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1 Foreword 
 
 
The EC/OC Workshop, a preparatory workshop for the future standard measurement 
method, was held in Ispra, Italy on 10th and 11th February 2008. More than 70 participants 
from 20 countries took part in this workshop and contributed to the discussion related to the 
main tasks: 

- giving the general background on determination and quantification of elemental and 
organic carbon (EC + OC), 

- collecting information on available measurement standards in Europe and worldwide, 
- presenting and exchanging experiences in Europe related to the measurement of EC 

and OC, 
- and discussing recommendation to be taken into account for the future measurement 

method. 
The presentations on the first day covered all basic scientific and measurement technique 
relevant topics ranging from reference materials, discussion of optical and thermally based 
measurement methods, needs and design of round robin tests to assess uncertainties and 
reproducibility, artefacts during sampling and analysis, and their application at regional 
background sites within EMEP and EUSAAR.  
The focus of the second day was more on national contributions and experiences which also 
covered a huge range of relevant information such as maintenance, reliability, temperature 
profiles, optical methods and the issue of brown carbon. 
The organizers really thank all presenters but also all participants for their extremely valuable 
contributions to the success of this work shop which really helps to get a good kick-off for the 
standardisation work needed to be done. 
 
Yours 
 
Annette Borowiak and Thomas Kuhlbusch 
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Summaries of the Presentations 
 

2.1 Introduction and Background to Measurement Techniques  
T.A.J. Kuhlbusch1, A. Petzold2, R. Hitzenberger3 
 
1 Luftreinhaltung & Nachhaltige Nanotechnologie, IUTA e.V., Bliersheimerstr. 60, 47229 Duisburg, Germany, tky@iuta.de 
2 Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, 82234 Wessling, 

Germany 
3 Aerosol, Bio- and Environmental Physics, Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, 

Austria  
 
Introduction 
Elemental and organic carbon (EC & OC) are two important components of airborne 
particulate matter. The importance is derived from their mass share of e.g. PM 10 and 
PM2.5, their property to absorb (EC) or scatter (EC and OC) light and their possible 
interference with human health. The latter point was the reason why the requirement of EC 
and OC measurements of PM was implemented for regional background stations in the new 
Air Quality Directive of the EU in 2008. The paper in combination with the slides of the 
presentation is intended to give a general background needed for the implementation of a 
WG for the standardisation of EC and OC measurements in PM in Europe. 
 
What is EC and OC? Where does it come from? 
In his seminal book "Black Carbon in the Environment" Goldberg (1985) points out:  
There is no clear definition of black carbon. It often is defined by scientists on the basis of 
their techniques of isolation and measurement. Despite the highly variable nature of black 
carbon we may describe it as a combustion derived carbon fraction of black color. 
 
This statement, even though stemming from 1985, is still valid. It also has to be noted that 
Goldberg uses the term Black Carbon (BC) implying optical properties of this carbon fraction 
while other terms used are Elemental Carbon (EC), implying chemical purity like in graphite, 
or soot, some kind of incompletely combusted organic matter. 
 
The lack of a clear definition and terminology leads to the current discussion and partial 
confusion on ‘elemental carbon’, the term used here. This discussion on EC is directly linked 
to organic carbon since for simplicity OC is generally defined as the difference between total 
carbon and the sum of elemental and inorganic carbon (EC + IC): 
 
OC = TC – (EC + IC) 
 
Nevertheless, some general standard methods and protocols exist (e.g. VDI, US EPA, 
EMEP, EUSAAR). Their intercomparability is currently at least debatable and may in some 
cases be poor, based on the different basic principles used for the differentiation of EC and 
OC. Since we agree with the statement by Goldberg (1985) that EC “is defined by scientists 
on the basis of their techniques of isolation and measurement, definition may be based on: 

- the thermal stability of EC, 
- the chemical nature of EC, 
- the basic structure of EC, 
- the optical properties of EC. 

 
Sources of EC are generally any incomplete combustion processes either of anthropogenic 
or natural origin. This includes emission from e.g. diesel engines, gas burners, coal fired 
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power plants, domestic heating by e.g. wood combustion, or vegetation fires. This list can be 
extended, especially if “blackness” is used for the definition of EC, to degradation products of 
organic matter and vegetation fire residues. 
Airborne organic particulate matter may be derived from direct, primary emission sources as 
well as from gaseous precursors while EC can only originate from primary emission. Direct 
particulate OC (POC) emission may be from incomplete combustion, (re)suspension of 
biological particles like spores, fungi, plant debris or abrasion products from e. g. tires and 
plastics. Similarly, anthropogenic and natural emissions also lead to particulate OC by the 
release of precursors (volatile organic carbon, VOC) and their subsequent conversion to 
POC. Sources here are e.g. incomplete combustion (diesel, vegetation fires etc.), biogenic 
emission (isoprenes etc.) and VOC from industry (refineries, dry cleaners etc.). 
 
Why do we want to measure EC and OC? 
The main reasons for the determination of airborne elemental and organic carbon are based 
on the possible health and climatic implications. Elemental carbon is one of the few aerosol 
components with strong light absorbing properties, while OC and other aerosol constituents 
mainly scatter light. It has to be noted that the ratio of light scattering to extinction determines 
the “particle albedo”. The particle single scattering albedo linked with the atmospheric PM 
load and the surface albedo determines whether the aerosol leads to cooling or warming of 
the atmosphere.  
The other important implication of EC and OC are their possible implication on human health. 
This also is the background of why the measurement obligation to determine EC and OC was 
implemented in the new Air Quality Directive and why this workshop was set up. The 
background to possible health effects by EC and OC is based on several toxicological and 
epidemiological studies. There is no doubt that EC and OC from e.g. incomplete combustion 
processes lead to negative health effects but the mechanisms on how EC and OC interact 
with humans and the quantitative link to health effects is still not clear. Does EC from diesel, 
gasoline, gas and vegetation fires have the same exposure – response ratio? 
 
How can it be measured? What are the main principles? 
Measurement methods for OC and EC must be based on their unique properties in 
comparison to the general matrix, here PM. Carbon in PM which can be determined by the 
measurement of e.g. CO2 after thermal treatment and oxidation can be separated into 
inorganic, organic and elemental carbon. Inorganic carbon (i.e. carbonates) can be quantified 
by acidification which leads to the release of carbonate carbon as CO2. The interference in 
the determination of EC and OC caused by IC depends on the method and has to be dealt 
with separately. 
 
As already stated above, quantification of OC is mainly based on the difference of TC and 
EC. Total carbon can only be determined by chemical analysis and is normally done by a 
total combustion technique (elemental analysis). Comparability exercises of the 
measurements of total particulate carbon showed generally good agreements within an 
uncertainty range of ca. 20% while the uncertainties are much higher for the measurements 
of EC. 
 
Unique properties of EC have to be used for the separation of TC from EC. These properties 
can be summarized to specific optical properties (light absorption) and thermal stability (low 
volatility and higher combustion temperature). This already summarizes the two main 
measurement approaches for EC: 

- techniques based on the measurement of light absorption, 
- techniques based on the measurement of thermal stability of carbon. 
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Beside techniques solely based on one of those approaches also combinations of both exist. 
The presentation gives examples and describes the main techniques currently in use in 
Europe for the quantification of airborne EC with indication of their advantages and 
disadvantages. 
 
What are the measurement requirements? 
The demands related to the measurement requirements are important to clarify which 
analysis method best fits the needs and where further tests are needed. The presentation 
therefore opened up the discussion on this topic. The summary of the results of the ongoing 
discussion is given in the Resume and recommendation section of this report. The questions 
raised with respect to standardisation were: 

- on-line or off-line method? 
- manual or automatic method? 
- combined EC and OC method? 
- optical or mass based method? 
- comparability?  
- repeatability? 
- calibration / validation? 
- artefacts during sampling 
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2.2 Atmospheric Soot Network: toward to development the EC/OC 
standard material  
Popovicheva1 O., Baumgardner2 D., Puxbaum3 H. 
 
1SINP, Moscow State University, Russia 
2Universidad Nacional Autónoma de Mexico, Mexico 
3Technical University Vienna, Austria 
 

Combustion carbonaceous aerosols, also known as soot, are one of the most 
important particulate species in the atmosphere because of its impact on climate on a global 
scale and health on a local scale. However, our current ability to predict environmental and 
health effects of soot emissions is strongly limited. There is no quantitative estimations of the 
soot exhaust effect from industry /commercial sources, transport, and domestic heating to 
compare it with natural sources from biomass burning and forest plumes.  

There are many instruments to measure carbonaceous aerosols with various 
techniques but at the moment there is no standard reference material that can be use to 
calibrate these instruments. Therefore the uncertainty in measured combustion aerosols is 
estimated to be no better than ± 30-50% or even higher. At the moment, the users of these 
instruments rely upon the nominal calibrations provided by the manufacturer but that have 
not been commonly accepted. Lack of BC material for calibration instruments leads that 
many instruments in different laboratories are calibrated by different materials producing 
various results. Therefore, the technical challenge presently is to produce reference material 
of known composition and to be able to deliver it in a form that can be easily used in any of 
the various instruments that measure this quantity. 

 Combustion carbonaceous aerosols consist of a varying mixture of organic carbon and 
elemental carbon that depends upon the type of combustion and the age of the soot 
particles. The work of the EU commission on the EC/OC  standardisation will soon start. 
Atmospheric Soot network (ASN) recommends a further task has to be considered, which is 
the development of standard material for the calibration of the standard EC/OC measurement 
method. The objective of this task proposes the manufacturing and testing reference material 
of precise elemental and organic carbon content for the purpose of calibrating instruments 
that measure soot for application air quality monitoring. There are currently no methods for 
producing soot particles of known characteristics, i.e. size, surface area, and composition. 
Hence, the development of atmospheric representative and accessible soot materials with 
reproducible “programmable” characteristics will ensure long-term intra and inter-laboratory 
data quality leading to a great progress by the entire environmental community in the 
measurement and monitoring soot aerosols.  

ASN proposes to develop a Set of reference materials including graphitized soot as EC 
standard and OC tailored materials as EC/OC standards. They should be tested by many 
techniques for deriving soot mass concentrations, light absorption and EC/OC separation. 
The principle tasks to be performed are: 1) specification of characteristics for soot from 
various combustion sources, 2) manufacturer of test reference materials that meet the 
specifications, 3) development of soot delivery system, 4) round-robin testing of reference 
materials with instrumentation, 5) presentation of test results to the EC/OC standardisation 
commission. 
 

 
To approach the objectives of CEN 264 activity ASN recommends the organization  of 

the specially-oriented workshop on TC/EC/OC standards selection and preparation, which 
could support the commission on the EC/OC standardisation for prescribing the appropriate 
standards and intercomparison tests concerning the calibration technique of the standard 
EC/OC method and for potential equivalence testing.  
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The task of TC/EC/OC Reference Material preparatory workshop would be: 
1. Presentation and identification of potential materials for TC/EC/OC testing and 
standardization (main requirements for standard materials), 
2. Discussion of ways for preparing reference quartz fiber filters, 
3. Arrangement of the intercomparison compaing on proposed standard materials using the 
EC/OC and light absorption measurement techniques,  
4. Recommendations to the EC/OC standardisation commission. 
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2.3 Principles of thermal methods for the detection and differentiation of 
EC and OC, intercomparison results 
Willy Maenhaut 
 
Ghent University (UGent), Department of Analytical Chemistry, Institute for Nuclear Sciences, Proeftuinstraat 86, BE-9000 
Gent 
 
1. Introduction 
 

Carbonaceous aerosols consist of organic carbon (OC), elemental carbon (EC) or black 
carbon (BC), and inorganic carbonate carbon (CC). EC and BC are used to denote roughly 
the same refractory and light-absorbing fraction of the carbonaceous matter; when this 
fraction is determined with a thermal method it is normally termed EC and when it is 
measured with an optical method it is normally denoted as BC. The distinction between OC 
and EC or BC is, however, not sharp; from a thermochemical point of view there is a 
transition region of refractory organic carbon in between OC and EC and from an optical 
viewpoint there is coloured organic carbon (or brown carbon) in between OC and BC [Pöschl, 
2003]. Depending on the method of analysis or the operational parameters, different amounts 
of carbon from refractory and coloured organic compounds are included in OC and EC or BC. 
The distinction between OC and EC or BC is generally simpler for urban aerosol samples 
than for rural samples and it is especially difficult for aerosol samples that are impacted by 
biomass burning (e.g., wood smoke). However, also for urban samples, different methods 
can provide substantial differences for the EC (or BC) fraction of the carbonaceous matter, as 
was for example demonstrated in the aerosol carbon round robin exercise that was organised 
by TU Vienna 10 years ago [Schmid et al., 2001]. 
 
2. Thermal analysis of atmospheric particulate matter for OC and EC 
 

For thermal analysis of atmospheric particulate matter (PM) one normally collects the 
aerosol with a filter sampler using quartz fibre filters or occasionally with a cascade impactor 
with aluminium foils or quartz fibre filters as impaction surfaces and the thermal analysis of 
the samples is carried out in the laboratory. However, there are also instruments such as the 
Rupprecht & Patashnick Series 5400 Aerosol Carbon Particulate Monitor (now not sold 
anymore) or the Sunset Laboratory Carbon Aerosol Analysis Field Instrument, which perform 
thermal analyses of aerosols for OC and EC in situ and in real time. The principles used in 
these thermal in-situ instruments are the same as in the thermal laboratory instruments and 
no further discussion of the in-situ instruments will be given here. 

The thermal methods used in the laboratory instruments can be classified in three 
categories, i.e., (1) simple thermal methods, (2) two-step thermal methods, and (3) thermal-
optical methods. Methods of all three categories were applied in the above-mentioned 
aerosol carbon round robin exercise of Schmid et al. [2001] and their principles and literature 
references for them are given in this publication. Here, one or two examples are given for 
each category of methods and the principles involved are briefly described. 

As indicated above, carbonaceous aerosols contain in addition to OC and EC, also CC, 
so that total carbon (TC) = OC+EC+CC. Unless the CC is removed prior to the thermal 
analysis, it is generally included in either the OC or the EC measurement. For fine aerosols 
(e.g., PM2.5) CC is often small or negligible, but for PM10 and especially Total Suspended 
Particulate (TSP), it may be substantial. 
 
2.1. Simple thermal methods 
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An example of a simple thermal method is that developed at TU Vienna [Puxbaum, 
1979]. The sample (or a fraction of it) is subjected to a constantly increasing temperature 
(20°C min-1) up to a maximum temperature of 800°C in a pure O2 stream. The evolving 
carbonaceous vapours are converted into CO2 by a MnO2 catalyst (held at 700°C) and the 
CO2 is measured with a non-dispersive infrared (NDIR) detector. The last peak(s) in the 
thermogram (thus at high temperature) is (are) considered to represent EC, whereas the 
earlier peaks are considered as OC. The quantification is done by determining the area under 
the peaks and the instrument is calibrated with samples of known amounts of carbon (e.g., 
sucrose). 

Besides NDIR, also other detection methods can be used for measuring the CO2 in 
simple thermal methods or in the other thermal methods. The CO2 can be measured by 
coulometric titration [Cachier et al., 1989] or it can be converted into CH4 and the latter can 
be measured with a flame ionisation detector (FID). 

A first limitation of the simple thermal methods is that some of the organic matter may 
be converted into pyrolytic carbon (PC) by pyrolysis or charring and like the “real” EC only be 
converted into vapour at higher temperature and then erroneously be counted as EC. 
Incidentally, this limitation applies also to the two-step thermal methods. The artifact 
formation of PC is smaller in an oxidising atmosphere (O2) than in an inert gas (He, N2, Ar). A 
second limitation is that the presence of inorganic cations, such as K+ or Na+ (which are 
important components in biomass burning samples), has a serious influence on the thermal 
evolution of the carbonaceous vapours. As a result, the peaks come faster in the thermogram 
and the distinction of EC from OC may be quite difficult to make. In order to improve the 
determination of EC, the sample is often subjected to an aqueous extraction (which removes 
the water-soluble OC and the cations) prior to the thermal analysis. 
 
2.2. Two-step thermal methods 
 

A first example of a two-step thermal method is that developed by Cachier et al. [1989]. 
In this method, the samples are first subjected to a pretreatment in HCl vapour to remove the 
inorganic carbonates. For the measurement of EC, one part of the sample then subjected to 
a thermal pretreatment step (precombustion at 340°C for 2 h) in order to remove the organic 
component. The remaining EC is determined by combustion at 1100°C and coulometric 
titration of the evolved CO2 in a carbon analyzer (Ströhlein Coulomat 702C). For another part 
of the sample, the combustion/titration is performed without any thermal pretreatment, so that 
the content of TC is obtained. The difference (TC - EC) then yields OC. 

