification of virgin oils from oil seeds –

for the two-step process of biodiesel production – and (iii)

transesterification of used oils and fats for biodiesel produc-

tion from residue streams. Pure vegetable oil is produced from

oil seeds (e.g. rapeseed or sunflower) by mechanical pressing

or solvent extraction. Used fats and oils can be obtained e.g.

from slaughterhouse waste and frying and cooking oil. Bio-

diesel can, subsequently, be produced from either the

obtained pure vegetable oil or used fats and oils by a trans-

esterification process. This technology is long since used and

is applied specifically for biodiesel production in Europe (most
Please cite this article in press as: de Wit M, et al., Competition
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notably in Germany) since the early 1990s. Data on investment

and operation costs are based on various sources [37,38], see

Table 2.

For the estimation of the technological learning, the

transesterification process for biodiesel from oil crops and

from used fats and oils were taken as one entity. For both

technologies typical (large) scale installations (Table 2) were

considered following [10]. An endogenous learning progress

ratio for biodiesel production from pure vegetable oil is esti-

mated in the range of 90% (Table 3). The cumulative produc-

tion volume of biodiesel in the EU25, up to and including 2004,

is compiled from data available for the EU15 from 1993 and for

the CEEC from 2002 [39].
3.3.2. Sugar and starch to ethanol
Production of ethanol from sugar and starch comprises of two

major process steps (i) the production of sugar and (ii) the

fermentation of sugar to ethanol. Production of sugar from

sugar crops (e.g. sugar beet) involves crushing, and extraction

of the sugar. Production of sugar from starch crops (e.g. wheat)

involves milling of the grains to obtain the starchy material,

dilution and heating to dissolve the starch and conversion of

the starch to sugars by hydrolysis. The data for investment

and operation costs for conventional bioethanol production,

from sugar and starch crops [40,41] are presented in Table 2.

For technological learning, the ethanol process from sugar

crops and the one from starch crops were taken as one process

(entity). The progress ratio for bioethanol was estimated at

80%, based on the experience of learning in bioethanol

production in Brazil [8] and the US [9]. For estimation of the

cumulative production volume, all ethanol produced in

Europe from sugar and starch is considered, instead of only

that for fuel purposes. The rationale for this is that the

fermentation process learns from both the production of

ethanol for fuel and ethanol for other purposes. Production

data were obtained for the 1970–2000 period [42] and for the

2001–2004 period [39,43]. Based on the 1970–2004 period

production volumes were extrapolated back to 1950. For this

(re)constructed historic time period, cumulative production –

up to and including 2004–in Europe amounts to almost 1.35 EJ

(see Table 3).
3.3.3. Lignocellulose to ethanol
Process description – Production of bioethanol from lignocel-

lulose (LE) material comprises of three major steps (i) pre-

treatment of the lignocellulose material, (ii) hydrolysis of the

lignocellulose to break it down into sugars (C5 and C6-sugars)

and (iii) fermentation of the sugars to convert it into bio-

ethanol. Various processes are available to pre-treat ligno-

cellulose feedstocks [44] that are required to reduce size and

improve surface-to-volume ratio to make it suitable for

hydrolysis. Different levels of process integration, of the

hydrolysis and fermentation processes, are possible that

could reduce the number of reactors needed and so reduce

associated installation costs, reduce process duration and

raise overall process efficiency [34]. Data used in this study are

based on a Simultaneous Saccharification and Fermentation

(SFF) configuration, which was already considered state-

of-the-art in 1996 [45,46], although this is also disputed [47].
between biofuels: Modeling technological learning and cost
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Table 1 – Yield improvements and production costs for the period 2005–2030 for five crop groups.

Crop group/type Region Productivity Production cost

Estimated Yield
2004d t ha�1 y�1

Projected
Yield 2030e

Improvement
2004–2030%

Production costs
2005c V GJ�1

Production
costs 2030

Annual first generation cropsa

Oil crops

Rapeseed WEC 2.6 3.0 14.6 10.30 8.80

CEEC 1.9 2.2 16.4 5.53 4.62

Sunflower WEC 1.9 2.2 14.9 10.30 8.77

CEEC 1.9 2.4 19.1 5.53 4.47

Starch crops

Wheat WEC 5.9 7.9 25.7 9.05 6.72

CEEC 3.9 4.9 20.4 5.27 4.19

Corn WEC 9.0 12.8 30.3 9.05 6.31

CEEC 5.6 7.2 22.9 5.27 4.06

Sugar crops

Sugar beet WEC 5.8 7.3 20.7 5.32 4.22

CEEC 3.3 3.7 12.3 3.66 3.21

Perenial second generation cropsb

Lignocellulose crops WEC 8 13 20–35 3.38 2.45

CEEC 8 13 20–35 1.66 1.20

Herbaceous lignocellulose cropsf WEC 10–20 10–20 20–35 4.46 3.23

CEEC 10–20 10–20 20–35 2.74 1.99

a Based on time series data FAOSTAT.

b Based on [18, 58–61].

c Based on calculations for crop group averages [14].

d The yield level for 2004 is the calculated yield based on the estimated yield development function obtained by linear fitting the historic yield

data for the period 1961–2004. For many countries time series data were incomplete for the assessed 1961–2004 period.

