# Catalyst activation in Sorption-Enhanced DME Synthesis





www.ecn.nl P.O. Box 1 1755 ZG Petten The Netherlands

## **Authors**

S. Booneveld<sup>1</sup>, J. van Kampen<sup>1</sup>, R. Hoogendoorn<sup>1,2</sup>, S. Grecea<sup>2</sup>, J. Boon<sup>1</sup>

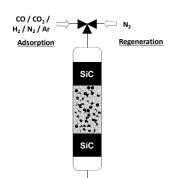
Corresponding author: boon@ecn.nl

## Introduction

EU Horizon 2020 project FLEDGED combines flexible sorptionenhanced processes to produce dimethyl ether from biomass with an efficient and low cost process.

- DME: one of the most promising alternative fuels under consideration worldwide.
- Sorption-enhanced DME synthesis (SEDMES) is a novel process for the direct production of DME from synthesis gas.
- CO<sub>2</sub> could be utilised directly or via biomass conversion.
- Sustainable hydrogen production from renewable energy sources could be included, supporting Power-to-Product conversion.

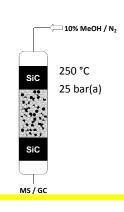
# Sorption-enhanced DME synthesis (SEDMES)


Methanol synthesis: $CO_2 + 3H_2 \rightleftharpoons CH_3OH + H_2O$ Water-gas shift: $CO + H_2O \rightleftharpoons H_2 + CO_2$ Methanol dehydration: $2CH_3OH \rightleftharpoons CH_3OCH_3 + H_2O$ 

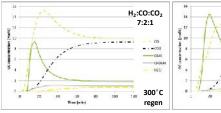
SEDMES: In situ H<sub>2</sub>O removal by a solid adsorbent

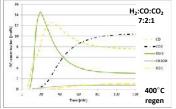


#### **SEDMES test**


- Adsorption 275 °C & 25 bar(a)
- Regeneration 300 °C or 400 °C and 3 bar(a)
- 5 g CuO/ZnO/Al<sub>2</sub>O<sub>3</sub> (CZA) catalyst & 21 gram zeolite LTA adsorbent, well mixed as sieve fractions (212-425 µm)
- Feed mix CO<sub>2</sub>, CO, H<sub>2</sub> in N<sub>2</sub>/Ar
  90 ml<sub>n</sub> min<sup>-1</sup>
- M = ([H<sub>2</sub>]-[CO<sub>2</sub>])/([CO]+[CO<sub>2</sub>]) = 2

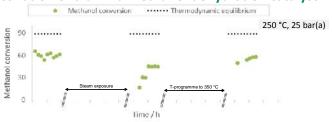



MS / GC

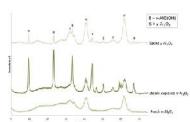

# Methanol dehydration test

- 889 ml<sub>n</sub> min<sup>-1</sup> methanol/N<sub>2</sub> feed
- 5.26 g γ-Al $_2$ O $_3$  catalyst sieve fraction (212-425 μm) in SiC
- 1. Methanol dehydration 250 °C
- 2. Exposure to 250 °C, 14 bar steam
- 3. Methanol dehydration 250-350-250 °C




# **SEDMES and direct DME synthesis**






- CZA active for water-gas shift, methanol synthesis, dehydration
- $\bullet$  Pre water breakthrough: high DME and CO, low  $\mathrm{CO}_2$  and methanol
- Post water breakthrough: low DME, high CO<sub>2</sub>
- 400 °C regeneration temperature enhances water adsorption: increased breakthrough time and DME yield pre water breakthrough
- 400 °C also increases steady state DME yield: does the alumina dehydration catalyst activity increase by H<sub>2</sub>O desorption at 400 °C?

## Activation of alumina methanol dehydration catalyst



- Exposure to 14 bar steam converts  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> to  $\gamma$ -AlO(OH), reducing activity for methanol dehydration
- Activity for methanol dehydration largely restored in situ at 250 °C
- γ-AIO(OH) remains after testing at 350 °C without affecting activity



# Conclusions

- CZA catalyst active for sorption-enhanced DME synthesis (SEDMES)
- SEDMES able to reach high DME yield pre water breakthrough
- Regeneration by temperature swing to 400 °C improves DME yield pre and post water breakthrough
- Adsorbent capacity increases with temperature swing to 400 °C
- After high steam exposure, γ-AlO(OH) remains yet catalyst activity is already largely restored for methanol dehydration at 250 °C

# **Acknowledgements**

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727600.



<sup>1</sup> Sustainable Process Technology, ECN, P.O. Box 1, 1755 ZG Petten, The Netherlands.

 $^{2}$  Van  $^{\prime}$ t Hoff Institute for Molecular Sciences, UvA, P.O. Box 94157, 1090GD Amsterdam, The Netherlands