Another example is the VDI-2 method, as used at the Leibniz Institute for Tropospheric 
Research (IfT) in Leipzig, Germany [Neusüß et al., 2002; Plewka et al., 2004]. This method is 
a two-step thermographic method, which uses a commercial carbon analyser C-mat 5500 
(Ströhlein, Germany); the analyser consists of a free programmable combustion furnace (IR 
05) followed by a resistance oven (D03 GTE) holding the CuO catalyst at 850°C (to convert 
carbon quantitatively to CO2) and a NDIR detector measuring the IR absorption of the CO2 
formed. In the first step, the sample is heated at 590°C (or 650°C) in nitrogen carrier gas for 
OC volatilisation and in the second step, EC is combusted at 650°C in an oxygen 
atmosphere. In between the two steps, the IR furnace is cooled down to 50°C to avoid EC 
losses during flushing with oxygen. 
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2.3. Thermal-optical methods 
 

Examples of thermal-optical methods are those of Desert Research Institute (DRI) 
[Chow et al., 1993] and of Sunset Laboratory [Birch and Cary, 1996]. Traditionally, DRI 
makes use of a thermal-optical reflectance (TOR) correction and Sunset Laboratory of a 
thermal-optical transmission (TOT) correction, but both have now instruments where 
simultaneous TOR and TOT corrections are possible. Here, we describe the TOT instrument 
of Sunset Laboratory. A punch of 1.5 or 1.0 cm2 of the quartz fibre filter sample is placed in 
the quartz oven of the instrument. In the first phase of the analysis, which takes place in a 
pure He gas stream, the filter punch is heated in 4 steps up to a temperature of 870°C (or 
900°C); the desorbed carbonaceous vapours are catalytically oxidised into CO2 (by a MnO2 
catalyst held at 870°C); the CO2 formed is reduced to CH4 (in a Ni-firebrick methanator, held 
at 500°C) and the latter is subsequently measured with an FID. Laser light (of 670 nm) is 
continuously passed through filter punch and the light transmission is continuously 
measured. During this first phase of the analysis, part of the OC is pyrolysed (charred) with 
formation of PC, so that the light transmission through the filter punch decreases. At the end 
of the first phase, the filter punch is slightly cooled. In the second phase, which takes place 
with a 98%He/2%O2 mixture as carrier gas, the filter punch is in four (or more) steps further 
heated to e.g. 900°C and otherwise everything is the same as for the first phase. When the 
light transmission through the filter punch equals that seen at the beginning of the first phase, 
the OC/EC split is set; the CO2 measured in the first phase and during the second phase 
prior to the split is considered as OC (it includes the PC) and the CO2 measured after the split 
is considered as the “real” EC. The total CO2 measured during the second phase (which 
represents the sum of PC + “real” EC) corresponds to the EC, which is measured without 
optical correction [Schmid et al., 2001]. After the end of the second phase, while still in a 
He/O2 mixture, a known amount of CH4 gas is injected through a loop; this serves for internal 
calibration. An example of a TOT thermogram (without the internal calibration peak) as 
obtained with the NIOSH protocol is shown in Figure 1. 
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Figure 1. TOT thermogram, obtained with an instrument from Sunset Laboratory and the 
NIOSH temperature protocol, for an urban PM2.5 quartz fibre filter sample collected at 
Ghent. 
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3. Intercomparison results 
 
3.1. Dependence on operational parameters. Intercomparison of four temperature protocols 

in TOT for five sample sets 
 

At University Gent we have two TOT laboratory instruments from Sunset Laboratory. 
Our instrument A was acquired in December 1997 and instrument B in September 2002. It 
was examined to what extent the OC, EC, and TC data depend on the temperature protocol 
and whether the two instruments provide comparable results. This exercise was done for five 
sample sets and for four different temperature protocols, and each sample of each sample 
set was analyzed with each instrument and each of the protocols. The sample sets consisted 
of (1) TSP samples collected during 2003 in Beijing, (2) PM2.5 samples from a 2003 winter 
campaign in Ghent, (3) TSP samples from southern Austria taken in 1999, (4) PM2.5 
samples from a 2003 summer campaign at K-puszta, Hungary, and (5) PM2.5 samples from 
a pasture site in Amazonia taken in 2002 during the dry (biomass burning) season. All 
samples had been collected on quartz fibre filters (pre-fired Pall filters in the case of the 
PM2.5 samples). The four analysis temperature programs were (1) our “standard” program 
(ST), which is the program that we used in the aerosol carbon round robin [Schmid et al., 
2001], (2) a program called NIOSH2 (N2), which is very similar to the ACE-Asia base case 
program of Schauer et al. [2003] and identical to the NIOSH program used for Figure 1, (3) 
the EUSAAR 2 (E2) protocol, which has been developed within the EU project “European 
Supersites for Atmospheric Aerosol Research” (EUSAAR), and (4) a program called ACE-
Asia alternate3 (A3), which is identical to the one used by Schauer et al. [2003] and is a 
proxy for the DRI IMPROVE program. The maximum temperatures during the first stage (in 
pure He) of the analysis for the four programs are 900, 870, 650, and 550°C, respectively, 
and the durations of the four programs, including the CH4 internal calibration phase, are 620, 
775, 1170, and 780 s, respectively. The ranges for TC (in µg/cm2) and for the EC/TC ratio, as 
obtained with program ST and instrument B for each sample set, are given in Table 1; also 
the number of samples within each set is indicated in the Table. 
 
Table 1. Ranges for TC and for EC/TC, obtained with our program ST, and mean ratios (and 
assoc. std. dev.) to program ST for EC/TC for programs N2, E2, and A3 for five series of 
aerosol filter samples and instrument B. The ratios to ST for EC/TC were calculated per 
sample and then averaged over all samples of the same series. 
 
Sample   no. of      Range Range Mean ratios to program ST for EC/TC 
series samples TC (µg/cm2) EC/TC N2 E2 A3 
Beijing 5 71 – 240 0.15 – 0.24 1.15 ± 0.05 1.72 ± 0.20 2.02 ± 0.45 
Ghent 26 15 – 110 0.084 – 0.35 1.04 ± 0.14 1.70 ± 0.41 1.72 ± 0.26 
Austria 16 18 – 40 0.076 – 0.13    1.21 ± 0.25 1.53 ± 0.24 
K-puszta 5 16 – 25 0.038 – 0.056 1.38 ± 0.02 1.51 ± 0.15 1.92 ± 0.15 
Amazon 5 57 – 98 0.021 – 0.031 1.35 ± 0.07 2.67 ± 0.43 2.90 ± 0.31 
 

It turned out that the TC data obtained with our two instruments agreed well (typically 
within better than 10%) and that the various protocols provided similar TC data; one major 
exception existed for our instrument A in combination with protocol E2, the TC data of this 
combination were substantially lower (by up to 40%) than those obtained with E2 and our 
instrument B or with both instruments and the other three programs. It was noted that, for 
actual aerosol filter samples, the time lag between the last peak in the thermogram and the 
CH4 internal calibration peak was substantially shorter for E2 than for the other three 
protocols and that the valley in between that last peak and the CH4 internal calibration peak 
did not come down deep enough for our instrument A. The calculation program that is 
provided by Sunset Laboratory calculates the area under the peaks in the thermogram by 
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subtracting a linear sloped background (baseline). This background is obtained from a 
number of channels at the start of the thermogram and a number of channels before the CH4 
internal calibration peak. If the valley before the latter peak is not deep enough, as was the 
case for E2 with our instrument A, then the background is overestimated and TC is 
underestimated. We obtained a modified calculation program from Sunset Laboratory, 
whereby there is an option to keep the background linear and constant and to estimate it 
from the initial channels in the thermogram. By performing the calculations with this option 
and the modified program, correct TC data were obtained for E2 and our instrument A. It is 
clear that the last temperature step in E2 is not kept on long enough. It is suggested to 
extend the duration of this step by at least 50 s, and possibly by 100 s in order to avoid 
problems. This extension will unfortunately make that E2 will become even longer; it is now 
already by far the longest of the four protocols. 

The EC/TC ratios obtained with the four protocols were compared with each other. This 
comparison was done in terms of ratios to the EC/TC ratios obtained with ST. The ratios (of 
EC/TC ratios) were calculated on a sample by sample basis and then averaged over all 
samples of same sample set (and separately for each of the two instruments). The results 
obtained with instrument B are included in Table 1. It is clear that the lowest EC/TC ratios 
were obtained with ST and that A3 provided the highest ratios. There was clearly an inverse 
relationship between the EC/TC ratio and the maximum temperature during the first phase of 
the analysis. This is illustrated in Figure 2, which shows for each of the five sample sets the 
average EC/TC ratio as a function of that maximum temperature. It is clear from both Table 1 
and Figure 2 that the lowest difference in EC/TC ratios between the four protocols is obtained 
for the rural samples from Austria. The largest difference exists for the biomass burning 
impacted samples from Amazonia. The urban samples from Beijing and Ghent and the 
samples from K-puszta show a behaviour which is intermediate between that of the Austrian 
and Amazonian samples. 
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Figure 2. Average EC/TC ratio as a function of maximum temperature in the first phase (in 
pure He) of the analysis protocol. The average EC/TC ratios are indicated by the symbols 
and are also given in numeric form. The four analysis protocols from left to right are A3, E2, 
N2 and ST. All data were obtained with our instrument B. 

It should be noted that the EC/TC ratio does not only depend on the analysis 
temperature protocol, but also on the type of optical correction used. For the same protocol, 
different EC/TC ratios are obtained with TOR and TOT; there is a tendency for larger EC/TC 
ratios in TOR than in TOT. 
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3.2. Intercomparison of EC and BC results from thermal and optical methods for a 2006 

winter campaign in Vienna 
 

Several thermal and optical methods for measuring EC and BC were compared during a 
2006 winter campaign that took place from 7 February to 15 March on a rooftop of the 
University of Vienna. The results of this study are described in detail by Reisinger et al. 
[2008]. Here, only a brief presentation is given. Three optical methods for measuring BC and 
four thermal methods for measuring EC were used in the study; the optical methods were a 
light transmission method (LTM), the multi-angle absorption photometer (MAAP), and the 
integrating sphere (IS) method; the thermal methods were TOM-TU, the two-step method of 
Cachier et al. [1989], and TOT with the N2 and A3 protocols. TOM-TU is a modification of the 
simple thermal method described in section 2.1; it was extended with an optical transmission 
correction. The samples for the thermal methods were 24-hour PM10 quartz fibre filter 
samples, with filter change nominally at 13:00 UTC. On certain days, i.e., for the 4-day period 
from 23 to 27 February, very substantial differences were found between the EC data of the 
four thermal methods, with TOM-TU and the two-step Cachier method providing much larger 
data than A3 and N2. The 4-day period turned out to be a cold period in which 24-h averaged 
temperatures dropped to -4°C and in which wood burning for space heating was prominent in 
the surroundings of Vienna. By adapting the IS method so that it could differentiate between 
BC-brown, which is ascribed to the wood burning, and BC-black, which originates mainly 
from diesel fuel, it was found that the BC-brown levels were indeed enhanced in the 4-day 
period. The BC-black levels for these 4 days agreed well with the EC data obtained by A3. 
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2.4 Artefacts in the sampling of OC 
Harry ten Brink 
 
Energy-research Centre of the Netherlands (ECN), Petten, the Netherlands 
 
INTRODUCTION 
 OC/EC is (typically) sampled with quartz fibre filters. There are two types of artefacts associated 
with this sampling: 
1) The filters adsorb of volatile OC-components; the so-called positive artefact 
2) Collected semi-volatile components evaporate; a “negative” artefact. 
 Adsorption and evaporation proceed at the same time because different OC-components are 
involved. A comprehensive review of the artefacts is provided by Turpin et al. (2000). As an 
introduction I recommend a presentation from which I took a number of sheets: 
gonzalo.er.anl.gov/ACP/2002presentations/Novakov02.pdf 
 There are sophisticated ways to deal with the artefacts that e will discuss below. These show that 
the adsorption artefact is the most important. It is also seen that the amount of artefact OC does not 
follow the volume of air sampled. In other words, the relative contribution of artefact OC decreases 
with increasing sampling volume. 
 EN-12341 requires the use of quartz fibre filters for the determination of PM10-mass. Thus a large 
number of have been taken in the EU. The OC-artefact must have lead to an artificial increase in the 
amount of PM10. However, we could not find documentation on the importance of this artefact. 
 Field blanks  
A minimum value for the adsorption artefact is found in the values in the so-called field blanks. These 
are filters that are put in the sample holders without being loaded. The filters take up OC via diffusion, 
that is, by just being passively exposed to ambient air. The networks in the US report field blanks that 
are large in comparison with the actual OC-data. Only some scattered data are available in Europe. 
We just finished a study in which sampling was performed with automated KFG-samplers. 150 field 
blanks were taken. The average OC-value of these field blanks corresponded to a concentration of 
1.3 ug m-3. 
 Lot blanks 
Filters received from the manufacturer often contain OC and they are therefore cleaned in scientific 
studies. This is done by pre-firing. Whatman-QMA filters are pre-fired in the factory. We analysed OC 
in a large number of such Whatman-QMA. These “lot”-blanks were unsealed only shortly before 
analysis. Filters from the top of a stack contained OC values higher than that of the average field 
blank. Further down the values rapidly decreased to often insignificant values. 
 
ASSESSMENT AND AVOIDANCE OF THE ARTEFACTS 
 Lot-blanks should be tested before use. Filters may have to be pre-fired; cooling in a wet 
atmosphere pacifies the surface (advice of Puxbaum). A first indication of the magnitude of the 
sampling artefact is provided by the field blank. 
 For an assessment and quantification of the sampling artefacts there are several methods in use 
for which we also provide the name of the respective institute / scientist using these: 
1. Filter-pack / tandem filters / 2 filters in series; the amount of OC in the 2d filter is a first measure 
for the sampling artefact in the first filter (EMEP, Sillanpää). 
2. A gas-denuder to remove the adsorptive volatile OC (Maenhaut / Viana). 
3. Impregnation of the second filter to collect the semi-volatile OC that evaporates from the first filter, 
to correct for the negative artefact (Putaud). 
ad 1. Teflon-quartz filter-pack; in a parallel sampling line. The Teflon filter does not adsorb 
OC; the OC on the quartz back-up filter is a (better) measure for the adsorption artefact 
(Vecchi) 
 
SUGGESTION FOR ISSUES TO BE ADDRESSED IN THE WORK-GROUP 
 
1. Filter type: EN-14907 allows glass fibre; OC/EC analysis is possible 
2. Combination of mass-determination and OC/EC-analysis for the same (quartz) filter 
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3. Brand of quartz-filter; there are different brands with possibly different blank characteristics 
4. Amount of air drawn through the filters. This affects the ratio of artefact OC and real OC 
5. Filter-packs to correct for the artefacts, specifically for source apportionment 
6. Denuders to remove volatile OC 
7. Pre-firing and, if so, what protocol. 
 
Addendum: automated on-line instruments 
 Artefact formation can be easily checked in automated instruments. This is done by periodically 
placing an absolute filter in the sampling line. Own experience was not encouraging in this respect. 
The ACPM’s (R&P 5400) tested had a large and irreproducible artefact. 
 Artefacts with filters can be avoided by collecting PM differently. There is an instrument for artefact-
free sampling of the (semi-volatile) nitrate. The collection occurs via condensation of steam. The 
nitrate is analysed in the collected condense-water. In this water also OC can be measured. 
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2.5 Towards a Standardised Method for Measuring Organic and Elemental 
Carbon within the EUSAAR network 
J.P. Putaud and F. Cavalli 
 
European Commission, DG JRC, Institute for Environment and Sustainability, 
I-21027 Ispra (Va) 
 
The current European Directive on ambient air quality (2008/50/EC) states that 
measurements shall be made at rural background locations for providing information on the 
chemical speciation of fine particulate matter (PM2.5). Carbonaceous matter accounts for 45 ± 
20 % of PM2.5 (ref.?) across Europe. A reference method for monitoring this important PM 
constituent is however lacking. EUSAAR aims at improving the quality of the measurements 
of non-regulated aerosol properties of interest to air pollution and climate change issues. The 
analytical protocol for carbonaceous PM “EUSAAR_2” copes with a series of requirements 
that a reference method should meet, including: 
 

1- A robust determination of the total carbon (TC) concentration. 
TC can directly be determined using thermal methods: PM samples collected on e.g. quartz 
fiber filters are exposed to increasing temperature (up to 850°C) so that carbonaceous 
species are all volatilized and/or oxidized to CO2, which is  directly or indirectly detected. The 
analytical protocol EUSAAR_2 includes the determination of TC through a straightforward 
calibration using gases and solutions containing inorganic or organic carbon. 

2- A pragmatic speciation of TC. 
Atmospheric carbonaceous PM consists of hundreds of different molecules. Labor-intensive 
combinations of the most advanced analytical techniques can resolve and quantify up to ca. 
30% of the TC mass. These techniques are therefore not suitable for monitoring. However, it 
is important to go for TC speciation, particularly to distinguish between elemental carbon 
(EC), directly emitted in the particulate form by combustion processes, and organic carbon 
(OC), that arises from both natural and anthropogenic [primary and secondary] sources. 
However, it is difficult to make a clear distinction between highly refractory organic molecules 
and pure EC. 
Thermal analytical techniques split TC fractions according to their volatility. In an inert 
atmosphere (step 1), just OC volatilizes. EC is combusted to CO2 during step 2 in an 
oxidizing atmosphere. The highest temperature reached during step 1 is critical. If it is too low 
(550°C like in the IMPROVE protocol), a fraction of OC (up to 40%) does not evolve during 
step 1 and could be detected as EC. If it is too high (850°C like in the NIOSH protocol), as 
much as 21.2±4.4% of EC could be combusted during step 1 and be detected as OC. The 
compromise (650°C) chosen in the EUSAAR_2 protocol ensures that a maximum of 
2.5±2.4% of EC will be combusted during the analytical step 1, and a minimum of 80% of 
even high molecular mass organic molecules (humic-like substances) are volatilised or 
charred (see point 3) during step 1. 

3- A correction for charring 
Instead of volatilizing, some organic molecules polymerize and form a highly refractory black 
species during temperature ramps (charring). This pyrolitic carbon (PC) would be detected as 
EC. Not correcting for charring can lead to analytical errors in the determination of 
atmospheric EC larger than 400% (EUSAAR_2 intercomp’2007). 
Thermal-optical analytical techniques monitor charring by recording the decrease in light 
transmission and/or reflection through the filter during the analysis. As O2 is added to the 
carrier gas, refractory black PC and EC are combusted and light transmission and reflection 
gradually increase again. When light transmission or reflection reaches the value recorded 
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before the analysis starts, it is considered that all PC formed from OC during the analysis has 
evolved and that all carbon evolving afterwards is atmospheric EC. 

4- A limitation of charring 
To discriminate between artificially formed PC and native atmospheric EC, thermal–optical 
methods assume that one of the following two hypotheses is correct: 

(a)  PC evolves from the filter before EC during the analysis. 
(b)  PC has the same specific light absorption cross section (σ) as EC.  