e The yield level for 2030 is the result of extrapolation of the yield estimated function fitted for historic observed yields for the 1961–2004 period

as described under.d

f 2004 yield level estimations for Miscanthus and Switchgrass in oven dry tonnes (odt ha�1 y�1) based on [36].
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Investment and O&M costs – Capital and operation costs are

based on a bottom-up engineering study [48,49]. Other factors

such as process efficiency and excess electricity output,

potentially available to deliver to the grid, are based on [34,49],

see Table 2. Based on the production costs that follow from the

investment costs a scale-dependant cost development was

estimated. A scale factor of 0.7 was used to calculate produc-

tion costs at different scales. The assumed doubling time for

both technologies is set at 5 years. The speed of up-scaling can

be restricted, either by the market share one single plant can

serve or if a maximum scale is reached (Table 2). The maximum

scale was set rather modest (e.g. compared to a ‘conventional’

oil refinery scale) as larger plants would barely reduce specific

investment costs further, while the required biomass logistics

and storage would become increasingly complex.

Scale-independent technological improvement and cost

reduction prospects – A key challenge is the ability to (effi-

ciently and) cost competitively ferment pentose (C5) sugars

[45]. Research and development efforts are directed at genet-

ically engineering bacteria to meet these requirements,

reports on its progress to date vary [50]. Pre-treatment,

a process step to size the lignocellulose feedstock to make it

susceptible to enzyme attack [20] is currently both capital and

energy intensive. Future requirements to particle size may be

relaxed due to improved hydrolysis thereby reducing energy

and cost consumption and, consequently, improving perfor-

mance [34]. More efficient (re)use of solvents can reduce
Please cite this article in press as: de Wit M, et al., Competition
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expenses. Different levels of system integration of the

hydrolysis and fermentation process can reduce system size,

process duration, increase overall process efficiency and

consequently improve cost performance.

Estimates for the cost learning potential are based on

a process-step specific overview [20]. Estimated cost reduction

potential for the processes are: pre-treatment (33%), SSF

fermentation (28%), distillation (13%), Other processing (13%),

pentose conversion (7%), cellulose production (6%) and power

cycle (3%). The progress ratio is derived by applying the cost

improvement potentials per process step to the relative

contribution of these steps to the overall investment costs, as

presented in Table 1. This approach results in a scale-inde-

pendent learning progress ratio in the range of 99% (Table 2).

3.3.4. Lignocellulose to Fischer–Tropsch

3.3.4.1. Process description. The process from biomass-to-

Fischer–Tropsch (FT) diesel comprises of three major steps, (i)

the pre-treatment of the raw feedstock, (ii) the gasification of

lignocellulose material to syngas (H2 and CO) and (iii) the FT

reactor where the syngas is used to synthesize FT (synthetic)

diesel, although a multitudeof end products can be synthesized,

e.g. kerosene. Various process types exist (e.g. atmospheric or

pressurized, air- or oxygen-blown), each with specific advan-

tages and disadvantages [51]. The data used in this analysis

[52,53], assume biomass pre-treatment through drying,
between biofuels: Modeling technological learning and cost
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Table 2 – Techno-economic overview for all biomass-to-biofuel technologies considered in this study.

Technologya Unit Amount

First generation

Oil extraction

Scale kTinput y�1 500 (w665 MWth)

Investment costsb VTinput
�1y�1 103

O&M costs VTinput
�1 27

Yield of product TT�1 0.39

By-product (oilseed pulp/cake)c TT�1 0.59

Transesterification (oil seeds)

Scale kTinput y�1 100 (w134 MWth)

Investment costsb VTinput
�1y�1 200

O&M costs VTinput
�1 81

Yield of product TT�1 1.00

By-product (glycerine 80%)c TT�1 0.11

Transesterification (used oil/fats)

Scale kTinput y�1 50 (w67 MWth)

Investment costsb VTinput
�1y�1 300

O&M costs VTinput
�1 89

Yield of product TT�1 1.00

By-product (glycerine 80%)c TT�1 0.10

Ethanol from sugars

Scale kTinput y�1 100 (w54 MWth)

Investment costsb V Tinput
�1y�1 163

O&M costs V Tinput
�1 67

Yield of product TT�1 0.29

By-product (sugar crop pulp & vinasses)c TT�1 0.31 & 0.12

Ethanol from starch

Scale kTinput y�1 100 (w54 MWth)

Investment costsb VTinput
�1y�1 264

O&M costs VTinput
�1 92

Yield of product TT�1 0.35

By-product (Stillage)c TT�1 0.28

Second generation

Ethanol from lignocellulose

Scale MWth 200

Investment costsb MV 228

O&M costs MV y�1 23

Fuel efficiency GJEtOH GJfeedstock
�1 0.39

By-products (electricity)c GJelectrcity GJfeedstock
�1 0.105

Fischer–Tropsch from lignocellulose

Pre-treatment

Scale MWout 150

Investment costsb MV 30

O&M MV y�1 9

Fuel efficiency GJtreated feedstock GJfeedstock
�1 0.95

Fisher–Tropsch synthesis

Scale MWth 200

Investment costsb MV 223

O&M MV y�1 13

Fuel efficiency GJFT GJfeedstock
�1 0.53

By-products (electricity)c GJelectrcity GJfeedstock
�1 0.033

a For all technologies a load factor of 8000 h and an economic lifetime of 20 years was assumed, except for the pre-treatment step for Fischer-