However, none of these assumptions always holds: PC and EC have been shown to co-
evolve, and PC’s σ was found to be generally larger than EC’s. Temperature programs 
should therefore aim at reducing the amount of charring to a minimum. Longer steps at low 
temperature (120 s @ 200°C, and 150 s @ 300°C) as in the EUSAAR_2 protocol reduce 
charring by 16% on average compared to e.g. the NIOSH protocol. 

5-  A low sensitivity of the EC value to the split point position 
The transmission or reflection threshold value which is used to split between PC and EC is 
known with an uncertainty of ca. ±3%. To minimize the effect of this uncertainty on EC 
determination, the temperature protocol should be such that the amount of carbon evolving at 
the split point is as little as possible. 
The EUSAAR_2 protocol includes three temperature plateaus in the analytical step 2, where 
the split point occurs, which increases the chance of having a smooth evolution of carbon 
around the split point. Over 9 samples collected in Ispra (semi-rural site in Italy), an 
uncertainty of ±3% in the determination of the laser signal threshold translated in an 
acceptable uncertainty of ±10 % in EC determination. 
 
 
Conclusion 
While alternative methods could be more precise, accurate, and/or rigorous on specific 
aspects of the determination of OC and EC in atmospheric PM, a thermal-optical method 
implementing the newly optimized temperature protocol EUSAAR_2 fulfills a series of 
requirements that makes it highly suitable for the monitoring of OC and EC concentrations in 
PM2.5 in Europe. 
A recent intercomparison demonstrated that 5 among 6 EUSAAR partners using this protocol 
could determine TC and EC/TC with relative errors <17 and 29%, respectively, a fraction of 
this difference being possibly due to filter heterogeneity. Furthermore, using EUSAAR_2, the 
amount of PC determined optically (integrating the laser signal) and thermal-optically 
(integrating the CO2 signal up to the laser-determined split point) well agree (R² = 0.75, n = 
224) for filter loads <25 µg/cm², which guarantees the accuracy of the EC (and  therefore 
OC) determination. 
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2.6 OC/EC/TC analysis: the Spanish experience 
M. Viana*, A. Alastuey, X. Querol 
 
Institute for Environmental Assessment and Water Research (IDAEA-CSIC) 
* mviana@ija.csic.es / mar.viana@idaea.csic.es 

 
EC/OC Workshop, February 11th, 2009, Ispra 
 
 

At present, OC and EC analyses are carried out in Spain at two research institutions: 
- ISCIII (National Health Institute) in Madrid, where a TOT Sunset OCEC Analyzer was 

acquired and runs since May 2006 (using the quartz.par protocol) 
- IJA/IDAEA-CSIC (Spanish Research Council) in Barcelona, where a TOT Sunset 

OCEC Analyzer was acquired and runs since July 2007 (currently using the EUSAAR2.par) 
The acquisition of a third TOT Sunset OCEC Analyzer is currently in process at the 

Huelva University. In addition, numerous TC analysers (CHNS analyzers, etc.) are available 
in laboratories throughout Spain. 

Prior to the use of Sunset instruments for OCEC determination, analyses were carried out 
at the laboratories of Prof. C. Pio at Aveiro University, Dr. JP. Putaud at JRC Ispra and Prof. 
W. Maenhaut at Ghent University. At these laboratories and since 2002, samples were run 
from various Spanish sites in order to obtain preliminary estimations of OC and EC 
concentrations as well as to assess the influence of sampling artefacts. The results obtained 
were published in a number of SCI papers (Rodríguez et al., 2007; Viana et al., 2006, 2007). 

At IJA/IDAEA-CSIC, on average 1200-1500 samples are currently run per year originating 
from a large variety of monitoring environments: regional and urban background sites, as well 
as traffic and industrial hotspots. Therefore, the PM mixtures analysed significantly differ from 
each other with respect to PM loading and chemical composition. The samples originate from 
high- and low-volume samplers (with and without denuders), and they are collected on 
Munktell and Pallflex substrates. 

Regarding the daily run of the instrument, since July 2007 the only major incidence 
registered at the IJA/IDAEA-CSIC lab refers to the combustion oven, given that a progressive 
increase in the pressure in the combustion oven was observed (PSIG increased from 1 to 3 
in 9 months). As shown in Figure 1, this increase is slow at the start but grows exponentially 
after 3-4 months. Consequently, in our case the oven had to be completely removed and 
substituted by a new one, and this process was repeated 2 times in 1.5 years. 
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Figure 1. Progressive increase in the pressure in the combustion oven.  

 
Potential causes of this incidence are the type of samples analysed (e.g., samples from a 

ceramic production area with high % of refractory material), and/or the use of HCl to eliminate 
carbonate carbon (which seemed to be extremely harmful to the instrument). 

Another incidence observed was the increase in the variability of sucrose concentrations if 
the instrument is not run continuously. The standard deviation of the samples increased from 
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0.1 µg/µl when the instrument was run continuously, to 0.64 µg/µl after a 15-day analysis 
gap. 

The analytical protocol used by the IJA/IDAEA-CSIC lab was the default Quartz.par from 
the installation of the instrument until April 2008, when preliminary tests were carried out 
using EUSAAR2.par. Given the good results obtained with the EUSAAR2.par protocol, 
evidenced by positive results obtained in 2 round robin exercises, since September 2008 all 
analyses are performed under the EUSAAR2.par protocol. 

The abovementioned tests regarding the EUSAAR2 protocol pursued 3 aims: 
1. Comparison between Quartz / NIOSH / EUSAAR2 and repeatability: 1 single PM 

sample was analysed 3 times with each of the protocols. TC levels obtained were 
similar for NIOSH and EUSAAR2 and differed slightly from Quartz, and the 
precision was highest with NIOSH. EC/TC ratios increased from Quartz to NIOSH 
and EUSAAR2. 

2. Comparison between Quartz / EUSAAR2 for different PM mixtures: 5 different types 
of PM mixtures (episodes) were selected, and a total of 22 samples were analysed. 
The influence of the PM mixture seemed to be minor on OCEC results, given that 
EUSAAR2/Quartz ratios for OC did not vary significantly between PM episodes. 
EC/TC ratios were higher again for EUSAAR2 than for Quartz. The correlation 
between both methods for OC, EC and TC was high (>0.88). 

3. Comparison between Quartz / EUSAAR2 thermograms: the following results were 
obtained: (a) a clearly better peak separation was observed with EUSAAR2; (b) 
combustion of light absorbing carbon (LAC) was minimal for both protocols (only 
detected for 2/11 samples); and (c) results were not optimal for either protocol 
regarding the split point, as in 7/11 samples for EUSAAR2 and 9/11 samples for 
Quartz the split point fell in the middle of a peak or close to it, inducing possible 
inaccuracy in the quantification of EC. 

Further research is currently underway to test the performance of EUSAAR2 on urban 
aerosol mixtures, especially in comparison with the Quartz protocol and under the influence 
of different PM mixtures.  
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2.7 MEASUREMENTOF CARBONACEOUS AEROSOL BY THERMO-
OPTICAL METHODS: The Portuguese experience 
Casimiro A. Pio 
 
University of Aveiro, Portugal 
 
Summary 
 
The University of Aveiro has more than 15 years of experience in the measurement of OC 
and EC by thermo-optical techniques. This presentation describes the evolution of equipment 
and thermal heating programs and the advantages and limitations of the different 
alternatives. Several tests were done in order to evaluate the importance of possible 
interferences in the correct separation between OC and EC, taking into account the 
pyrolization of OC. Carbonates evolution, the interference during EC/OC measurements and 
the effect of pre removal with HCl vapours is discussed. 
 
There is a delay between the volatilization of carbon in the filter and the detection of the 
resulting CO2 in the NDIR detector. Furthermore during the transport to the detector there is 
the dispersion of the emitted volatile carbon in the oven, tubing and detector. This delay / 
dispersion needs to be taken into account to minimize errors in the correct separation 
between OC and EC.  
 
The variability in the intensity of the laser signal during thermal carbon evolution can be used 
to assess the optical characteristics of the pyrolysed OC and EC. Measurements show that, 
in urban aerosol samples, the pyrolitic OC and initial EC have similar optical absorbance 
characteristics. However, in rural samples, a clear variability in optical absorptivity is 
observed during the evolution of pyrolised OC and EC, with an initial low absorptivity 
coefficient value followed by a much higher coefficient during the burning of the last carbon 
material. This dual character of the pyrolitic OC plus EC may hinder a correct evaluation of 
EC in these rural samples. 
 
The methodology used at Aveiro to measure OC and EC was tested with NIST standards 
and intercompared in international tests, showing EC results between those of the IMPROVE 
and NIOSH protocols, but more similar to the first one. 
 
Fifteen years of aerosol measurements using the same analytical technique permitted the 
gathering of results that show a constant minimum OC/EC ratio value, along time and space. 
This is a good indication that the minimum OC/EC ratio in urban areas in winter can be safely 
used to determine the amount of primary OC from fossil fuel combustion, contributing to the 
correct  source apportionment of the carbonaceous aerosol. 
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2.8 Measurements of Organic and Elemental Carbon in UK AirQuality 
Networks 
Paul Quincey, Garry Hayman 
 
Analytical Science Team, National Physical Laboratory 
 
This brief summary describes the monitoring of elemental and organic carbon (EC/OC) within 
UK Networks. It does not cover monitoring made at the EMEP site at Auchencorth Moss 
(which currently monitors Black Carbon by aethalometry) or short term campaigns. 
 
There are two relevant Networks: 
 
The Particles Network is currently managed and operated by NPL and King’s College 
London. Apart from EC/OC it measures particle number concentration (currently at 4 sites), 
size distribution (3 sites), sulphate, nitrate and chloride (PM10) daily (3 sites), nitrate (PM2.5) 
hourly (3 sites). 
 
For EC/OC, from 2002 – 2007 hourly (or 3-hourly) measurements were made with 4 R & P 
(Thermo) 5400 analysers (4). These instruments are no longer available or supported. They 
had serious weaknesses in sample collection (impaction was used, and particles less than 
around 100 nm were not collected), in analysis (a thermal method with no charring correction 
was used), and in QA/QC (although the CO2 monitor could be calibrated, it was not possible 
to do a “whole instrument” calibration).  
 
From 2007 EC/OC has been monitored at 3 sites (Marylebone Road (London kerbside), 
North Kensington (London background) and Harwell (SE England rural)) by daily filter 
sampling using a Partisol 2025 onto Pallflex Tissuquartz 47 mm filters, followed by with lab 
analysis at NPL on a Sunset Laboratories instrument using the “quartz” protocol. Monthly 
averages for 2007 (since the start of this method in the Network) are shown below. 
 
The Black Smoke Network has measured Black Smoke Index for many decades using daily 
filters analysed manually with a reflectometer. In most cases, concentrations are too low to 
measure accurately with this method. In 2008 the instruments at the 21 sites were changed 
from the old samplers to aethalometers (Magee AE-21), which will provide a more precise 
measure of Black Carbon with much higher time resolution. 
 
Results and further details are available through the Defra website www.airquality.co.uk by 
following “research” and “reports database”. 
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2.9 Swedish experience - Eusaar_2 and 14C 
Johan Genberg 
 
Nuclear Physics, Department of Physics, Lund University, Box 118, Se-22100, Lund, Sweden 
johan.genberg@nuclear.lu.se 
 
In Sweden there are two groups working with carbonaceous aerosol. My experience is only 
valid for the experience at Lund University. Lund has in contrast to most other institutes not a 
Sunset carbon analyser but a DRI 2001A OC/EC Thermal Optical Carbon Analyzer. In 
general the two instruments work in the same manner but the sample size (the filter punch) is 
smaller using the DRI. This smaller punch may put us in the position where the sample load 
is too small and give higher uncertainties. The analyser has been running well since 
November 2008 and is generally demonstrating an instrumentation blank at approximately 
0.1 µg C. 
In Lund, Eusaar_2 EC/OC protocol was tested in May 2008 and has ever since been used to 
analyse ambient samples from our background station Vavihill. Before, samples were 
analysed using the Improve method. The major differences between the methods are 
Eusaar_2’s higher temperature of the last He-stage and the lower temperature at which 
oxygen is introduced. For samples collected in southern Sweden this new protocol has 
shown good results. Using the Improve method, the OC/EC split generally falls in the peak 
where oxygen is introduced at 550°C. Eusaar_2 has, with its lower temperature of 500°C (in 
Lund at 480°C and rising to 500°C), a wider peak and the split falls, in most cases, in the 
valley between the peak for 500°C and 550°C. The split of Eusaar_2 result in lowering the 
uncertainties of OC/EC separation. The temperature in the last OC stage in Eusaar_2 is set 
at 650°C which is 100°C higher than the Improve protocol. This temperature is enough to 
start combustion of charred substances (true or false EC). The length of this temperature 
stage has so far not been as long as required to restore the laser baseline for the 
transmission signal to its starting value. A temperature of 650°C is however not high enough 
to combust soot in pure helium gas. Collected pure soot, generated at Lund University, show 
practically no increase in laser transmission during the 650°C helium phase. 
At Lund the split between OC and EC is of primary interest for climate research. The 
information is used, together with radiocarbon (14C) measurements, to quantify the sources of 
the carbonaceous aerosol. This is possible since the naturally occurring carbon isotope 14C is 
radioactive and has a half-life of 5730 years. Fossil fuel is therefore 14C-free while biomass 
has 14C concentration as the atmosphere of today. EC, originating from combustion, might by 
radiocarbon measurement be separated into fossil fuel and biomass burning. Known, or 
estimated, value of EC/OC from wood burning may be used to complete the source 
apportionment of OC into fossil fuel, biomass burning and biogenic sources.  
To separate OC and EC prior to radiocarbon measurement two techniques are tested in 
Lund. The first and most promising is a method based upon the work of Sönke Szidat the 
University of Bern, Switzerland (Szidat et al. 2004, Radiocarbon, 46, 475-484). The water 
soluble OC is removed by water treatment and the filter is heated in 375°C in air for the time 
needed to remove all OC. Szidat found that 4 hours was needed to get a stable 14C 
concentration in the remaining carbon. The carbon left on the filter is considered pure EC and 
may be analysed. The radiocarbon content of the OC fraction is in Lund determined by 
subtraction after measured 14C in the total sample. This method is currently being verified 
using the Eusaar_2 protocol. Since OC/EC separation is user defined it is important that the 
separation of OC and EC prior radiocarbon measurement is comparable. 
In the second considered method the gas flow from the carbon analyser is diverted and 
trapped it in a cold trap using liquid nitrogen. This would make it possible to use different gas 
mixtures and monitor the filter’s optical properties during the analysis. Because of the small 
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punch size of the DRI, several punches might be required before sufficient carbon has been 
collected to be able to perform the 14C measurement. 
It is necessary to extract the carbon from the aerosol samples and convert it into solid carbon 
prior to 14C AMS measurement (Accelerator Mass Spectrometer) at Lund University. Carbon 
analysed with the first method is combusted to carbon dioxide. In both methods the carbon 
dioxide is collected and converted into solid graphite carbon. The carbon dioxide is mixed 
with hydrogen in a small volume with iron powder and converted into graphite by heat. The 
process is constantly monitored by measuring the pressure. In Lund the graphitisation 
system is capable of handling samples as small as 25 µg C, which makes analyses of 
aerosol samples possible. The use of radiocarbon content in aerosol fractions is not the only 
analysis needed but together with other parameters it is a valuable tool to create a total 
source apportionment of aerosol particles. 
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2.10  Résumé 
 
The main outcomes from the presentations and discussions during the precious two days 
were discussed and summarised by all participants. The statements given below are meant 
to be recommendations for the standardisation of OC and EC measurements in Europe. 
 

Rationale 

The main focus of the new standard should go along with the intention of the new Air Quality 
Directive. Information related to health effects and mass closure for PM should take priority 
over the aim to derive information related to climate change (optical properties). 
Nevertheless, whenever possible combination of the different aims should be pursued. 
 

Types of sites 

It is stressed that the method should also be applicable to urban and roadside sites as well 
as rural sites, even though the Directive only specifies rural background sites. This is to 
ensure comparability in all relevant areas of use of the data such as of chemical composition, 
source identification and apportionment, exposure assessment. 
 

Time resolution 

The minimum time resolution of the method should allow daily values to be in accordance 
with those for PM. This does specifically not exclude shorter time resolution methods. 
Contrary, shorter time resolutions should be favoured if the data will be obtained with the 
same quality. 
 

Sampling 

There needs to be an explicit link to e.g. EN 14907 sampling for PM2.5 without addressing 
sampling artefacts. Filter types will need to be more restricted than EN 14907. The method 
should not be linked to a specific size fraction. 
The use of blank filters, filter handling, and use of blank filter results will need to be clearly 
addressed, e.g. more stringent than in EN 14907.  
 

Parameter 

The high data quality in determining TC (significant lower uncertainty than for EC and OC) 
should be considered when setting up a standard. 
 

Analysis 

EC and OC data should allow / support mass closure of PM along with other PM constituent 
determined e.g. within the AQD framework. 
 

Links to other standards and network protocols 

The European standard should not be developed in isolation from relevant work in other 
communities especially EMEP, EUSAAR and the US. 
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Annex: The Presentations 

A.1 The European Ambient Air policy Implementation of AQ Directive 

EC/OC W orkshop 

The European The European AmbientAmbient Air Air policypolicy

ImplementationImplementation of AQ of AQ DirectiveDirective

Annette Borowiak, JRC-IES

Andrej Kobe, DG ENV

Loss in life expectancy due to Loss in life expectancy due to 
fine particles (in months)fine particles (in months)

CAFE 2000CAFE 2000

  

EC/OC Workshop 

Emissions are going down...

LRTAP (EEA 2008)

 

EC/OC Workshop 

But there is work to be done...But there is work to be done...