Topsch where a lifetime of 10 year is assumed.

b All investment costs are corrected with an annuity following the specifications under a with an interest rate of 6%.

c Residual streams from the processes are assumed to be sold on the market to form a reimbursement to the overall production costs. The

following market prices for residual streams are assumed: oilseed pulp/cake 63 V tonne�1, glycerin (80%) 120 V tonne�1, sugar crop pulp and

vinasses 75 V tonne�1, stillage 105 V tonne�1 and electricity 47.7 V MWh�1.

b i o m a s s a n d b i o e n e r g y x x x ( 2 0 0 9 ) 1 – 1 5 7
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torrefaction and pelletisation, followed by an oxygen-blown

entrained-flow gasifier for syngas production. The resulting raw

biosyngas is cooled, conditioned, cleaned from the impurities,

and used for FT synthesis to produce C5þ liquid fuels.
Please cite this article in press as: de Wit M, et al., Competition
reductions over time, Biomass and Bioenergy (2009), doi:10.1016/
3.3.4.2. Investment and O&M costs. Analysis is based on cost

data [53] of recently realised or planned gas-to-liquids (GTL)

projects. For the required biomass-to-liquids (BTL), assump-

tions have been made concerning process steps that have
between biofuels: Modeling technological learning and cost
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Table 3 – Market-driven and scale-driven learning parameters (BASE-case).

Technology Market-driven learning Scale-driven learning

Initial cum.
installed capacity

2005 [MWth]

PR [–] Scale factor [–] Maximum
scale2 [MWth]

Maximum
market share [%]

Doubling
time [years]

First generation

Transesterification

(oil seeds and oils/fats)

214.5 (PJ) 90% n.a. n.a. n.a. n.a.

Sugar 675 (PJ) 80% n.a. n.a. n.a. n.a.

Starch ethanol 675 (PJ) 80% n.a. n.a. n.a. n.a.

Second generation

Lignocellulose 200 99% 0.7 (�1000 MWth) 3200 5 5

Ethanol 0.85 (>1000 MWth)

Lignocellulose 200 98% 0.7 (�900 MWth) 3200 5 5

Fischer–Tropsch 0.85 (>900 MWth)

n.a.¼not applicable.

b i o m a s s a n d b i o e n e r g y x x x ( 2 0 0 9 ) 1 – 1 58
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different capital costs for BTL compared to GTL. A cost-

breakdown is presented in Table 2.

For scale-dependent costs, a scale-factor of 0.7 was used up

until 900 MWth. The entrained-flow gasifier can be scaled-up

to a size of several GWth [53], but with increasing size, other

parts of the installation (e.g. the pre-treatment and gas

cleaning sections) have to be built in parallel, which diminish

the overall scale effect [54–56]. Therefore, from 900 MWth

onwards, a scale factor of 0.85 for overall investment costs

was used. The maximum size was set at 3.2 GWth following

the same reasoning as for advanced ethanol production. The

scaling curve (presented in Fig. 3) and corresponding invest-

ment costs up to 3.2 GWth compares well to other studies

[54,56].

3.3.4.3. Scale-independent technological improvement and cost
reductions prospects. Several technologies considered for FT-

production are not yet fully proven or commercially available:

pressurized (oxygen-blown) gasifiers still need further devel-

opment. A very critical step is gas cleaning, and it still has to

be proven whether the (hot) gas cleaning section is able to

meet strict cleaning requirements for reforming, shift and
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to-ethanol (LE) and lignocellulose-to-Fischer–Tropsch (FT)

conversion technology.
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synthesis. Another critical factor is the catalyst selectivity to

increase C5þ output. Based on these possible technological

improvements, a (relatively modest) progress ratio for scale-

independent learning was assumed in the range of 98% (see

Table 2).

3.3.4.4. Scale-driven learning for lignocellulose ethanol and
Fischer–Tropsch. Fig. 3 displays the scale-dependant learning

curve for the conversion technologies LE and FT. The lower

two curves represent the conversion costs in relation to the

(thermal) feedstock input (MWth in) scale and conversion

costs for feedstock input (V (GJfeed in)�1). The two upper

curves present the fuel production costs (V (GJfuel out)�1) for

the respective fuel output scales (MWfuel out).
4. Results and discussion

This section presents the BASE-case model run (4.1) and the

outcomes for the sensitivity analysis (4.2). Other BioTrans

results are presented elsewhere in this volume [3,6].

4.1. BioTrans output under BASE-case assumptions

Under BASE-case assumptions (Table 4) biodiesel is the most

cost effective fuel, completely dominating the market when

only in competition with bioethanol (Fig. 5-a). The better cost

performance of biodiesel over bioethanol is explained by

lower feedstock costs for oil crops compared to sugar and

starch crops and by relatively lower capital and operational

expenses for transesterification of oil to biodiesel compared to

(hydrolysis) and fermentation of sugar and starch crops to

bioethanol. The initial production cost advantage and market

domination of biodiesel blocks opportunities for bioethanol to

learn and thereby to decrease costs.