EEA ETC/ACC, Source :  Q461

  

EC/OC Workshop 

Ambient 
Air Quality

Mobile 
Sources

Stationary 
sources

National 
emissions 
ceilings

IPPC LCP’s

RoadNon-road Fuels Quality

Framework 
Directive

1St Daughter

2nd Daughter

3rd Daughter

Exchange 
Information

4th Daughter

Concentrations Emissions

Incineration VOC’s

Community Air Policy 

CAFE 
Directive

Air Pollution
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EC/OC Workshop 

New Directive 2008/50/EC (I)

Streamlined provisions, more clarity in 
implementation

PM2.5 objectives, monitoring requirements 
Focused , more coherent measures, better information for further

policy development
New approach: exposure standard based on 

urban background monitoring in cities

More time for compliance, under 
conditions
Art. 22
Assessment of measures by Commission

  

EC/OC Workshop 

New Directive 2008/50/EC (II)

Expanded concept of deduction of natural 
contributions
Better Assessment > better understanding of sources, more effective 

measures

Additional  QA/QC provisions, reference 
methods...
higher quality data (monitoring & modelling)

New reporting provisions,
Faster availability, higher quality, spatial dimension of AQ

Updated guidance
Support to implementation and more harmonized approach

 

EC/OC Workshop 

Article 6 of the CAFE Directive

(5) (…) measurements shall be made, at rural 
background locations away from significant 
sources of air pollution for the purpose of 
providing (…) information on (…) the chemical 
speciation concentrations of fine particulate 
matter (PM2.5) on an annual average basis (…).

What’s in for us?

  

EC/OC Workshop 

Further criteria

- One sampling point every 100.000 km2.
- Agree with neighbouring Member States on common 

sampling stations.
- Where appropriate monitoring shall be coordinated with 

the monitoring strategy and measurement programme of 
EMEP.

- Data quality objectives of Annex I (PM measurement) 
and Annex IV apply.

- Member States shall inform the Commission of the 
chemical composition measurement methods used.
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EC/OC Workshop 

Annex I (PM concentration measurement)

Data Quality Objectives

- Uncertainty 25%

- Further quality requirements: traceability (ISO 
17025), established QA/QC system (incl. data 
collection and reporting), regular maintenance, 
participation to Community QA programmes.

  

EC/OC Workshop 

Annex IV

Measurements at rural background locations 
irrespective of concentration

Objectives:
• ensure information on background levels to 

judge enhanced levels in more polluted areas, 
• assess contribution from long range transport,
• support source apportionment analysis, 
• validation data for modelling.

Substances: NO3
-, Cl-, SO4

2-, Na+, K+, NH4
+, Mg2+, 

Ca2+, EC, OC
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A.2 EC/OC Workshop: Background and Introduction to Measurement Techniques 
 

T.A.J. Kuhlbusch, A. Petzold, 
R. Hitzenberger

EC/OC Workshop: Background and 
Introduction to Measurement Techniques

Institute of Energy
and Environmental 

Technology

“Air Quality & 
Sustainable  

Nanotechnology“

a

a

100 nm

b

b

a

a

a

b

b

a

b

External Mixing +0.27

Black Carbon Core +0.54

Internal Mixing +0.78

Forcing
(W m-2, Jacobson, 2000)

EC/OC Workshop
10th - 11th February 2009, Ispra, Italy    

Content

What is the purpose of the workshop?
How is it structured? (Program)
How will it proceed?

What is EC and OC? Where does it come from?
Why do we want to measure EC and OC?
How can it be measured? What are the main principles?
What are the measurement requirements?

 

What is the purpose of this workshop?

Tasks:
- derive an overview on available, practicable measurement techniques 

and their comparability, repetitiveness!
- What is been applied in Europe?
- Recommendations for standardisation!

Question related to standardisation:
- on-line or off-line method?
- manual or automatic method?
- combined EC and OC method?
- optically or mass based method?
- comparability?
- repeatability?
- calibration / validation?

  

How is it structured?

Lorenza Emblico JRC-IES EC/OC Comparison Aquilla

13:00

Annette Borowiak
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How is it structured?

  

How will it proceed?

- Collection of a summary of the presentations

- Preparation of proceedings: 
Summaries of presenters and slides
Summary of discussion
List of recommendations

- WG will meet in 28th-29th April, discuss and decide on the 
methods and procedures necessary for pursuing the 
standard.

 

Content

What is the purpose of the workshop?
How is it structured? (Program)
How will it proceed?

What is EC and OC? Where does it come from?
Why do we want to measure EC and OC?
How can it be measured? What are the main principles?
What are the measurement requirements?

  

What is EC and OC? 

Defined by
thermal stability?
Defined by
thermal stability?
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What is EC and OC? 

In his seminal book "Black Carbon in the Environment" 
Goldberg points out: 

There is no clear definition of black carbon. It often is 
defined by scientists on the basis of their techniques of 
isolation and measurement. Despite the highly variable 
nature of black carbon we may describe it as a combustion 
derived carbon fraction of black color.

OC = TC – EC/BC?

Defined by
- its thermal stability?
- its chemical nature?
- its basic structure?
- its optical property?

Defined by
- its thermal stability?
- its chemical nature?
- its basic structure?
- its optical property?

from ASN

  

Where does it come from?

EC:
Combustion processes (anthropogenic & natural)
BC:
Also degradation processes and fire residues
OC:
Industry    (dry cleaner…)
Biogenic   (isoprene, terpines…)
Biological (wax, pieces of plants….)

This already 
implies a 
definition!

 
 

Content

What is the purpose of the workshop?
How is it structured? (Program)
How will it proceed?

What is EC and OC? Where does it come from?
Why do we want to measure EC and OC?
How can it be measured? What are the main principles?
What are the measurement requirements?

  

a

a

100 nm

b

b

a

a

a

b

b

a

b

External Mixing +0.27

Black Carbon Core +0.54

Internal Mixing +0.78

Forcing
(W m-2, Jacobson, 2000)

The high uncertainty of both, the amount of absorbing carbon 
and the efficiency of absorption, lead to high uncertainties in 
climate simulations!

Mixing of Black Carbon
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Relative risks (95% confidence 
intervals) for a 10-µg/m3 increase in 
BS concentrations were 
1.05 (1.00–1.11) for natural cause, 
1.04 (0.95–1.13) for cardiovascular, 
1.22 (0.99–1.50) for respiratory, 
1.03 (0.88–1.20) for lung cancer, 
and 1.04 (0.97–1.12) for mortality 
other than cardiovascular, 
respiratory, or lung cancer. Results 
were similar for NO2 and PM2.5, 
but no associations were found for 
SO2. 

Long-Term Effects of Traffic-Related Air Pollution on Mortality in a Dutch Cohort 
Beelen et al., Env. Health Persp. 116, Number 2, February 2008   

Content

What is the purpose of the workshop?
How is it structured? (Program)
How will it proceed?

What is EC and OC? Where does it come from?
Why do we want to measure EC and OC?
How can it be measured? What are the main principles?
What are the measurement requirements?
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EC
- Optical methods

- Photoacoustic method

- Thermal methods

OC
- Thermal methods

- GC – MS (3D MS) for speciation

Basic techniques

MAAPS, PSAP, 
Aethalometer, IS etc.

VDI 2465, Cachier, 
DRI, NIOSH, etc.}

}

  

transmission

temperature

Sunset analysis

 
 
 

Sampling station in Augsburg

Daily Measurement 2002-2004

Sampling station in Augsburg 
since Jan. 2005

DTD-GC-TOFMS - Method

DTD-injektor

DTD-GC-TOFMS

filter aliquot
(1 m³)

loaded injector
liner (1-3 m³) +

internal standard

Direct thermal 
desorption head

(DTD)

filter cutter24 h sample
filter (24 m3)

  

EC
- Optical methods

- Photoacoustic method

- Thermal methods

OC
- Thermal methods

- GC – MS (3D MS) for speciation

Basic techniques

MAAPS, PSAP, 
Aethalometer, IS etc.

VDI 2465, Cachier, 
DRI, NIOSH, etc.}

}
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The attenuation of light along the direction of propagation through a scattering 
and absorbing medium is a key process responsible for visibility degradation. 

The light attenuation for a parallel beam of light of incident irradiance I0 is given 
by the Lambert-Beer law

σ ext = extinction coefficient in m -1 ;  L = length of atmospheric column in m

Light extinction

Lexte
I
I σ−=
0

I0 I
L

  

Light scattering / Absorption

Scattering centre

Absorber

Reflection
Diffuse
Remission
(Rd)

Absorption
Diffuse
Transmission (Td)

collimated
Transmission (Tc)

Total
Transmission (TT)

Extinction = Scattering + Absorption

ε = σS + σA
 

 
 

Mechanisms of interaction

•When a beam of light impinges on a particle, electric charges in the particle are 
excited into oscillatory motion. 

•The excited electric charges reradiate energy in all directions (scattering) and 
may convert a part of the incident radiation into thermal energy (absorption).

•Conservation of energy requires that the light removed from the incident beam 
(extinction) by the particle is accounted for by  scattering in all directions and 
absorption, i.e. 

•σ ext = σ sp + σ ap

•Coefficients for light extinction by particles (σ ep ), scattering (σ sp ) and 
absorption (σ ap) are calculated for spherical particles by Mie theory.   

•Efficiencies Q for extinction, scattering and absorption are defined as the ratio 
of the cross-section with respect to particle-radiation interaction and the 
geometrical particle cross-section 

•Ap = πD2 / 4
   

The extinction coefficient σ ext for an aerosol consisting of N particles per unit 
volume of cross-sectional area A p (spherical particle of diameter D p ) is 

The fraction of scattering to extinction is defined by the single-scattering albedo

Key Parameters

- ratio of particle size to wavelength of light, or size parameter

- complex index of refraction

for non-absorbing particles is  k = 0 
and for absorbing particles is k > 0
m is determined by the chemical composition of the particle

ext
p

extpext Q
D

NQAN
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absscat
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Aerosol Absorption Measurement  Methods

Sketches of the major categories of 
measuring light absorption by aerosol 
particles, the graph is taken from the 
Proceedings of the First International 
Workshop on Light Absorption by Aerosol 
Particles 

(Gerber, H.E. and E.E. Hindman (1982) 
Light Absorption by Aerosol Particles, 
Spectrum Press, Hampton.).

 
 

> Sampling of particles on a fibrous filter matrix.
> Measurement of the modification of filter-optical properties by the 

collected aerosol particles.
> Assumption of Lambert-Beer type relationship for data analysis.

filter surface area A ,  sampled volume V,  mass-specific absorption coefficient 
BATN [m2 g -1] ,  filter mass loading SBC [µg/cm2]
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Filter-Based Absorption Measurement - Methods

   

Interaction  of Particles,  Fibres  and  Radiation

Filter Matrix Effects

Multiple scattering of light by filter fibres and light-scattering aerosol 
particles tends to overestimate the absorption coefficient.

„Shadowing“ of collected particles inside the fibre matrix tends to 
underestimate the absorption coefficient .

+
-
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Methods measure light transmission 
through a particle-loaded filter;

filter transmittance:

1.0 (“white”) ≥ Tr > 0 (“black”)

aerosol absorption coefficient: 

σap = - ln I (t + Δt) / I (t) · A / V

the response of any practical method 
depends on filter loading and interaction 
between radiation, particles and filter:

σap = σap
(0) · f ( Tr ; σsp )

f (Tr ; σsp ) has to be known for each 
method, it requires knowledge on the 
aerosol scattering coefficient σsp.

Filter-Based Absorption Measurement - The Problem

  

Transmittance Methods
Determine the response function f (Tr ; σsp )
in calibration experiments;

perform parallel measurements of 
σap

(0) and σsp;

calculate σap = σap
(0) · f (Tr ; σsp ) .

Multi-Angle Absorption Photometry
Measure forward and back scattered radiation 
simultaneously;

apply a radiative transfer scheme to the 
aerosol-filter system, which includes multiple 
scattering processes:     f (Tr ; σ sp )  = 1.0 (?)

Filter-Based Absorption Measurement - Solutions

 
 

Aerosol Absorption Methods in Reno 
Aerosol Optics Study 2002 (RAOS)

Photoacoustic Spectroscopy   in situ
#1 532 nm, 1047 nm

Particle/Soot Absorption Photometer PSAP filter transmission; 
#1 565 nm (regular) f (Tr ; σsp ) applied
#2 471, 543, 659 nm (modified 3-λ)

Multi-Wavelength Aethalometer filter transmission; 
#1 370, 470, 521, 590, 660, 880, 950 nm no corrections for 
#2 370, 430, 470, 521, 565, 700, 950 nm Tr and bsp applied

Multi-Angle Absorption Photometer MAAP filter-based;
#1 630 nm f (Tr ; σsp ) = 1 (?)

Reference method in situ
Absorption = Extinction - Scattering
(Extinction Cell - Integrating Nephelometer)

  

Multi-Angle Absorption Photometry

filter tape

LED 670 nm

photo detectors

photo detector

The MAAP sensor unit permits the 
simultaneous analysis of transmittance 
method, reflectance method and multi-
angle absorption photometry from the 
same aerosol sample.

Petzold, A. and M. Schönlinner,
J. Aerosol Sci., 35, 421-441, 2004.
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Particle Soot Absorption Photometer PSAP

Filter transmission method; instrument 
consists of filter holder FH, sample filter 
SF, reference filter RF, sample detector 
SD, and reference detector RD.

Correction function f (Tr ; σsp ) 
determined for laboratory soot aerosols.
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Multi-Angle Absorption Photometry

Angular-resolved detection of back 
scattered radiation contributes informa-
tion on the light-scattering fraction of the 
deposited aerosol.

Simultaneous measurement of back 
scattered and transmitted radiation 
permits the treatment of the aerosol-filter 
system by radiative transfer calculation  
methods.

A two-stream approximation is used to 
calculate the filter absorbance

τ L, abs = τ L ( 1 - ω 0 )

σap = τ L, abs · A / V
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Correction functions for filter 
loading effects, determined from 
pure combustion particles;
reference absorption coefficient is 
σap = σep - σsp .

Correction functions for the effect 
of aerosol light scattering, 
determined from kerosene soot -
ammonium sulphate mixtures

Petzold, A., H. Schloesser, P.J. 
Sheridan, W.P. Arnott, J.A. Ogren, 
and A. Virkkula, Aerosol Sci. 
Technol., 39, 40-51, 2005.

RAOS 2002 Kerosene soot results

  

Correction of Kerosene Data

MAAP no correction m = 1.04 ± 0.36
Transmittance good agreement m = 1.04 ± 0.31
Reflectance good agreement  m = 1.00 ± 0.34
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Correction of Biomass Burning Data 
using Kerosene Functions

MAAP no correction m = 1.01 ± 0.17
Transmittance over - estimation m = 1.34 ± 0.32
Reflectance over - compensation m = 1.32 ± 0.12
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MAAP no correction required
Transmittance kerosene correction function deviates by more than 20% from 

reference data

Summary of Correction Functions

 
 

RAOS 2002 Kerosene soot results

absscatext σσσ +=

0 200 400 600

0

200

400

600

σ ep  - σ sp

 

 

σ  0
 ( 

M
A

A
P 

)  
 (@

 6
60

), 
 M

m
 -1

0 200 400 600

Photoacoustic

 

 

0 200 400 600

PSAP

 

 

σ ap  (@ 660) ,  Mm -1

  

In-situ measurement of σap

Photoacoustic method measures heat generated by absorbed 
radiation. The absorbed energy translates 
into a pressure change in a closed volume 
which is measured by a microphone.

PA  ∝ σap × PLASER

artifact-free in-situ method ; high time resolution; 
complex instrument set-up; applicability to long-term measurements not clear; 
detection limit not suitable for clean air conditions (LOD > 100 ng / m³).

Light 
(532 nm)

Air Inlet

to pump

Photo- 
detector

Microphone

Chopper
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Filter-based aerosol absorption measurement methods which correct  
for or compensate effects of filter loading and aerosol scattering

(i) show a strong correlation to in situ reference method (ext - scat) 
and to in situ absorption measurement method (photoacoustic);

(ii) show reduced cross-sensitivity to light-scattering components;

(iii)  are not affected by filter loading;

(iv) report aerosol absorption coefficients close to σap determined 
by in situ methods;

(v) are very simple in operation and can be used for long-term 
monitoring purposes.  

Summary and Conclusions

   

Content

What is the purpose of the workshop?
How is it structured? (Program)
How will it proceed?

What is EC and OC? Where does it come from?
Why do we want to measure EC and OC?
How can it be measured? Brown stuff?
What are the measurement requirements?

 
 
 

Definition

• Black carbon (BC) optical methods
measured parameter: absorption coefficient 
sa; conversion to BC mass

• Elemental carbon (EC) thermal methods
measured parameter: CO2 or CH4

separation of EC and organic carbon (OC)
• Graphitic carbon
• Thermally refractory carbon
• „Brown carbon“

  

HULIS / Brown carbon

• Weakly light absorbing
• Strong spectral dependence of absorption

– Interference with optical methods

• Thermally refractory 
• Chars easily

– Na, K (in biomass smoke)
– Interference with thermal methods
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Optical methods (except MAAP and IS)

• Light transmission of clean and loaded filter
• Absorption coefficient sa(l)
• Conversion to BC concentration via calibration 

constant or specific attenuation
• Aethalometer, Light transmission method:

19 m²/g
• PSAP 10 m²/g

  

Integrating sphere method

• Polycarbonate filter; soluble in chloroform
• Suspension of dissolved filter + sample
• Reduction of light flux at 550 nm in sphere 

by absorbing material
• Conversion to BC concentration using 

calibration curve (Elftex 124, Cabot)

 
 

Integrating Sphere Technique

sample

photodetector

sample holder

diffusor

interference filter  (450, 550 and 
650 nm)

iris stop

halogen lamp 

laser diode (405 
nm)

diffusor

sample port

current source
2,3 A

display

power supply  5V

diffusor

  

Thermal /thermo-optical methods

• Cachier method: Two step combustion
2 hr 340°C, then 1000°C; O2

• Thermo-optical: 20°C/min, Tmax 800°C, O2

HeNe Laser O2

DetectorNDIR-Detector

MnO2 Catalyst, 
700°C

HeNe Laser O2

DetectorNDIR-Detector

MnO2 Catalyst, 
700°C
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Calibration / Assumptions IS

• Proxy substances
– Elftex 124 (Cabot Corp.) 
– Humic Acid Sodium Salt (Acros Organics)

• BC behaves like Elftex 124
• BrC behaves like Humic Acid Sodium salt

• BC concentration
• BrC concentration

  

Calibration curves,
Carbon black (squares) and Humic Acid (triangles)
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Calibration / Assumptions IS
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Thermal methods, winter campaign
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Thermal methods, winter campaign

  

Thermal methods and brown carbon
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Thermal methods and brown carbon

 
 

Conclusions

• BC from IS method can be corrected 
for influence of BrC

• Estimation of BrC concentration
• Effect of biomass smoke on EC or BC 

methods!!!
• What does this imply for the standard?