Under the BASE-case assumptions both 2nd generation

biofuel production routes are available for market introduc-

tion (when cost competitive) by 2010. This, immediately upon

availability, results in market introduction of FT in 2010 at

costs of 19.3 V GJ�1. Given the ambitious (target-driven)

demand for biofuels high cost oil-crop resources are required
between biofuels: Modeling technological learning and cost
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Table 4 – Parameter variations as used in the sensitivity analysis.

Subject/case Parameter Default value (BASE-case) Case value

Investment costs

Investment costs doubled Investment costs As presented in Table 2 Double the values as

presented in Table 2

20% lower 2nd gen. investment costs Investment costs As presented in Table 2 Investment costs FT

and LE reduced by 20%

Learning

Improved learning 2nd gen. Progress ratios (PRs) As presented in Table 3 All PRs set to 1, PRs for

FT and LE set to 0,95

Slower up-scaling 2nd gen. Doubling-time FT and LE 5 10

Market introduction

Delayed availability FT Year of market availability FT 2010 2020

Delayed FTþ improved eff. LE Year of market availability FT 2010 2020

Fuel efficiency LE 0.39 0.47

Subtarget

Subtargets for gasoline and diesel

substitutes

Subtargets gasoline and

diesel substitutes

No differentiation 20% gasoline substitutes

and 80% diesel substitutes

b i o m a s s a n d b i o e n e r g y x x x ( 2 0 0 9 ) 1 – 1 5 9
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to meet this supply. So, despite fairly high FT production

costs, it competes with the most costly biodiesel immediately

in 2010. From 2010 onwards, FT gradually increases its market

share, to reach a 64% share by 2030. The dominance of

produced volumes FT over biodiesel until 2030 is driven by

rapid cost reductions of both the feedstock and conversion

costs for FT. Although FT is competitive with the most

expensive biodiesel, on average overall FT costs are still higher

then biodiesel costs (see Fig. 4-a). Note that absolute biodiesel

volumes increase continuously.

LE does not enter the market due to higher initial (2010)

production costs. As the BioTrans model uses a least cost

optimization routine, no market introduction is reached. Also

two other features of the model cause it to make ‘radical’

choices: the fact that the model is myopic (short-sighted) and

because endogenous learning creates path-dependencies.

These mechanisms are further discussed in Section 4.2.3.

4.2. Sensitivity analysis

Aim of the sensitivity analysis is (i) to explore how variations

in parameter values affect the fuel production cost levels and

their improvement potential over time, and (ii) what biofuel

mix is obtained under a set of parameter values and how it

relates to (and differs from) the baseline (BASE-case).

Parameter values of four drivers, that impact on the market

dynamics, are varied: (i) investment costs (ii) progress rates,

both scale and experience learning, (iii) timing of market

introduction of technologies and (iv) the existence of sepa-

rate supply markets for diesel and gasoline substitutes, see

Table 4.

4.2.1. Investment costs
Investment and operation costs for all technologies consid-

ered in the modeling are subject to uncertainties. Most data

used as basis for modeling originated from studies carried out

between 2000 and 2004. However, since then surging (volatile)

raw material prices, increased demand for power technologies

(e.g. boilers and gas turbines) and a fluctuating Dollar-Euro
Please cite this article in press as: de Wit M, et al., Competition
reductions over time, Biomass and Bioenergy (2009), doi:10.1016/
exchange rate have impacted on the investment costs for

power technologies. At the moment of writing, the global

economic downturn (crisis) slows off demand thereby

bringing prices back to moderate levels which could bring

down investment costs in the near future. This all the more

illustrates the need to investigate the implications of price

fluctuations on market dynamics. Because the production of

advanced biofuels is more material and therefore capital

intensive than 1st generation biofuels, high prices provide

a relative advantage for 1st generation biofuels.

Because of the multitude of drivers affecting production

cost levels, a broad range was chosen to explore sensitivities.

Two approaches were followed: (i) the effect of integral higher

investment costs for all technologies, driven e.g. by increased

steel prices, was explored. As a first order approach, invest-

ment costs for all technologies were doubled. (ii) A second

case was explored in which investment costs for 2nd gener-

ation technologies were lowered by 20%, compared to the

BASE-case. This is in line with investment costs figures in

literature, e.g. [34,57].Fig. 5-d displays the case where invest-

ment cost is doubled (invest cost double case). Two observa-

tions stand out in comparison with the BASE-case: (i)

introduction of FT production is delayed until 2017, explained

by a higher increase in conversion costs for 2nd compared to

1st generation biofuels. Overall FT production cost increases

by 42% compared to biodiesel production by only 8%, as seen

in Fig. 4-d. (ii) The delayed FT introduction stimulates bio-

diesel production, up to and after 2017, mainly because the

use of high-cost oil crop feedstocks remains cost competitive

even longer. Fig. 5-c depicts the investment cost–20% of 2nd

generation case. Due to lower conversion costs FT production

is more cost effective, to compete with biodiesel early on,

hence expanding its share in the biofuel mix at the expense of

biodiesel production, reaching a 78% market share by 2030.

Results show that an integral increase of investment costs

strongly favours biodiesel production. Furthermore, because

higher investment costs raise overall production costs, espe-

cially for 2nd generation technologies, it weakens the relative

competitiveness with fossil transport fuels (see Fig. 4-d). If, on
between biofuels: Modeling technological learning and cost
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NOTE The fossil reference corresponds to € GJ-1 following a 1.4 $ €-1 exchange rate. Only crude oil 
prices – and no other processing costs – are considered.   
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the other hand, investment costs are reduced for 2nd gener-

ation technologies, the production cost gap with biodiesel can

be closed earlier on, paving the way for accelerated imple-

mentation of FT production.

4.2.2. Scale-driven and experience-driven learning
First generation biofuel conversion technologies are not

assumed to achieve any further substantial scale increases

over time. For the extent that they do, resulting cost reduc-

tions are included in the experience-driven (endogenous)

learning parameter. Advanced conversion technologies, on

the other hand, are considered to increase in scale consider-

ably over time. Under BASE-case assumptions scale doubling

takes place every 5 years. To explore how differences in up-

scaling speed impact on the results the doubling-time is

varied between 3 and 10 years.
Please cite this article in press as: de Wit M, et al., Competition
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Fig. 5-f depicts the slower up-scaling case where the

doubling-time is set to 10 years. It can be seen that the effect on

the moment of market introduction and the share in the biofuel

mix of FT is hardly affected. The FT conversion costs, however,

are affected as can be seen in Fig. 4-f. Also a faster up-scaling

case was assessed, where the doubling time was set at 3 years.

This case is not depicted since no significant changes were

observed relative to the BASE. Fig. 5-e depicts the learning case

where theprogress ratio for both advanced technologies (LEand

FT) was set at 0.95. Again, no significant change is observed.

This is mainly due to the fact that the effect on cost reduction of

up-scaling is much stronger than that of experience learning.

4.2.3. Timing of market introduction
The moment in time that advanced biofuel production routes

will become (commercially) available is by definition
between biofuels: Modeling technological learning and cost
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Fig. 5 – Biofuel mix for satisfying demand. Sensitivity analysis output for multiple parameter variations.
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uncertain. The effect of a relative earlier market introduction

of one technology relative to the other can seriously affect its

share in the future biofuel mix. This is especially true if no

separate gasoline and diesel substitute markets are present. In
Please cite this article in press as: de Wit M, et al., Competition
reductions over time, Biomass and Bioenergy (2009), doi:10.1016/
this case technologies can be considered to supply a homog-

enous product (there obviously is a difference between

supplying ‘a’ biofuel versus supplying either a diesel or gaso-

line substitute as will be elaborated on in the next paragraph).
between biofuels: Modeling technological learning and cost
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When introduced in the market simultaneously, an initial fuel

cost advantage will make the model to prefer one technology

over the other causing only the preferred technology to

penetrate the market (and thus let it learn and reduce costs);

blocking the way for market introduction of the competing

technology. This mechanism of lock-in is dominantly present

in the BioTrans model due to its myopic foresight and least

cost optimization criterion; leading to path-dependencies.

FT production is the preferred advanced biofuel option, due

to a initial cost advantage, in the BASE-case. However, as dis-

cussed in Section 4.2.1, this is to some degree uncertain. To

explore a scenario where LE enters the market before FT, two

parameters are varied. Firstly, the market availability of FT is

delayed to 2020. Secondly, the efficiency of LE is increased to

47% (in line with [34,46]), effectively stimulating both energy

and cost performance. Fig. 5-g displays the earlier market intro

2nd ethanol case, where the market introduction of FT is

delayed by 10 years. Three observations stand out compared to

the BASE-case: (i) Due to high fuel costs for LE compared to 1st

generation biodiesel, market introduction of lignocellulose

ethanol is late (2016). (ii) This late market introduction and,

subsequently, use of (more) high-cost oil crop feedstock results

in significantly more biodiesel production to meet demand, up

to and after 2016. (iii) Immediately upon the ‘new’ year of

market availability for FT (2020) it makes a market entrance.

This shows that (scale and non-scale related) learning of LE in

the period from its market introduction to 2020 has not been

sufficient to out-compete production costs for FT at its market

introduction, even though both routes use the same feedstock

base (at equal costs) to produce fuels. Fig. 5-h shows the case

where the conversion efficiency for lignocellulose ethanol is

raised from 39% (BASE-case) to 43% while maintaining late FT

availability in 2020. With the improved efficiency lignocellu-

lose ethanol now has an improved cost performance and is able

to stay ahead of FT for the whole period. This illustrates

the importance of the timing of market introduction; also for

the long(er) term prospects for both technologies.

4.2.4. Subtargets for biodiesel and bioethanol
In the BASE-case and all other cases assessed so far, a single

biofuel target is used (as is currently the case in the EU), i.e. no

differentiation between subtargets for diesel and gasoline

substitutes is assumed. For two reasons it is deemed appro-

priate to explore effects of a differentiated biofuel target for

diesel and gasoline substitutes. Firstly, currently separate

markets exist for transport fuels. Secondly, a differentiated

target could create separate (niche) supply markets, thereby

diversifying the production portfolio, increasing market

resilience, spreading risk and preventing lock-in.