• But: depends on proxy substances

  

Artifacts
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Content

What is the purpose of the workshop?
How is it structured? (Program)
How will it proceed?

What is EC and OC? Where does it come from?
Why do we want to measure EC and OC?
How can it be measured? Brown stuff?
What are the measurement requirements?

  

Measurement requirements

Tasks:
- derive an overview on available, practicable measurement techniques 

and their comparability, repetitiveness!
- What is been applied in Europe?
- Recommendations for standardisation!

Question related to standardisation:
- on-line or off-line method?
- manual or automatic method?
- combined EC and OC method?
- optically or mass based method?
- comparability? 
- repeatability?
- calibration / validation?
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A.3 Atmospheric Soot Network development of reference materials 

forest fire

domestic heating road transport

aviation

industry
shipping

  

Our current ability to predictOur current ability to predict
environmental and health effects of soot emissions 
is strongly limitedis strongly limited

There is no
quantitative estimations of the soot exhaust effect from industry /commercial sources, 
transport, and domestic heating to compare it with natural sources from biomass 
burning and forest plumes. 

- a great variety of different sources of original soot ,

- a wide range of soot physico – chemical properties.  
 

The Need for Atmospheric Soot Network – A Historical Perspective

in a multidisciplinary (field, lab, modeling) approach
the scientist is faced with significant problems:

Limit of in-situ observations of soot-initiated processes at microscopic level

Expensive and time-consuming emission and collection  experiments

Laboratory studies may help but..

• no single laboratory has all measurement techniques available for 
full soot  characterization 

• no common laboratory soot available for atmospheric studies     

• Inter-laboratory comparisons are difficult because a variety of methodic
and methodic - dependent results

a  lack of commonly accepted  reference BC material for calibration  instruments  

Quality of Soot Measurements is low:

many instruments in different laboratories are calibrated by different BC 
materials giving us…different results..   

INTROP-sponsored  ASEFI Meeting
(Atmospheric Soot:  Environmental Fate and Impact)
was convened in Arcachon/France on Oct 18-20 2006 
ASN web site : http://www.asn.u-bordeaux.fr/

Mission of ASN :
- promoting links between industry and researchers,
- facilitating the collaboration of research groups for soot - related project,

- developing a common approach for  characterization of soot exhaust 
and common laboratory soot,

- coordinating the development of soot reference materialsdevelopment of soot reference materials,

- organizing inter-laboratory studies of soot reference materials 
to compare measurement techniques,

-maintaining a database of soot- related studies linked to environmental impact.
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There are currently no controlled methods for producing soot of precisely-known 
properties, i.e. size, surface area, composition, organic coverage.

The development of atmospheric representative and accessible 
BC materials with reproducible “programmable properties”
will ensure long-term intra and inter-laboratory data quality leading to a great 
progress  of the entire environmental community 

in the BC measurement and monitoring.

ASN: characteristics of referenceASN: characteristics of reference
calibration materialscalibration materials

  

Combustion particles in atmosphere: 
typical features 

soot agglomerates of
primary particles
30-100 нм

Soot  is a product of incomplete burning of hydrocarbons

morphology
EC, OC + inorganic

microcrystallites
of graphites

 
 

Combustion particles in atmosphere: 
typical features 

OC content:
alkanes, alkenes, PAHs,

organic aromatic and aliphatic acids,
ketons, esters,esters, alkilbenzenesalkilbenzenes,,

and derivaties

  

ASN: Elemental Carbon Reference MaterialASN: Elemental Carbon Reference MaterialASN: Elemental Carbon Reference Material

200 nm

Thermal soot by gas pyrolysis

• cleaning from
– - organic coverage, 
– - inorganics, ash.

• production of well-graphitized structure, 
perfect chemically uniform surface.

Graphitized Thermal soot GTS

treatment
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Elemental Carbon Reference Material: propertiesElemental Carbon Reference Material: properties

a b

c

112
110

101
100

002

graphitized structure

SAED pattern of GTS-6 soot.
d002=3,37 Å
d100=2,05 Å
d101=1,71 Å
d110=1,22 Å
d112=1,14 Å

HRTEM  individual particle of GTS-6 soot.

112
110

  

Size distribution 

of primary particles  GTS-6
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Thermal 
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GTS 0 1 6,1 0 4 1,1 1,1 1,3 0 0

GTS - 6   surface area 6 m  /g

GTS-80   surface area 80 m /g

Elemental composition: 
examination by AAS

2

2

Elemental Carbon Reference Material: propertiesElemental Carbon Reference Material: properties

 
 

High homogeneity of the surface

Adsorption isotherm 
CH4 at T=77K
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Homogeneous surface 
has almost no defects 
and adsorption sites.

1 monolayer

2 monolayer

2 D phase transition 

40 nm

homogeneous 
surface

Elemental Carbon Reference Material: propertiesElemental Carbon Reference Material: properties

  

ASN:  Soot Reference MaterialASN:  Soot Reference MaterialASN:  Soot Reference Material

PRODUCTIONPRODUCTION

EC EC + OC

Surface modificators:
1. PAN
pyrene С16Н10

2. Alkane С28Н58

3. Organic acids
1,2,4-benzenetricarboxylic acid
C9H6O6

2,6 Naphtalene-dicarboxylic acid
C12H8O4

4. Polymer     PEG 600   PEG 600   ОНОН [[--C2H4OC2H4O--]]nnHH
CarbowaCarbowaхх 600 (600 (ММ 570570--630)630)
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№№ EC basisEC basis ModificatorModificator:: OMOM
11 GTSGTS--6 6 PyrenePyrene 0,32%0,32%

22 GTSGTS--6 6 0,16%0,16%
33 GTSGTS--6 6 OctacosaneOctacosane

СС2828НН5858

0,24%0,24%

44 GTSGTS--6 6 0,12%0,12%
55 GTSGTS-- 8080 PyrenePyrene

СС1616НН1010

1%1%
66 GTSGTS-- 8080 5%5%
77 GTSGTS-- 8080 1,2,41,2,4--Benzenetricarboxylic acid Benzenetricarboxylic acid 

((TrimelliticTrimellitic acid)  acid)  CC99HH66OO66

1%1%
88 GTS GTS -- 8080 4,88%4,88%
99 GTS GTS --8080 PEG 600   PEG 600   ОНОН [[--CC22HH44OO--]]nnHH

CarbowaCarbowaхх 600 (600 (ММ 570570--630)630)
11%%

1010 GTS GTS -- 8080 2,6 2,6 NaphtaleneNaphtalene--dicarboxylicdicarboxylic acidacid
CC1212HH88OO44

9.099.09%%

С16Н10

Soot Reference materials, 10 samples, proposed

  

Fluidized
Bed

Electrostatic
Classifier

Photoacoustic
Soot Spectrometer (PASS)

Particle Soot
Aerosol

Photometer(PSAP)

Single Particle
Soot Photometer SP2

Passive Cavity
Aerosol Spectrometer (PCAS)

TESTING COMPAIGN: calibration by soot RM

DMT 
measurements
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N1 - GTS-6    Pyrene                0.32 % coating
N4 - GTS-6    Octacosane        0.12 % coating
N5 - GTS-80  Pyrene                1.00  % coating
N7 - GTS-80  Trimellitic acid   0.32 % coating
N9 - GTS-80  Carbowax           1.00 % coating
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Sample  Description Coating Percent
     1       GTS-6              Pyrene               0.32
     2       GTS-6              Pyrene               0.16
     3       GTS-6              Octacosane       0.24
     4       GTS-6              Octacosane       0.12
     5       GTS-80            Pyrene                1.00
     6       GTS-80            Pyrene                5.00
     7       GTS-80            Trimellitic acid   1.00
     8       GTS-80            Trimellitic acid   4.88
     9       GTS-80           Naphtalene         9.00
   10       GTS-80           Carbowax           1.00
   11       GTS-80           Trimesic acid      0.30
   12       GTS-6             Substrate
   13       GTS-80           Substrate

Light absorption measurements PSAP, PASS vs SP2
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Summary and Recommendations
Since BC measurement method is planing to be 
standartizided by CEN

we have emphasized that there is a lack of
standandardized reference materials for the calibration
of this measurement technique.

A major contribution of Atmospheric Soot Network
can be focusing the developing reference materials that
will be testing and become certified standards for use 
in monitoring and scientific communities. 

Atmospheric Soot Network

  

Olga Popovicheva
Moscow State University, Russia

Darrel Baumgardner
Universidad Nacional Autónoma de Mexico

SUNSET LABORATORY

Authors:

Our collaborators:
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A.4 Principles of thermal methods for the detection and differentiation of EC and OC, intercomparison results 

EC/OC Workshop 2009, Ispra 1

Principles of thermal 
methods for the detection 

and differentiation of EC and 
OC, intercomparison results

Willy Maenhaut
Ghent University (UGent),

Department of Analytical Chemistry,
Institute for Nuclear Sciences,

Proeftuinstraat 86, BE-9000 Gent

  
EC/OC Workshop 2009, Ispra 2

Outline

OC/EC?

Aerosol Carbon round robin of Puxbaum

Thermal analysis of atmospheric particulate matter (PM) for 
OC and EC

simple thermal methods
two-step thermal methods
thermal-optical methods

Dependence on operational parameters: Intercomparison of 
4 temperature protocols in TOT for 5 sample sets

Intercomparison of thermal methods for samples from a 
2006 winter campaign in Vienna

 

EC/OC Workshop 2009, Ispra 3

EC/OC?
 

taken from Pöschl, Anal. Bioanal. Chem., 2003

  
EC/OC Workshop 2009, Ispra 4

Aerosol Carbon round robin
[Schmid et al., Atmos. Environ., 2001]

done on quartz fibre filter samples, which had been collected in
Berlin

17 participants, including UGent with TOT
UGent provided both optically corrected EC and OC data 
(Lab 11) and data without optical correction (Lab 11b)
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EC/OC Workshop 2009, Ispra 5

TC values for a difficult sample

determination of TC (= OC + EC) is no problem

the red dashed line is the mean
red full lines: mean ± 1 standard deviation

sample Nov 10 : TC (= OC + EC) in µg cm-2
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EC/OC Workshop 2009, Ispra 6

EC values for a difficult sample

quite some difference between the EC data of the various participants

filled black symbols are the data of the methods, which were 
considered as more reliable, e.g., those with optical correction

red dashed line is the mean of the more reliable data
red full lines: mean ± 2 standard deviations

sample Nov 10 : EC in µg cm-2
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EC/OC Workshop 2009, Ispra 7

Outline

OC/EC?

Aerosol Carbon round robin of Puxbaum

Thermal analysis of atmospheric particulate matter (PM) 
for OC and EC

simple thermal methods
two-step thermal methods
thermal-optical methods

Dependence on operational parameters: Intercomparison of 
4 temperature protocols in TOT for 5 sample sets

Intercomparison of thermal methods for samples from a 
2006 winter campaign in Vienna

  
EC/OC Workshop 2009, Ispra 8

Thermal analysis of PM for OC and EC
Total carbon (TC) = OC + EC + (CC)

Analysis in the lab of collected aerosol samples
samples normally collected on quartz fibre filters

Thermal methods
1. Simple thermal methods

Evolved Gas Analysis (EGA) [Puxbaum, Novakov]
2. Two-step thermal methods

Cachier method [Tellus B, 1989]
VDI-2 method

3. Thermal-optical methods
thermal-optical transmission (TOT) technique with instrument 
of Sunset Lab
thermal-optical reflectance (TOR) technique with instrument 
of Desert Research Institute (DRI)
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EC/OC Workshop 2009, Ispra 9

Evolved Gas Analysis (EGA)
heating in oxygen
program with linear temperature ramp

from room temperature to 800°C
temperature ramp of 20°C min-1

carbonaceous vapours converted into CO2 by MnO2 catalyst (at 
700°C) 

CO2 measured with NDIR detector
alternative detection methods for CO2
▬ coulometry
▬ conversion into CH4 and measurement of the latter with 

a flame ionisation detector (FID)
thermogram obtained

CO2 peaks at low temperature considered as OC
CO2 peak at high temperature considered as EC

quantification done by determining the area under the peaks
calibration with samples of known amount of carbon
(e.g., sucrose)

  
EC/OC Workshop 2009, Ispra 10

Evolved Gas Analysis (EGA)
Limitation of the pure thermal methods

some of the organic matter may be converted into pyrolitic EC 
(PEC) by pyrolysis or charring and like the “real” EC only be 
converted into vapour at higher temperature and then 
erroneously be counted as EC

this limitation applies also to the two-step thermal methods
the artifact formation of PEC is smaller in an oxidising 
atmosphere (O2) than in an inert gas (He, N2, Ar)

the presence of inorganic cations, such as K+ or Na+ (which are 
important components in biomass burning samples), has a 
serious influence on the thermal evolution of the carbonaceous 
vapours

peaks come faster
distinction of EC from OC is often not easy
aqueous extraction of the sample often done to improve 
the determination of EC

 

EC/OC Workshop 2009, Ispra 11

sample: TO K 31
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EC/OC Workshop 2009, Ispra 12

Thermograms for cascade impactor stage from SMOCC
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Two-step thermal methods: Cachier

Samples first subjected to a pretreatment (in HCl vapour) to 
remove the inorganic carbonates
Measurement of EC [Cachier et al., Tellus B, 1989]

one part of the sample then subjected to a thermal 
pretreatment step (precombustion at 340°C for 2 h) in order 
to remove the organic component
the remaining EC is determined by combustion of the 
sample at 1100°C and coulometric titration of the evolved 
CO2 in a carbon analyzer (Ströhlein Coulomat 702C)

Measurement of OC
for another part of the sample, the combustion/titration 
performed without any thermal pretreatment, so that the 
content of TC is obtained
the difference (TC - BC) then yields OC

  
EC/OC Workshop 2009, Ispra 14

Two-step thermal methods: VDI-2

As an example: Approach currently used at IfT, Leipzig [Neusüß
et al., JGR, 2002; Plewka et al., J. Atmos. Chem., 2004]
Two-step thermographic method using a commercial carbon 
analyzer C-mat 5500 (Ströhlein, Germany); consists of

free programmable combustion furnace (IR 05)
followed by a resistance oven (D03 GTE) holding the CuO
catalyst (to convert carbon quantitatively to CO2) at 850°C
and a NDIR detector measuring the IR absorption of the CO2
formed

First step: heating of the sample at 590°C (or 650°C) in nitrogen 
carrier gas for OC volatilisation
Second step: EC combusted at 650°C in an oxygen atmosphere
In between the two steps, the IR furnace cooled down to 50°C to 
avoid EC losses during flushing with oxygen
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Thermal-optical transmission (TOT) technique
e.g. TOT technique with instrument of Sunset Lab

for analysis of aerosol samples on quartz fibre filter
in Dept. Anal. Chem., UGent: 2 Sunset Lab TOT instruments

1st phase  [in pure He]
filter punch, in quartz oven, in 4 steps heated to e.g. 900°C
desorbed carbonaceous vapours catalytically oxidised into CO2 (by 
MnO2 held at 870°C)
CO2 reduced to CH4 (in Ni-firebrick methanator, at 500°C)
CH4 measured with flame ionisation detector (FID)
laser light (670 nm) continuously passed through filter punch 

light transmission continuously measured

During 1st phase pyrolysis (charring) of part of the OC occurs
with formation of PEC, so that the light transmission decreases

  
EC/OC Workshop 2009, Ispra 16

2nd phase  [in 98%He/2%O2 mixture]
after slight cooling, filter punch in four (or more) steps further 
heated to e.g. 900°C
otherwise same as for 1st phase
when the light transmission through the filter punch equals that
seen at the beginning of the 1st phase, the OC/EC split is set

CO2 measured in the 1st phase and during the 2nd phase 
prior to the split considered as OC (includes the PEC)
CO2 measured after the split considered as the “real” EC

Total CO2 measured during 2nd phase (sum of PEC + “real” EC) 
corresponds to the EC, which is measured without optical correction
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Scheme of Sunset Lab TOT instrument (V = valve)
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Outline

OC/EC?