To evaluate which biofuel mix establishes under separate

targets, the model is run with a constant 80–20% target,

respectively for diesel and gasoline substitutes. All other

parameter values are identical to the BASE-case. Fig. 5-b

depicts this subtarget case. What stands out in this result is:

(i) Starch and sugar based ethanol make it into the market

only because of the target-driven demand for ethanol (as

a gasoline substitute) and the unavailability of LE, until 2010.

(ii) Directly upon commercial availability in 2010, LE enters

and dominates the ethanol market share, due to a substantial

production cost advantage compared to bioethanol (see
Please cite this article in press as: de Wit M, et al., Competition
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Fig. 4-b). (iii) For the diesel substitute market share, biodiesel

is the most cost-competitive option even long after FT is

available for market implementation. FT is only introduced

into the market in 2022 compared to its immediate intro-

duction in 2010 in the BASE-case. This observation is mainly

explained by two mechanisms. Firstly, because the diesel

substitute market is smaller in absolute terms, biodiesel

production can rely on a relatively large low-cost feedstock

potential. This makes biodiesel the preferred option for

a longer period. Secondly, because LE is introduced into the

market early, it starts using low-cost lignocellulose feed-

stocks (mainly forestry and agricultural residues) the same

feedstock that FT production requires. Because with

LE production lignocellulose feedstock becomes increasingly

expensive, it adds to the delay of the FT route into the

biofuel mix.

These results illustrate that regarding competition

between bioethanol and LE, the latter is more cost effective

directly upon availability of the technology. This in contrast to

the competition between the two diesel substitutes where

production costs are closer together.

4.3. Methodological discussion and recommendations
for further research

4.3.1. Modeling feedstock cost developments
Developments in the production of (bioenergy) feedstocks

were in this study modeled exogenously. The approach was

significantly refined, compared to earlier efforts, by differen-

tiating development speeds per crop. A next refinement step

could be the modeling of feedstock cost development endog-

enously. This requires gaining insight into developments of

the relation between historic production cost and cumulative

produced volumes.

4.3.2. No optimal path to a future optimal solution can be
determined
This is due to the myopic foresight and the model requirement

to meet the increasing biofuel target each year based on the

least-cost option(s). Moreover, several solutions may be near

optimal, following different transition paths and arriving at

different end solutions, to comparable costs [6].

4.3.3. Prices versus costs and exchange rate fluctuations
Input data stem from a range of literature sources. Two cost

data aspects introduce uncertainty (i) the difference between

the use of costs versus prices and (ii) a changing euro-dollar

exchange rate. Investment costs, presented in literature, can

either relate to production costs but in some cases relate to

(market) turnkey prices. Production costs reflect the (actual)

expenses that arise from labour input, raw material use etc.

Turnkey prices, on the other hand, also include margins for

the value that is added along the supply chain. One reference

[34] specifies the uncertainty range in (specific) investment

and operation costs to be in the order of �30%. Price data can

be assumed to have even greater uncertainty. Cost and price

data is mainly collected for the 2002–2006 period in either

euros or (US) dollars. Given the strong (US dollar to euro)

exchange rate fluctuations this introduces additional

uncertainty.
between biofuels: Modeling technological learning and cost
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4.3.4. Electricity reimbursement influences competition
between technologies
Both the advanced conversion technologies produce power

and heat, mainly for system requirements. Depending on

residual streams and process optimization, additional elec-

tricity (and heat) can be produced. With FT production, it is

possible to optimize on fuel output, with only limited elec-

tricity output. The production of LE, on the other hand,

produces considerable amounts of excess electricity, available

from the non-fermentable lignin fraction. This electricity can

potentially be delivered to the grid and thus form a reim-

bursement to overall fuel production costs. Although the

influence of a varying electricity price – market price, reim-

bursement tariff or a combination – is not assessed in this

analysis it may have a profound effect on the competition

between technologies.

4.3.5. Standing capacity prevents radical technology switch
BioTrans fills in the demand for biofuels every year with the

least-cost option, without taking into account the standing

production capacity. This can lead in theory to the situation

where a technology is installed in one year and is substituted

the next year by a (slightly) more cost-competitive option. In

reality, the less cost-competitive option can, however, still be

profitable (even more so than the more cost-competitive

option) if investment cost has already been depreciated.

Because production costs rather than profit (gained market

price minus costs) is used for optimization, this effect is not

included. Another driver to continue operation of a less cost

effective (or profitable) technology is the fact that the invest-

ment has to be earned back. Retrofitting or upgrading older

(depreciated) installations can be another option for reducing

investment and operational costs, especially for 1st genera-

tion conversion technologies. While implementing this effect

in future versions of BioTrans is recommended, in the current

analysis we deem this issue of minor importance, as in none

of the cases significant amounts of capacity (e.g.>0.5 EJ y�1)

are rapidly replaced.

4.3.6. Separate gasoline and diesel substitute markets
In the modeling, no distinction is made between markets for

gasoline and diesel substitutes. On the one hand this reflects

current European policy, not differentiating the biofuel

target. On the other hand, at present separate transport fuel

markets exist. Differentiated targets could stimulate

diversification of feedstock and technology use and thereby,

in an up-coming market, prevent lock-in of suboptimal

options.
5. General discussion, conclusions and
policy implications

Based on the model results, the following conclusions are

drawn:

� The potential to reduce conversion installation costs

between 2005 and 2030 is considerably larger for advanced

biofuel options than for 1st generation biofuels. Key driver
Please cite this article in press as: de Wit M, et al., Competition
reductions over time, Biomass and Bioenergy (2009), doi:10.1016/
for reducing advanced biofuel conversion costs is up-scaling

from pilot scale to ‘full’ industrial scale, in the BASE-case

assumed to take approximately 20 years. Production cost

reduction potential for 1st generation biofuels is limited.

� At moderate investment costs advanced biofuel options

enter the market upon availability. With increasing invest-

ment costs for all technologies, e.g. steered by higher steel

prices, 1st generation biofuels have a relative advantage,

delaying the diffusion of advanced biofuels. Results suggest

that this delay could range from several years up to

a decade. Given the strong effect of changing investment

costs on 2nd generation market penetration, potentially

investment subsidies for 2nd generation biofuel plants

could be an important prerequisite for a successful market

introduction of advanced biofuels.

� Domestic European feedstock resources are relatively

scarce at ambitious biofuel targets, which require the use of

more expensive resources (produced on more expensive

land or regions). Expenses for resources make up the

majority of 1st generation biofuel costs. This stimulates the

production for advanced biofuels in two ways (i) woody and

grassy resources have a higher productivity and (ii) resource

expenses are only a minor part of advanced fuel costs.

� In the competition for market diffusion, the relative

moment of market implementation plays a key role. When

a technology is implemented it can start up-scaling and gain

operational experience, steadily decreasing production

costs. When the period between the market penetration of

two competing technologies prolongs, the chances for the

last technology to be implemented diminish. Policy that

aims at preventing lock-in should focus on facilitating

opportunities to establish technology portfolios. One

measure could be differentiation of a biofuel target for

gasoline and diesel substitutes for advanced biofuels.

� Production cost levels for conventional crops and dedicated

bioenergy crops have the potential to be considerably

reduced, in the range of a 30% reduction over 25 years.

Feedstock production cost developments were modeled

exogenously with crop-specific learning rates. This is a major

refinement, compared to earlier modeling endeavors, which

more adequately takes into account the different stages of

development between crop production systems.

� The production of advanced biofuels is more material and

therefore capital intensive than 1st generation biofuels. For

this reason, fluctuating raw material (and other) prices

impact on the competition between 1st and 2nd generation

biofuels. Results indicate that high price levels provide

a relative advantage to 1st generation biofuels and, vice

versa, low price levels stimulate 2nd generation biofuels.

Model outcomes show that a mere 20% decrease in 2nd

generation installation investment costs lead to a 50%

market share already in 2020 (instead of 2025 in the

BASE-case).

� Overall production costs for 1st and 2nd generation biofuels

will, for most cases, be cost competitive with fossil trans-

port fuels, in the range of 70–130 $ barrel�1 (7.8–14.5 V GJ�1)

oil equivalent, by 2030. First generation biodiesel shows

stable overall production costs of around 100 $ barrel�1.

Advanced biofuel options start-off more expensive, in the
between biofuels: Modeling technological learning and cost
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range of 180 $ barrel�1 (20 V GJ�1), but have opportunities

to reduce costs significantly, 30–60%, to become cost

competitive with fossil transport fuels in the range of

70–130 $ barrel�1 (7.8–14.5 V GJ�1).

The modeling of production cost developments required

different approaches for various biofuel options. The most

challenging task was to adequately model advanced biofuel

options, because of the limited availability of (historic)

production costs data related to installed capacity. This

challenge was satisfactory met by the developed approach

(combining bottom–up and top–down insights). Even though,

this approach demanded extensive bottom–up engineering

data and adaptations to the modeling routine. Furthermore,

the inclusion of several parameters (e.g. progress ratios,

scaling laws, time of market introduction etc.) in the sensi-

tivity analysis allowed for an exploration of their individual

impact on cost developments and market diffusion.

Acknowledgements

This study is conducted as part of the REFUEL project funded

by the European Commission under the Intelligent Energy

Europe programme. The authors wish to acknowledge the

help of several colleagues. Ewout Deurwaarder, as part of

the research team, for laying part of the fundament for this

analysis in the earlier VIEWLS study, his efforts in compiling

input data and sharing his in-depth knowledge of the systems

analysed. Jarno Kuijvenhoven and Bram van der Drift, for

sharing their expert knowledge during a meeting. Oscar van

Vliet, for providing data and literature. Joost van Stralen, for

his help with some technicalities of the BioTrans model. The

anonymous reviewers are thanked for their comprehensive

comments and suggestions.
r e f e r e n c e s

[1] Commission of the European Communities. The renewable
energy progress report: commission report in accordance
with Article 3 of Directive 2001/77/EC, Article 4(2) of Directive
2003/30/EC and on the implementation of the EU biomass
action plan. COM(2005)628; 2009.

[2] EurObserv’ER. Biofuels barometer.
[3] Londo M, Lensink S, Wakker A, Fischer G, Prieler S, Van

Velthuizen H, et al. The REFUEL EU road map for biofuels in
transport : application of the project’s tools to some short-term
policy issues. Biomasand Bioenergy, in press.