Aerosol Carbon round robin of Puxbaum

Thermal analysis of atmospheric particulate matter (PM) for 
OC and EC

simple thermal methods
two-step thermal methods
thermal-optical methods

Dependence on operational parameters: 
Intercomparison of 4 temperature protocols in TOT for 
5 sample sets
Intercomparison of thermal methods for samples from a 
2006 winter campaign in Vienna

  
EC/OC Workshop 2009, Ispra 20

Dependence on operational parameters

For a single method, such as TOT, there is a strong dependence 
of the EC/TC ratio on the operational parameters and especially 
on the temperature program during the 1st phase of the analysis
At UGent samples from 5 different locations analysed with 4 
different temperature programs, with maximum temperature in 
1st phase

UGent ST : 900 °C
NIOSH 2 (N2) : 870 °C
A3, proxy for temperature program used by DRI : 550 °C
EUSAAR 2 (E2) : 650 °C
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Thermogram for urban aerosol sample, obtained with program ST
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Thermogram for urban aerosol sample, obtained with N2 program
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Thermogram for urban aerosol sample, obtained with A3 program
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Thermogram for urban aerosol sample, obtained with E2 program
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Table
Ranges for TC and for EC/TC, as obtained with the program ST and UGent 
instrument B, for 5 series of aerosol filter samples

no. of Range Range
Sample series               samples TC (µg/cm2) EC/TC

Ghent 26 15 – 110 0.084 – 0.35
Beijing 5 71 – 240 0.15 – 0.24
Austria 16 18 – 40 0.076 – 0.13
K-puszta 5 16 – 25 0.038 – 0.056
Amazonia 5 57 – 98 0.021 – 0.031
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Ratio to program ST for EC/TC (Instrument B)

1.04 1.15 1.38 1.351.72 2.02 1.53 1.92 2.901.70 1.72 1.21 1.51 2.67
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4

Ghent Beijing Austria K-puszta Amazon

N2 A3 E2

 

EC/OC Workshop 2009, Ispra 27

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

500 550 600 650 700 750 800 850 900 950

Maximum temperature during phase 1 (°C)

M
ea

n 
EC

/T
C

 ra
tio

Beijing
Ghent
Austria
Linear (Beijing)
Linear (Ghent)
Linear (Austria)

  
EC/OC Workshop 2009, Ispra 28

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

500 550 600 650 700 750 800 850 900 950

Maximum temperature during phase 1 (°C)

M
ea

n 
E

C
/T

C
 ra

tio

K-puszta
Amazon
Linear (K-puszta)
Linear (Amazon)

 
 
 



 

   58 
 

 

EC/OC Workshop 2009, Ispra 29

For the same temperature program:
different EC/TC ratio for optical correction with TOT and with 
of TOR 

Dependence on operational parameters

  
EC/OC Workshop 2009, Ispra 30

Outline

OC/EC?

Aerosol Carbon round robin of Puxbaum

Thermal analysis of atmospheric particulate matter (PM) for 
OC and EC

simple thermal methods
two-step thermal methods
thermal-optical methods

Dependence on operational parameters: Intercomparison of 
4 temperature protocols in TOT for 5 sample sets

Intercomparison of thermal methods for samples from a 
2006 winter campaign in Vienna
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EC/BC intercomparison for aerosol samples 
collected in 2006 winter in Vienna
[Reisinger et al., Environ. Sci. Technol., 2008]

samples of 24 hours collected on rooftop of Univ. of Vienna

samples analysed by 3 optical methods and 4 thermal methods
optical (BC): LTM, MAAP, IS
thermal (EC): TOM-TU, Cachier, TOT-NIOSH, TOT-A3
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Vienna Winter 2006 Campaign: Thermal methods and IS
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Vienna Winter 2006 Campaign: Thermal methods and IS
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Vienna Winter 2006 Campaign: Thermal methods and IS
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A.5 Artifacts during sampling 

Artifacts during sampling

Harry ten Brink

  2 7-7-2009

Contents

1. Introducing the sampling artifacts

2. Magnitude of the artifacts

3. Carbon in filter-BLANKS as artifact

4. Approaches to avoid sampling artifacts

Addendum  on-line methods

 
 

3 7-7-2009

1. Introduction

The sampling artifacts
are due to the semi-volatile character (of components) of OC

2 processes / phenomena

-Adsorption of volatiles: most important
-Evaporation of semi-volatiles

  4 7-7-20094 7-7-2009

gonzalo.er.anl.gov/ACP/2002presentations/Novakov02.pdf
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Literature

Turpin et al., AE, 2000.

Dedicated laboratory investigations to quantify sampling artifacts
like in case of nitrate are not possible.

Carbon compounds responsible for artifact are not known.

The next best approach is an intercomparison of collection methods

  6 7-7-2009

TC instead of OC

Investigation should focus on OC
However, amount of OC depends on analysis method
(Schmid / Puxbaum et al., 2001 round-robin)

Had a look at OC values in that study:

factor of 2 difference between institutes

Thus: there is a combined uncertainty in sampling and analysis of OC

Better: evaluation of data of Total Carbon

 
 

7 7-7-2009

COMPARABILITY OF METHODS FOR MEASURING THE 
CARBON CONTENT IN AEROSOL IN EUROPE 

HARRY TEN BRINK1, ARJA EVEN1

K. MUELLER2, TH. GNAUK2, GER.  SPINDLER2

X.CHI3, W. MAENHAUT3

R. HITZENBERGER4, A. BERNER4

H. BAUER5, H. PUXBAUM5

J. TURSTIC6

J-P. PUTAUD7

1Energy Research Centre of the Netherlands (ECN), Petten, The Netherlands
2Institut fuer Troposphaerenforschung e.V. (IfT), Leipzig, Germany
3Gent University (UGhent), Institute for Nuclear Sciences, Gent, Belgium
4Institut fuer Experimentalphysik (IEP), Wien, Austria
5Institute for Analytical Chemistry, Vienna University of Technology (TUV), Austria
6National Institute of Chemistry (NIC), Ljubljana, Slovenia
7Joint Research Center (JRC), Ispra , Italy
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Scientific approach / experience in Europe

Filters in series  Filter-pack
Sillanpää

Denuder preceeding the filter-pack
Maenhaut / Viana

Denuder filter/coated-filter
PTFE-filter followed by denuder and coated-filter 
Putaud

Compare with US
•Networks with hundreds of stations
•scientific programs for 2 decades:

Turpin, Eatough, Chow, Kirchstetter/Novakov

  10 7-7-2009

40 2.9 µg C m-3

80 1.8 µg C m-3

20 4.6 µg C m-3

face velocity cm s-1 artifact

Turpin et al. (1994) Atm. Env. 28, No 19, 3061 -
3071

Turpin et al.

Amount of air through filter and Carbon in 2d filter 
expressed as concentration

 

11 7-7-200911 7-7-2009   12 7-7-200912 7-7-2009

Field Blanks
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3. Carbon in filter-blanks: network-concern 

In Europe little to no information on the amount of carbon in the

filters before sampling

Filters are pre-fired: all OC is combusted away?!
but then: handling and exposure

For instance: filters are weighed before deployment in the field

Latest:  Whatman-QMA filters are pre-fired in the factory!

  14 7-7-2009

Examples of blanks

Just finished year-long campaign in Netherlands

Analysis of  filters used for equivalence tests for mass (EN 12341)

1500 filters
150 field blanks

Tens of stock-filters measured:   “lot-blanks”

Evaluation so far

 

15 7-7-200915 7-7-2009

Example of field-blanks: filters in standard filter-carousel
Rotterdam area, 2 sites

448-A-BL.L 20/09 1.5 DCMR-A-BL.L 20/09 5.4

448-A-BL.R 20/09 1.3 DCMR-A-BL.R 20/09 4.0

448-B-BL.L 20/09 1.8 DCMR-B-BL.L 20/09 1.8

448-B-BL.R 20/09 1.9 DCMR-B-BL.R 20/09 1.3

“Field blanks” in ug/m3 

  16 7-7-2009

Field blanks versus actual values

Overall average of the field blanks

1.3 ug / m3
SD 0.6

This may be just acceptable versus the average of loaded filters:

5 ug/m3

The low blank is is due to the relatively high flow rate of 55 m3 / day.
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Field Blanks in EMEP campaign

  18 7-7-200918 7-7-2009

“Lot” Blanks; starting filters
Whatman-QMA filters, pre-fired in the factory

Per filter
μg

Filter 1 112.6
Filter 2 19.4
Filter 3 105.8
Filter 4 38.6
Filter 5 116.2
Filter 6 36.2

2 batches

 

19 7-7-200919 7-7-2009

Lot-blanks in more common unit

TC in μg/cm2

Filter 1 6.5
Filter 2 1.1
Filter 3 6.1
Filter 4 2.2
Filter 5 6.7
Filter 6 2.1

In red: typical values for filters from the top of a pile as received
from manufacturer, contaminated by lid of the cassette!!

  20 7-7-200920 7-7-2009

Carbon-blanks   Kuhlbusch   1995
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4. Avoiding sampling artifacts or quantifying these

1. Filter-pack (tandem filters): 2 filters in series   -EMEP/Yttri

second filter is indicative of adsorption artifact

2. Gas-denuder before the filter-pack to remove adsorptive gases

3. Impregnated 2d filter to collect semi-volatiles from 1st filter

1b. Inert first filter (Teflon) : only volatiles on 2d

  22 7-7-200922 7-7-2009

Field Blanks

 

23 7-7-2009

Which approach for CEN? 

1. Face velocity

2. Filter-pack

3. Denuder filter-pack

4. Combination of OC/EC-analysis and mass-determination (weighing)?

5. Pre-firing

6. Filter brand

  24 7-7-2009

EAC2009   Artifacts 

Subject of coming ANNUAL meeting of

Working-Group PM

European Aerosol Conference, EAC2009, Karlsruhe 5-9 September

Special Session on Artifacts

You can still submit contribution
on web-site EAC2009
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Addendum: automated on-line instruments

Advantage:
Periodic blank-zeroing correction

Own experience in INTERCOMP2000
1) ACPM, R&P 5400
2) Steam Jet Collector

ACPM has/had too high blank for OC!?
Steam Collector was too hard to handle at the time; recently modified

Does not have a collection substrate

  26 7-7-200926 7-7-2009

MARGA-C

OC BC

Air

intake
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A.6 Towards a Standardisation of Methods for Measuring Organic and Elemental Carbon within the EUSAAR 
network 

Ispra, 10 Feb. 2008 – OC+EC workshop 1

Towards a Standardisation of Methods
for Measuring Organic and Elemental Carbon

within the EUSAAR network

J.P. Putaud and F. Cavalli
European Commission, DG JRC, Institute for Environment and Sustainability, I-21027 Ispra (Va)

with EUSAAR NA2 Partners

EUSAAR: European Super-Sites for Atmospheric Aerosol Research

  

Ispra, 10 Feb. 2008 – OC+EC workshop 2

EUSAAR: a EU funded Integrated Infrastructure Initiative project (2006 – 2011)

aims at harmonizing measurements of aerosol properties of interest
to air pollution and global climate through coordinated protocols

 

Ispra, 10 Feb. 2008 – OC+EC workshop 3

DIRECTIVE 2008/50/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL
of 21 May 2008

on ambient air quality and cleaner air for Europe

CHAPTER II
ASSESSMENT OF AMBIENT AIR QUALITY

SECTION 1
Assessment of ambient air quality in relation to sulphur

dioxide, nitrogen dioxide and oxides of nitrogen, particulate
matter, lead, benzene and carbon monoxide

Article 5
Assessment regime

5.      In addition to the assessments referred to in paragraphs 2, 
3 and 4, measurements shall be mademeasurements shall be made, at rural background loca-
tions away from significant sources of air pollution, for the pur-
poses of providing, as a minimum, information on the total mass 
concentration and the chemical speciation concentrations of fineconcentration and the chemical speciation concentrations of fine
particulate matter (PM2,5)particulate matter (PM2,5) on an annual average basis …
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• Carbonaceous species account for 45 ± 20% of PM2.5
• Many sites where carbonaceous species are not measured
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Ispra, 10 Feb. 2008 – OC+EC workshop 5

• Carbonaceous species account for 45 ± 20% of PM2.5

• There are many sites where carbonaceous species are not measured

• The lack of reference methods prevents these measurements from 
becoming more “popular”

• sampling
• analyses

• What requirements should a reference method for the analysis of
particulate carbonaceous matter fulfill ?

  

Ispra, 10 Feb. 2008 – OC+EC workshop 6

The issue:
Carbonaceous atmospheric particulate matter consists of 100’s of species
with very different properties

Requirement 1: Determination of the total carbon (TC) concentration.

Atmospheric particulate matter speciation

→ resolve and quantify up to 30% 
of TC only

Elemental analysis (CHN, thermal steps or gradients)

→ get TC amount
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Standard deviation among EUSAAR Partners: ±20%
(range 5 – 50 µg/cm²)

Thermal methods directly determine TC with a reasonable precision
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Requirement 2: Speciation of TC.

Distinguish between EC
directly emitted in the particulate form by combustion processes

and OC
from both natural and anthropogenic primary and secondary sources 
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Ispra, 10 Feb. 2008 – OC+EC workshop 9

VOC POC EC
H/C ratio 1 0.5 ≈ 0
Volatility high low ≈ 0
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no clear theoretical split point between highly refractory organic molecules 
and “infinite” graphitic structure, the model for pure EC.

  

Ispra, 10 Feb. 2008 – OC+EC workshop 10

Evolved gas analysis: TC, OC, EC
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There are no standards for atmospheric OC and EC.

But at least pure EC should be detected as 100% EC
Any organic molecule (or mixture) should be detected as 100% OC

IMPROVE (up to 550°C): all OC does not evolve during step 1

  

Ispra, 10 Feb. 2008 – OC+EC workshop 12

Analysis of toluene oxidation products

850°C

650°C
750°C

550°C
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Ispra, 10 Feb. 2008 – OC+EC workshop 13

Analysis of fulvic acid

850°C

650°C
750°C

550°C

  

Ispra, 10 Feb. 2008 – OC+EC workshop 14

There are no standards for atmospheric OC and EC.

But at least pure EC should be detected as 100% EC
Any organic molecule (or mixture) should be detected as 100% OC

IMPROVE (up to 550°C): all OC does not evolve during step 1

NIOSH (up to 850°C): a fraction of EC can be combusted during the step 1
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Analysis of Light Absorbing Carbon: 16 ± 6 % evolves in He @ 750 °C

  

Ispra, 10 Feb. 2008 – OC+EC workshop 16

Analysis of Light Absorbing Carbon: 21 ± 4 % evolves in He @ 850 °C
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There are no standards for atmospheric OC and EC.

But at least pure EC should be detected as 100% EC
Any organic molecule (or mixture) should be detected as 100% OC

IMPROVE (up to 550°C): all OC does not evolve during step 1

NIOSH (up to 850°C): a fraction of EC can be combusted during the step 1

EUSAAR_2 (up to 650°C): best compromise
max 2.5 ± 24 % of EC evolves in He
min 80% of OC evolves in He

70700EC3_He/O2

120500EC1_He/O2

120550EC2_He/O2

180650OC4_He

180450OC3_He

80850EC4_He/O2

150300OC2_He

120200OC1_He

Time sTemp °CCarrier gas
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Analysis of fulvic acidCharring:
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Analysis of an ambient PM2.5 sample from Ispra (NIOSH protocol)Charring:

  

Ispra, 10 Feb. 2008 – OC+EC workshop 20

Requirement 3: Charring correction
Pyrolytic carbon (PC) can be detected as EC.
Not correcting for charring => errors EC determination larger than 400%.
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Requirement 3: Charring correction

Standard deviation among EUSAAR Partners using EUSAAR_2: 33%
- all participants: 50%
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Requirement 4: Charring limitation

Charring correction assumes that:
PC evolves from the filter before EC.
PC has the same specific light absorption cross section (σ) as EC.

which is not always true

With longer steps at low temp, EUSAAR_2 limits charring by 16%
compared to NIOSH.
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Requirement 5: Sensitivity of the EC value to the position of the split point

The precision of the laser signal measurement translates into uncertainties 
in EC determination.

The temperature protocol should be such that the slope of the carbon peak 
evolving at the split point is as small as possible.

EUSAAR_2
± 3% uncertainty in laser signal => ± 10% uncertainty in EC

  

Ispra, 10 Feb. 2008 – OC+EC workshop 24

Protocol EUSAAR_2

temperature
laser signal (LAC)
FID signal (evolved C)

0

200

300

450

650

500
550

650

850

0        120          270               450                    730      850        970 1040   1120

• minimizing charring
• maximizing OC evolution in He
• minimizing LAC early combustion
• minimizing C evolution at split point

• developed based on samples collected in Ispra,
tested against samples collected at EUSAAR sites  
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The amount of PC determined optically and thermal-optically well agree for a 
wide range of loads => guarantee for the accuracy of EC

and  therefore OC
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The determination of pyrolitic carbon is critical
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Conclusions:

The thermal-optical protocol EUSAAR_2 fulfills a series of requirements for 
a reference method:

1. Robust determination of TC

2. Sound speciation of TC

3. Minimized biases in OC and EC determination

4. Enhanced precision

Next steps:

1. Further work needed for carbonate rich samples

2. Method to be proposed as a reference method for the EMEP network
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A.7 Comparison of EC/OC analytical methods within EMEP 

Comparison of EC/OC analytical 
methods within EMEP

Ispra 10-11 Februar 2009

KE Yttri 

Norwegian  Institute for Air Research (NILU)

  

Lower

Higher

CEN – meeting on EC/ OC
- Spatial distribution of TC/ OC/ EC at EMEP sites

EMEP        
EC/ OC-Campaign    

2002-2003

12 Rural backgr. 
sites

2 urban backgr. 
sites

1 sample pr week

N = 684
Yttri et al., 2007  

Urban backgr.

EC-to-PM10

Winter:         
3.9 ± 1.2 % 

●
Summer:        

2.9 ± 1.0 %

Yttri et al., 2007

CEN – meeting on EC/ OC 
- Carbonaceous matter at EMEP sites: EC-to-PM10

  

Urban backgr.

OM-to-PM10

Winter:        
26 ± 10% 

●
Summer:       
27 ± 9.2%

Yttri et al., 2007Conversion factor: 1.4 – 1.8

CEN – meeting on EC/ OC 
- Carbonaceous matter at EMEP sites: OM-to-PM10
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CEN – meeting on EC/ OC 
- European Monitoring and Evaluation Program - EMEP

www.emep.int/

The European Monitoring and Evalutaion program addresses the transboundary 
air pollution in Europe through emissions, modelling and monitoring 

  

CEN – meeting on EC/ OC 
- EMEP monitoring strategy 

EMEP has an extensive monitoring program 

•The current onitoring strategy is valid for the period 
2004 – 2009

•A revised version of the new monitoring strategy 
will be presented    

to the steering body (SB) in September 2009

to the executive body (EB) in December 2009

•There will only be minor changes in the new 
monitoring strategy, including that of carbonaceous 
particulate matter

 
 

The EMEP monitoring strategy 2004-2009. Background document with 
justification and specification of the EMEP monitoring programme, 2004-2009
Ed. by Kjetil Tørseth and Øystein Hov. EMEP/CCC-Report 9/2003

Table 2: Monitoring requirements for the various levels specified by the EMEP 
monitoring strategy. 
 
Programme                            Parameters Measurement 

period/Frequency 
Level 2 sites (in addition to level 1 parameters) 
Particulate matter 
PM mass                                   PM1, PM2.5 
Gas particle ratio                      NH3/NH4, HNO3/NO3 
Speciation vs size (PM2.5          SO4

2-, NO3
-, NH4

+, Na+, K+, Ca2+, Mg2+  (Cl-)  
and PM10) 
Mineral dust                              Si 
EC/OC                                       EC, OC 

 
 
24h/daily 
24h/daily 
Weekly/weekly 
 
Weekly/weekly 
Weekly/weekly 

Programme                            Parameters Measurement 
period/Frequency 

Level 3 sites (do not require all level 1 and level 2 parameters) 
Particulate matter 
 
OC- fractioning Water-soluble (WSOC) and water-insoluble  
“Black Carbon” (in situ measurement) 

 
 
 

 

CEN – meeting on EC/ OC 
- Monitoring of EC and OC is EMEP level 2 activity 

Thermal-optical

  

CEN – meeting on EC/ OC 
- Reporting status of EC and OC in EMEP

Table 1.5: Sites reporting EC and OC to EMEP, including PM size fractions and 
sampling period  

1. For PM10 only
2. EMEP EC/OC campaign

Site (Country) EC OC PM2.5 PM10 Period 
Birkenes (Norway) X X X X 2001, 2002, 2003, 2004, 

2004, 2005, 2006, 2007, 
Illmitz (Austria) X X X X 1999, 2000, 20021) 

Ispra (Italy) X X X X 20021), 2004, 2004, 2005, 
20062), 2007, 

Melpitz (Germany) X X X X 2006, 2007, 
 

”Data from campaigns and periods shorter than one year are not included ”
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CEN – meeting on EC/ OC 
- Primary biogenics makes a contribution 
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CEN – meeting on EC/ OC 
- Sampling equipment and analytical approach

Table 1.6: Sampling equipment and analytical approach used at he various 
sites sites reporting EC and OC to EMEP

1. Two aliquots were analyzed: one from the plain filter, the other after baking for 2 hours in He/O2 carrier gas at 340° C
Charring-free EC from the latter.

2. Sunset dual optical analyzer from 2006.

Site 
(Country) 

Sampling 
time/ Frequency

Filter face 
velocity 

Sampling 
Equipment 

Analytical 
approach 

Birkenes 
(Norway) 

Weekly/Weekly 53 cm s-1 Single filter Sunset TOT 
(quartz.par) 

Illmitz 
(Austria) 

Every 6th day 54 cm s-1 Single filter VDI 2465        
part 1 

Ispra       
(Italy) 

24 hr, daily 20 cm s-1 Denuder 
(positive corr.) 

Multi-step flash 
heating1)2) 

Melpitz 
(Germany) 

24 hr, daily 54 cm s-1 Single filter VDI 2465        
part 2 

 

CEN – meeting on EC/ OC 
- EUSAAR protocal for EC/ OC measurments 

Why is there not yet a reference method for EC/ OC measurements in EMEP?

Substantial difficulties associated with sampling and subsequent analysis of EC/OC e.g.

Positive and negative sampling artefacts 
Analytical challenges in separating EC and OC

EC/OC measurements was introduced to the monitoring strategy in 2004

Only a few thermal-optical instruments were available in Europe at the time (2004)

Awaiting the EUSAAR unified protocol

When will the EUSAAR unified protocol be implemented in EMEP?

The EUSAAR_2 temperature program is not yet officially included as the new protocol for EC/OC in 
EMEP but it is already beeing used, e.g. in the EMEP intensive measurements periods.

8 – 10 sites is expected to report EC/OC data to EMEP using EUSAAR_2 within next 1 – 2 years.  
  

CEN – meeting on EC/ OC 
- Quartz.par vs EUSAAR_1

Y = 1.23x - 0.051
R2 = 0.8772

Y = 0.92x + 0.0095
R2 = 0.9365

When removing outlier: 
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CEN – meeting on EC/ OC 
- Quartz. Par vs EUSAAR_1

In general: Good agreement for OC and TC; more pronounced difference for EC (higher RSD) 
Remark: Change from NIOSH derived temperature programs to EUSAAR should be not be 
too great a problem for OC and TC, but perhaps somewhat more challenging for EC 

  

CEN – meeting on EC/ OC 
- Comparison of EMEP sites EUSAAR_2

EC 
NILU vs JRC 

RSD: 15%(1-41%)

TC 
NILU vs JRC 

RSD: 19%(11-30%)

 

CEN – meeting on EC/ OC 
- Guidelines for EC/ OC measurements in EMEP 

EMEP Manual: http:/ / tarantula.nilu.no/projects/ccc/manual/ index.html

•No reference method for EC/OC, yet, but 

guidelines for EC/OC can be found on the 

EMEP/CCC homepage  
(http:/ / tarantula.nilu.no/projects/ccc/manual/ index.html)

Introduction to the topic

Sampling time/ frequency

Sampling equipment

Sampling substrate

Correction for positive artefacts

Calibration of TC with external standards

EC/ OC split quality assurance using standards

Every year intercomparison of EC/ OC

Field blanks

  

CEN – meeting on EC/ OC 
- Some questionmarks: EC/ OC - monitors

http:/ /www.sunlab.com/

EC/OC monitors are likely to be taken into service on a broader scale than today

2-3 hour time resolution of EC and OC will 
improve our knowledge on e.g.:

•Ambient levels

•Variability of sources

•Human exposure

Monitors can be less costly to operate, due to 
reduced sampling site visits and eliminated 
need of laboratory facitlities and analyses costs
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Correlation less good 
for EC than for OC

OC EC

CEN – meeting on EC/ OC 
- Some questionmarks: EC/ OC - monitors

  

CEN – meeting on EC/ OC 
- Some questionmarks

•Attempts made to run the EUSAAR_2 temperature program on the 
Sunset laboratories monitor have not been all successful, which is an 
drawback in order to obtain comparable data

•Could other programs than the EUSAAR_2 protocol be preferred?

•The EC/OC monitors also provide ECoptical from which ”OCoptical”can be 
derived

•Are the optical EC/OC comparable to the thermal-optical EC and OC? 
•Could ECoptical and ”OCoptical” be preferred due to their better detection limit
(e.g. Saarikoski et al., 2008)

•Could BC derived from in situ measurements of the absorption coefficient (PSAP, MAAP) 
be preferred to thermal optical EC for BC.

 

CEN – meeting on EC/ OC 
- Summary

1. Carbonaceous particulate matter account for a substantial fraction of PM in 
the European rural background environment 

2. EC/OC data reported to EMEP are based on a range of different methods which 
hampers the comparability 

3. EMEP provides guidelines for how to perform sampling and analysis with 
respect to EC/OC, while awaiting the finalization of the unified EUSAAR 
prototocol 

4. Results obtained using the EUSAAR_2 temperature program looks promising. 
The transition from currently applied NIOSH derived thermal optical 
approaches to EUSAAR_2 ought to proceed rather smoothly 

5. Some concern is caused by the difficulties of using the full length EUSAAR_2 
temperature program in EC/OC monitors, an instrument wich appears to grow 
in popularity 

  

CEN – meeting on EC/ OC 
- What does EMEP require?

•Comparability
•Cost Effective
•Availability
•Easy-to-operate
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A.8 EC Measurement – Current VDI Guidelines 

Platzhalter Grafik
(Bild/Foto)

EC Measurement – Current VDI Guidelines

Dieter Gladtke, Landesamt für Umwelt, Natur und Verbraucherschutz Nordrhein-Westfalen
State office for environment, nature and consumer protection North Rhine Westphalia

  

VDI 2465 part 1 

1. Extract the sample with 2-propanol/toluene (1/1) at room temperature in a weighing bottle for
24h

2. Pipette off the solvent from the bottle, dry the filter for 4 h under a nitrogen current in an 
opened exsiccator

3. Evaporate residues of the solvent and organic carbon by thermic desorption with nitrogen
(carbon can be oxidised to CO2 and then be analised by coulometric titration)

4. Oxidise EC to CO2 and analise it by coulometric titration

Reactions during coulometric titration
The reaction gas is bubbled through a reaction cell containing an aqueous solution of 

bariumhydroxide which reacts with CO2:
2 OH- + Ba 2+ + CO2    BaCO3 + 2 H2O 
The consumed OH- ions are regenerated electrochemically:
2 H2O + 2 e- H2 + 2 OH-

An electric charge of 2 Coulomb coresponds to 1 Mol of CO2

Standard (for TC only): aqeous solution of citric acid

 
 

VDI 2465 part 1 (coulometric method)

Temperature programme
Dotted lines
indicate:
Temperature
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Flow sheet for VDI 2465 part 1

  

Results after different techniques to remove organic carbon
Petzold, A.; Niessner, R.: Mikrochim. Acta 117, 215 – 237 (1995)

Sampling site: road with high traffic volume in Munich
Sampling time: November 1992 to April 1993

0,40 +/- 0,08Solvent extraction followed by thermal 
desorption

0,76 +/- 0,15Solvent extraction with toluene/2-propanol

0,55 +/- 0,07Thermal desorption at 500 °C for 8 min with
He

Average fraction of toal carbonRemoval method

 
 

Disatvantages of the method

•Apparatus is not computer-interfaced
•Indicated oven temperatures are wrong (construct a temperature sensor by yourself!)
•Extraction is difficult to handle (pipetting off the solvent), by far not complete (room temperature) 
and time consuming
•EC and OC cannot be analised in one step
•No automatic analysis possible

If analysis of EC and OC is recommended for every sample:
No more than 8 to 10 samples can be analised per day with one
Coulomat-apparatus

Advantage of the method: Extraction with an organic solvent 
reduces charring; for traffic influenced sites the results are realistic

  

VDI 2465 part 2 (thermographic method)

Organic carbon is thermically desorbed with helium (oxidation of organic compounds to 
CO2 with a CuO/CeO2 catalyst is possible) at temperatures up to 600 °C (heating is
performed in two steps)

Elemental carbon is oxidised with 20% oxygen in helium at high temperatures (700 °C)
CO2, formed by combustion of organic compounds and elemental carbon is analised by
its infrared absorption

Method is fast, handling of samples is easy

Charring is not controlled results may be too high (see Niessner and Petzold)

Methane and polystyrene are used as standards for carbon and OC
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Comparison of VDI 2465 part 1 and 2

PM10 Samples from a traffic influenced site and a remote site, parameters of regression

Correlation is astonishing!!

  

„Vienna intercomparison“ 1999   Atm. Env. 35, 2111-2121 (2001)

•Samples were taken at Frankfurter 
Allee, a narrow road with high traffic
volume in Berlin, in November 1998

•A high volume sampler with a PM10 
sampling head (DIGITEL DHA89) was 
used

•Dust was collected on pre-fired
(850°C) quartz fibre filters

•Four filter cuts with a diameter of 1 
cm of each sample were distributed to 
each laboratory

•13 laboratories participated

•15 results with 13 methods were
reported OC: He, 550°C, EC: 2%O2, 800°C, optical reflectance

controlTOR

ox+TOT

OC: He, 600°C, EC: He/air, 850°C, optical
transmission controlTOT

OC: He, 900°C, EC: 5%O2, 900°C, optical
transmission controlTOT

OC: He, 820°C, EC: 2%O2, 850°C, optical
transmission controlTOT

Temperature of OC/EC split not mentioned!ox

He/O2 80/20 130, 230, 340°C, He 650°C for OC, 
He/O2 80/20 650°C for ECox+Therm

OC: 340°C, O2 EC: 650°C,O2ox

OC: 590°C, 2x EC: 850°C,O2Therm

VDI2465,2 Ar as inert gasTherm/Ar

VDI2465,2Therm

VDI2465,2Therm

extraction+thermic desorptionExt+therm

VDI2465,1Ext+therm

VDI2465,1Ext+therm

remarksmethod
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Results of different laboratories (results for TC were almost identical)
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Careful interpretation

Even with identical methods some results differed by far (e. g. for the laboratories using the VDI 
2465 part 1 method)

Highest results were obtained with thermic desorption without optical control

Are the differences even higher at remote sites?
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A.9 The “Hungarian” experience 

Contribution to the EC/OC 
preparatory workshop

The ”Hungarian” experience

András Gelencsér
Veszprém, HUNGARY

  

Outline

• Source apportionment studies of EC/OC based
on 2-year aerosol observations at six European 
sites – CARBOSOL

• Studies on biomass burning brown carbon
properties with MPI – SMOCC

• Studies on properties of tar balls in biomass
smoke – SAFARI

 
 

The CARBOSOL project

Pio, C., Legrand, M., Oliveira, T., Afonso, J., Santos, C., Caseiro, A., Fialho, P., Barata, F., Puxbaum, H., Sanches-
Ochoa, A., Kasper-Giebl, A., Gelencsér, A., Preunkert, S., Schock , M., Climatology of aerosol composition (organic 
versus inorganic) at non-urban areas on a West-East transect across Europe, J. Geopys. Res. 2007
doi:10.1029/2006JD008038

Gelencsér, A., May, B., Simpson, D., Sánchez-Ochoa, A., Kasper-Giebl, A., Puxbaum, H., Caseiro, A., Pio, C., 
Legrand, M, Source apportionment of PM2.5 organic aerosol over Europe: primary/ secondary, natural/ 
anthropogenic, fossil/biogenic origin, J. Geopys. Res. 2007 doi:10.1029/2006JD008094

  

Scheme of the 14C-based source
apportionment
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Estimated contributions of EC/OC subtypes to TC 
K-Puszta, winter
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Uncertainty analysis: latin-hypercube
sampling (LHS)

  

Estimated contributions of EC/OC subtypes to TC 
Aveiro, winter

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

50

Percentage Contribution to TC

F
re

qu
en

cy
 D

is
t.

AVE−W−003000

ECbb
ECff
OCbb
OCff
OCbio
SOAff
SOAnf

 

 
 

Open fires in the period 20-27 March 2003

(sok többlet HULIS a levoglukozánhoz képest)

  

Large differences in EC sources between
summer and winter

Site Season OCBB ECBB OCFF ECFF OCbio SOAnon-fossil SOAFF 
  % % % % % % % 
AVE winter 64 11 1 2 1 5 16 
 summer 7 1 7 13 2 63 7 
KPZ winter 40 7 6 10 1 21 15 
 summer 6 1 5 9 5 69 4 
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A.10 OC/EC/TC analysis: the Spanish experience 

OC/EC/TC analysis:
the Spanish experience

M. Viana, A. Alastuey, X. Querol

Institute for Environmental Assessment and
Water Research (IDAEA-CSIC)

mviana@ija.csic.es / mar.viana@idaea.csic.es

EC/OC Workshop, February 11th, 2009, Ispra

  

Teams in Spain

TC analysers available in various labs throughout Spain

Centre: IJA-CSIC (Spanish Research Council)
City: Barcelona
Technique: TOT
Instrument: Sunset OCEC Analyzer
Acquired: July 2007
Analytical protocol: EUSAAR2.par

Centre: ISCIII (National Health Institute)
City: Madrid
Technique: TOT
Instrument: Sunset OCEC Analyzer
Acquired: May 2006
Analytical protocol: quartz.par

Centre: Huelva University
Instrument: Sunset OCEC Analyzer
Acquisition in process

 

• Aveiro University, Prof. C. Pio:
– Custom-made TOT instrument
– Samples from various Spanish sites: preliminary determination of

OCEC levels
• JRC-Ispra, Dr. JP Putaud:

– TOT Sunset OCEC Analyzer
– Samples from Barcelona, London and Milan: determination of OCEC 

levels
• Ghent University, Prof. W. Maenhaut:

– TOT Sunset OCEC Analyzer
– Samples from Barcelona, Ghent and Amsterdam: determination of

OCEC levels and sampling artefacts

Prior OCEC analyses

Viana et al. (2007), 
Atmospheric Environment

41, 5972-5983.
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• 1200-1500 samples/year

• Large variety of monitoring environments:
regional background, urban background, industrial hotspots

• High- and low-volume samplers (with and without denuders, within EUSAAR)

• Munktell and Pallflex filter substrates

Current situation (IJA-CSIC)
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Problems / Incidences (IJA-CSIC)

1. Incidences refer mainly to the combustion oven:
– Progressive increase in oven pressure (PSIG=1 to 3 / 9 months)
– Resulting in need to change the oven (2 times in 1.5 years)

Potential causes (we believe):
– Type of samples (ceramic area with high % of refractory material)
– Use of HCl to eliminate CC

Oven change

  

Problems / Incidences (IJA-CSIC)
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Problems / Incidences (IJA-CSIC)

2. Increase in the variability of sucrose concentrations
if instrument not run continuously:

12-day gap

Sucrose standard (3,365 µg/µl)

Std. devConc.Instrument:

0,343,40Total

0,643,51After gap

0,103,36Run continuously

  

(1) Comparison Quartz / NIOSH / EUSAAR2: 1 sample +2 blks

Analytical protocol tests (1/3)

0,380,350,32EC/TC

0,620,550,48EC/OC

0,30,050,30,30,030,40,30,030,3std dev

1,10,041,11,00,020,91,20,021,2average (µg/cm2)

Blanks (2)

1,00,30,80,30,050,30,70,10,6std dev

14,55,19,314,54,89,715,14,510,6average (µg/cm2)

TCECOCTCECOCTCECOCSample (3 runs)

EUSAAR2NIOSHQuartz
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• 22 samples
5 different PM episodes:

Atlantic air mass transport
Regional re-circulation
African dust + stangant
atmospheric conditions
Stagnant atmospheric
conditions
African dust

Analytical protocol
tests (2/3)

(2) Comparison Quartz / EUSAAR2:
PM episodes

TCECOCTCECOC

3,20,32,83,30,32,9MO307

2,40,12,32,40,12,3MO290

2,80,12,62,90,12,8MO277

5,30,25,05,40,35,1MO267

3,90,33,73,90,23,6MO239

2,10,12,02,40,12,3MO174

2,90,32,63,00,32,7MO363

3,80,43,43,70,33,5MO326

5,40,64,85,50,55,0MO323

4,20,63,64,10,43,6MO184

3,80,33,53,60,23,4MO170

4,40,53,84,50,34,2MO193

3,70,53,23,70,43,3MO191

2,80,42,42,90,32,7MO390

2,90,32,62,90,22,8MO388

2,70,32,52,60,22,4MO255

2,40,22,22,50,12,4MO287

2,50,22,32,60,12,4MO303

3,50,23,33,90,23,7MO273

2,70,32,42,90,22,7MO224

2,30,22,02,40,22,2MO347

1,30,01,31,40,01,3MO320

EUSAAR2QUARTZ

0,060,050,961,20
0,110,090,991,27
0,120,080,941,51
0,080,060,931,45
0,070,060,951,10

EUSAAR2QuartzOCEC
EC/TCEUSAAR2/Quartz

  

EC
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(2) Comparison Quartz / EUSAAR2: PM episodes
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Analytical protocol tests (3/3)

EUSAAR2 results:
• Peak separation: very good. Certain overlap between peaks 1 and 2 from the

He phase only for a small number of samples. For the rest of the peaks
separation was excellent.