[4] Junginger M, Lako P, Lensink S, Sark Wv, Weiss M.
Technological learning in the energy sector. Netherlands
Environmental Assessment Agency (PBL); 2008. p. 192.

[5] Banse M. EU Biofuel policy and effects on production and
trade: first modeling results with ESIM and GTAP.
Agricultural Economics Research Institute (LEI); 2007.

[6] Lensink S, Londo M. Assessment of biofuels supporting policies
using the biotrans model. Biomass and Bioenergy, in press.

[7] Bantz SG, Deaton ML. Understanding U.S. biodiesel industry
growth using system dynamics modeling; 2006. Paper
presented at the 2006 IEEE Systems and information
engineering design symposium, April 28, 2006, University of
Virginia, USA.
Please cite this article in press as: de Wit M, et al., Competition
reductions over time, Biomass and Bioenergy (2009), doi:10.1016/
[8] van den Wall Bake JD, Junginger M, Faaij A, Poot T, Walter A.
Explaining the experience curve: cost reductions of Brazilian
ethanol from sugarcane. Biomass and Bioenergy 2009;33(4):
644–58.

[9] Hettinga WG, Junginger HM, Dekker SC, Hoogwijk M,
McAloon AJ, Hicks KB. Understanding the reductions in US
corn ethanol production costs: An experience curve
approach. Energy Policy, in Press.

[10] Berghout NA. Technological learning in the german biodiesel
industry: an experience curve approach to quantify
reductions in production costs, energy use and greenhouse
gas emissions. Utrecht University, Copernicus Institute, The
Netherlands, 2008.

[11] Ewert F, Rounsevell MDA, Reginster I, Metzger MJ,
Leemans R. Future scenarios of European agricultural land
use: I. Estimating changes in crop productivity. Agriculture,
Ecosystems & Environment 2005;107(2–3):101–16.

[12] Calderini DF, Slafer GA. Changes in yield and yield stability in
wheat during the 20th century. Field Crops Research 1998;
57(3):335–47.

[13] Evans LT, Wallace JS, Beavington F. Adapting and improving
crops: the endless task philosophical transactions. Biological
Sciences 1997;352(1356):901–6.

[14] De Wit MP, Faaij A. European biomass resources potential
and costs. Biomass and Bioenergy 2009;34, doi:10.1016/j.
biombioe.2009.07.011.

[15] Campinhos E. Sustainable plantations of high yield Eucalytus
trees for prodcution of fiber: the Aracruz case. New Forests
1999;17(1–3):129–43.

[16] Mercer D, Underwood A. Australian timber plantations: national
vision, local response. Land Use Policy 2002;19(2):107–22.

[17] Mola-Yudego B, Aronsson P. Yield models for commercial
willow biomass plantations in Sweden. Biomass and
Bioenergy 2008;32(9):829–37.

[18] Van Hulst KS. Willow for energy use in Poland: a road map
for the development of large scale, short-rotation willow
production and energy use in Poland. Copernicus Institute,
Utrecht University; 2007. p. 146.

[19] Rosenqvist H, Borjesson P, Berndes G, Neij L. The prospects
of cost reductions in willow production. In: 14th European
biomass conference; 2005.

[20] Wyman CE. Biomass ethanol: technological progress,
opportunities, and commercial challenges. Annual Review of
Energy and the Environment 1999;24:189–226.

[21] Boston Consultancy Group (BCG). Perspectives on
experience. Boston Consultancy Group Inc; 1968.

[22] Junginger M, de Visser E, Hjort-Gregersen K, Koornneef J,
Raven R, Faaij A, et al. Technological learning in bioenergy
systems. Energy Policy 2006;34(18):4024–41.

[23] CHOREN. CHOREN: decision falls in favour of Schwedt, press
release 18 december 2007.

[24] USDOE. DOE selects six cellulosic ethanol plants or up to $385
million in federal funding, press release 28 February 2007.

[25] Faaij A, Meuleman B, Ree Rv. Long term perspectives of
biomass integrated/combined cycle (BIG/CC) technology;
costs and electrical efficiency. Department of Science,
Technology and Society; 1999. p. 102.

[26] Uyterlinde MA, Junginger M, de Vries HJ, Faaij APC,
Turkenburg WC. Implications of technological learning on
the prospects for renewable energy technologies in Europe.
Energy Policy 2007;35(8):4072–87.

[27] Blok K. Introduction to energy analysis. Amsterdam: Techne
Press; 2006. p. 256.

[28] Haldi J, Whitcomb D. Economies of scale in industrial plants.
The Journal of Political Economy 1967;75(4):373–85.

[29] Nguyen MH,PrinceRGH.A simplerulefor bioenergy conversion
plant size optimisation: bioethanol from sugar cane and sweet
sorghum. Biomass and Bioenergy 1996;10(5–6):361–5.
between biofuels: Modeling technological learning and cost
j.biombioe.2009.07.012

http://dx.doi.org/doi:10.1016/j.biombioe.2009.07.011
http://dx.doi.org/doi:10.1016/j.biombioe.2009.07.011


b i o m a s s a n d b i o e n e r g y x x x ( 2 0 0 9 ) 1 – 1 5 15

ARTICLE IN PRESS
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