(3) Comparison Quartz / EUSAAR2 thermograms: 11 samples

Quartz EUSAAR2

  

Quartz

Analytical protocol tests (3/3)

EUSAAR2 results:
• Combustion of LAC: it seems to be minimal. Slight increase of transmittance

during the He phase for 2/11 samples.

(3) Comparison Quartz / EUSAAR2 thermograms: 11 samples

EUSAAR2
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A.11 Measurement of Carbonaceous Aerosol by Thermo-Optical Methods: the Portuguese experience 

EC/OC 
Workshop 

Ispra 
10-11 Feb, 2009

MEASUREMENT OF CARBONACEOUS 
AEROSOL BY THERMO-OPTICAL 

METHODS: the Portuguese 
experience

Casimiro PioCasimiro Pio

University of Aveiro; PortugalUniversity of Aveiro; Portugal

  

Outline of presentation

•Historical

•Equipment Description and evolution

•Temperature Programs

•Discrimination PC/EC

•Calibration and Intercomparisons

•Carbonate interference and measurement

•Measurement of Optical Properties

•Application to Carbon Source Apportionment

•Conclusions

 
 

Historical
•First OC/EC measurements in 1988, with pure 
thermal method, on glass fiber filters

Pio and Jorge, 1990

•Thermo-Optical (T-Opt) OC/EC measurements started in 
1992 with the building of an analyzer inspired in the work 
done at Ford Laboratories in the eighties.

  

Home–made Thermo-optical OC/EC Analysers

•Three T-Opt OC/EC analyzers
•Two quartz ovens each
•Hardware or Software PID temp. control
•Red laser / chopper / lock-in amplifier
•Pulsed laser / software filtration
•Mass flow meters
•National Instr. acquisition interfaces
•Labview acquis. and control software
•NDIR Analyzer
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Scheme of a T-Opt OC/EC Analyser

A- quartz tube oven; A1 - heating zone 1; A2 - heating zone 2; B- laser; B1 - detector; B2 -cChopper; B3 -
lock-in amplifier; C - non dispersive infra-red spectrophotometer; D: temperature controller; D1, D2 -
thermocouples; E – mass flowmeter; F - computer; G - three way electrovalve

detail of sample filter 
h inside the oven

A1 A2

B

B1

B2

D

C

B3

D1 D2

F

E

G

A

  

Temperature Programs

OBJECTIVES:
•To discriminate semi-volatiles
•To have consistent separations
• To increase sensitivity and output (length of analysis/cooling)
• To separate OC from EC as completely as possible
•To determine with precision the separation point between PC and EC

Our present 
temperature 
program
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Temperature Programs
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The Specific problem of PC/EC discrimination

•Limiting conditions for EC measurement precision
•To choose a separation point at a low CO2 concentration region
•The time delay problem

)()()( tItEtC ×=
Detector response to an impulse 

injection in the oven at time zero –
transference function (E(t)
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Tests of Pyrolysis interference
Main principle of the thermo-optical method:

•The amount of carbon intervening in the blackening of the filter
during pyrolysis is the same that the amount of carbon evaporated 
during the whitening of the filter

ref: Castro et al., (1999) Atmos. Environ.

Aerosol sample heated under a Program (2) 
developed to minimize pyrolysis (full line) and 

under a Program (1) developed to maximize 
pyrolysis (doted line) 

29 Março 1996
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Sample 
Code

Heating 
Program

TC
(µg/cm2)

PC/TC
(%)

EC/TC
(%)

A 1 59.2 29.2 31.9
A 2 59.2 16.8 33.9
B 1 19.9 29.6 23.5
B 2 20.0 17.0 26.9
C 1 13.4 19.0 40.2
C 2 12.8 5.3 39.2
D 1 44.3 36.8 29.5
D 2 44.0 17.3 30.9

  

Tests of Pyrolysis interference
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Calibration and Intercomparisons
•Daily calibration with standard atmospheres and 
phtalate/sacarose standards
•Calibration with NIST 8785 aerosol standards 

Tests with NIST quartz filter standards
NIST Reference material 8785
Filter number APM0174
ratio of EC/TC with IMPROVE = 0.490
ratio of EC/TCwith NIOSH = 0.279
Mass Expected = 25.8 µg

Analysis TC (ug) EC (µg) EC/TC OBS
test1 27.0 14.4 0.53 with HCl (6 molar)  pre-treatement
test2 27.7 14.6 0.53 with HCl (6 molar)  pre-treatement
test3 28.1 14.2 0.51 with HCl (6 molar)  pre-treatement
test4 27.0 13.1 0.49 with HCl (6 molar)  pre-treatement
test5 27.0 11.2 0.42 without HCl (6 molar) treatment
test6 27.7 13.2 0.48 without HCl (6 molar) treatment
Average Measured 27.4 0.49 Our normal Heating program (Max600C in N2)

Filter number APM0173
ratio of EC/TC with IMPROVE = 0.490
ratio of EC/TCwith NIOSH = 0.279
Mass Expected = 10.6 µg

Analysis TC (ug) EC (µg) EC/TC OBS
test1 12.8 5.6 0.44 Max600C without acid treatment
test2 13.8 6.1 0.44 Max600C without acid treatment
test3 12.9 3.5 0.27 Max 850C acid treated
test4 14.1 4.2 0.30 Max850C without acid treatment
Average Measured 13.3 0.44 Our normal Heating program (Max600C in N2)
Average Measured 13.5 0.28 Our alternative Heating program (Max850C in N2)   

Calibration and Intercomparisons

EUSAAR Intercomparison

Intercomparison
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R2 = 0.9998

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

TC_UA (ug/cm2)

TC
_a

ve
r (

ug
/c

m
2)

Total Carbon

Linear (Total Carbon)

Intercomparison

y = 0.8928x + 0.7156
R2 = 0.9743

0

4

8

12

16

20

0 4 8 12 16 20

EC_UA (ug/cm2)

EC
_E

U
SA

A
R

1 
(u

g/
cm

2)

Elementarl Carbon

Linear (Elementarl
Carbon)

Vienna Intercomparison

Schmid et al. (2001) Atmos Environ

 



 

   91 
 

 

Carbonate Interference and measurement
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Thermal volatilization of 
carbonates happen 

within a wide range of 
temperatures, 

depending of the 
crystalline structure 

  

Carbonate Interference and measurement

Time 
(hours)

HCl 
(Molar)

Carbon 
(µg)

Removal 
(%)

0 - 37.1 0

18 3 21.5 42

2 6 35.9 10

4 6 1.7 95

0

100

200

300

400

500

600

0 20 40 60 80 100 120

Time (seconds)

C
O

2 
 c

on
ce

nt
ra

tio
n 

 (p
pm

)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Su
m

 C
ar

bo
n 

(u
g 

C
)

Conc CO2
Sum Carbon

Carbonate analysis

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400
Time (seconds)

C
O

2 
 c

on
ce

nt
ra

tio
n 

 (p
pm

)

0

100

200

300

400

500

600

700

800

900

Te
m

pe
ra

tu
re

 (º
C

)

Conc CO2

Conc CO2 acid

Temperature

Temperature acid

Removal efficiency of sodium 
carbonate from filters, with HCl 
vapors

Analysis of an urban aerosol sample, 
with and without HCl pretreatment

Analysis of carbonates 
in filters by immersion 
in concentrated 
phosphoric acid and 
CO2 evolution 

 
 

Measurement of Optical Properties
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Measurement of Optical Properties

The slope  of LASER 
intensity during PC+EC 
evolution relates with  
the specific absorptivity 
(extinction) of carbon 
being volatilized, in 
accordance with Beer 
Law:
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Measurement of Optical Properties

Sample
Code

Sigma 
(m2/g)

PB01B1 4.69
PB01B2 6.05
PB01B3 7.08
PB02B1 4.53
PB02B2 4.78
PB03B1 9.29
PB03B2 9.83
PB04B1 3.61
PB04B2 3.80
PT01T1 5.55
PT01T2 5.80
PT02T1 9.87
PT02T2 10.32
PT03T1 5.56
PT03T2 5.43

Average 6.41

Carbon absorptivity 
values during PC+EC 
volatilization, in Oporto 
urban aerosol samples
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Measurement of Optical Properties

Absorptivity 
variability 
during PC+EC 
volatilization, 
in rural 
aerosol 
samples
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Absorptivity values
in rural samples 

Measurement of Optical Properties

Sample
Code

Sigma (m2/g)
Sigma 1 Sigma 2

AVE 54-1 1.18 17.60
AVE 54-2 1.22 15.60
AVE 59 1.05 18.19

AVE 075B1 0.66 10.48
Average 1.03 15.47

  

Measurement of Optical Properties

Analysis of filters impregnated 
with n-hexane aerosol extracts
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Percentage (%) 11.6 38.6 26.9 22.9 0.1 100.0

Analysis of filters impregnated 
with methanol aerosol extracts
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Application to Carbon Source Apportionment

OC=OCprim+OCsec=OCFF+OCBB+OCBiol+OCsec

OCFF/ ECFF= urban minimum ratio (OC/ EC)min

OCsec≅OC- EC x (OC/ EC)min

(EC=ECFF+ECBB≅ECFF)

PM10 urban carbon 
measurements

ref: Castro et al., (1999) Atmos. Environ.

  

Application to Carbon Source Apportionment
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minimum 
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Application to Carbon Source Apportionment
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Application to Carbon Source Apportionment

OC (BB)/TC EC (BB)/TC EC (FF)/TC OC (FF)/TC OC (Bio)/TC SOA(nFF)/TC SOA(FFl)/TC
% % % % % % %

Winter 48 8 5 3 2 24 11
Summer 13 2 12 7 3 54 9
Winter 27 5 20 12 5 19 13
Summer 12 2 4 2 7 59 14
Winter 22 4 13 8 4 43 7
Summer 8 1 5 3 9 59 15
Winter 14 2 7 4 13 36 23
Summer 6 1 7 4 5 66 12
Winter 28 5 12 7 2 36 11
Summer 19 3 7 4 9 50 8KPZ

Location Season

AVE

PDD

SIL

SBO

BB-Biogenic Burning; FF-Fossil Fuel; Bio-Biable;  nFF-nonFossil Fuel; FFI-Fossil Fuel Initiated

Source apportionment of rural aerosol during CARBOSOL using 
(OC/EC)min, levoglucosan, cellulose  and 14C, as source tracer indicators

ref: Gelencsér et al., (2007) J Geophys Res
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Conclusions

•Proper precautions in analytical methodology 
improve the quality of results;

•Brown carbon is always accounted, in a fraction, 
as EC, in T-Opt methods;

•The optical behaviour of Polar OC may pose 
problems in the measurement of EC;

•The EUSAAR protocol is using correct aproaches 
to diminish interferences in OC/EC separation;

•OC/Ecmin ratios are a usefull property in the source 
apportionment of the Carbonaceous aerosol.
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A.12 The French Contribution 

Jean SCIARE, Hélène CACHIER, Olivier FAVEZ
LSCE, GIF/YVETTE, FRANCE

  

II.   Thermal / Optical / Thermo-optical EC-OC methods:
Evidence of source sensitivity

III.   EC-OC methods in marine environments

I.   EC-OC methods & intercomparisons
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A.13 Measurements of Organic and Elemental Carbon in UK Air Quality Networks 

Measurements of Organic and 
Elemental Carbon in UK Air Quality 
Networks

Paul Quincey
Garry Hayman

Analytical Science Team
National Physical Laboratory

  

Tuesday, 07 July 2009

2

Outline

• UK Particles Network
• Manual (daily) 

measurements of OC/EC
• Historical automatic 

measurements of OC/EC
• UK data
• Related points
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3

UK Particles Network

• Currently managed and operated by NPL 
and King’s College London

• Particle number concentration (currently 4 
sites), size distribution (3), sulphate, nitrate 
and chloride (PM10) daily (3), nitrate (PM2.5) 
hourly (3)

• OC/EC:
– 2002 – 2007 hourly R & P (Thermo) 5400 

analysers (4)
– 2007 – Partisol daily filter sampling with lab 

analysis at NPL (3)
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UK Particles Network

OC/EC measured

x2 (kerbside and background)
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Measurement of OC/EC

• Harwell (rural site)
• North Kensington (urban background site)
• Marylebone Road (kerbside site)

• Daily PM10 samples (24 m3) are collected 
using Partisol 2025 samplers onto quartz 
(Pallflex Tissuquartz) filters, and are then 
analysed at NPL using a Sunset Laboratory 
carbon analyser

  

Tuesday, 07 July 2009

6

Organic and elemental carbon 

• metals (Ni, As, Cd, Pb, Hg, V, Cr, Mn, Fe, Cu, Zn, 
Pt) 

by ICP-MS

• sulphate, nitrate and chloride analysis by ion 
chromatography 

• organic / elemental carbon (OC/EC) 

Manual Carbon Results Screen

Green FID Response (Amount of Carbon)
Magenta Attenuated FID Response
Blue Oven Temperature
Red Amount of transmitted light
Grey Absorbance of sampler

Temp

He O2

Furnace   methaniser and FID
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Protocol: “Quartz”
Carrier gas Temperature plateau duration (s) Temperature set point (°C)
Helium 70 310

60 475
60 615

105 870
1% Ox in He 60 550

60 625
60 700
60 775

110 890

Charring correction Transmittance

Principal calibration with sucrose solution
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OC/EC data
North Kensington
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y g p

Marylebone Road
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OC/EC data
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R & P Ambient Carbon 5400 (2002-7)
PM10 inlet at 1 m3/hr 

Collects by impaction > 100nm

OC material released ~350°C in air
TC material released ~750°C in air
no charring correction

CO2 analyser can be calibrated
no “whole system” calibration

reliability problems
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Harwell 2007

automatic manual
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Marylebone Road 2007

automatic manual
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Marylebone Road 2006

0.00

5.00

10.00

15.00

20.00

25.00

Thu 28 Sep Thu 12 Oct Thu 26 Oct Thu 09 Nov Thu 23 Nov Thu 07 Dec Thu 21 Dec

Date

ug
.m

-3

EC - Manual EC - Auto aethalometer Black Smoke converted to Black Carbon

Thanks to David Green, KCL
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R vs T correctionTransmittance v Reflectance correction (EUSAAR samples)
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EC vs aethalometer at rural site
Auchencorth Moss
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Manual EC

(thanks to Neil Cape, CEH)
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Black Smoke 
basics

Daily filter 
darkness is 
converted to 
Black Smoke 
Index (μg/m3) 
using ISO 9835
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Comparison of Automatic instruments at 
Marylebone Road 2006 [KCL]

Atmos. Envir. 41 (2007) 7964-7968

SX200 Black Smoke vs AE21 Aethalometer
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Measurements of OC/EC in UK Air 
Quality Networks

Paul Quincey

Analytical Science Team
National Physical Laboratory

Thank you
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A.14 Swedish experience Eusaar_2 source apportionment 

Swedish experience
Eusaar_2

source apportionment
Johan Genberg, Lund University

  

DRI carbon analyser

• Similar design to Sunset
• Small punches (OD 5/16”)
• Instrumentation blank ~0,1 µg C (OC only)
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Eusaar_2 vs. Improve

F8 = FID signal
LT = laser transmission 
signal
T = temperature

Time (seconds) Time (seconds)

  

The ”perfect” split

 
 

14C in carbonaceous aerosol

• Reveals the source as fossil or contemporary
• EC originate from burning; fossil fuel

biomass
• Known/estimated EC/TC values may split carbon into

fossil fuel
biomass burning
biogenic carbon

  

Separate OC from EC 

• Remove water soluble 
components
Remove OC in air, 375 C, 
four hours
The remaining is EC

• Use the carbon analyser
May use pure oxygen
Trap CO2 with LN2
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Grafitisation

CO2 mixed with H2 over iron catalyst. 

  

Eusaar_2 and EC

650ºC removes EC even in pure helium but pure 
soot is left unharmed.

 
 

Co-workers

• Erik Swietlicki (supervisor)
• Kristina Stenström (supervisor)
• Erik Nilsson (PhD-student)

Thanks
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