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Within this study an unsteady, two-dimensional interacting boundary layer method is
presented for the incompressible flow around wind turbine rotor blade sections. The main
approach is to divide the flow field in to two regions; the one in the vicinity of the sur-
face where the viscosity is effective (so called boundary layer) and the one away from the
surface where the flow can be assumed as inviscid. The solutions obtained from these two
regions are matched with a quasi-simultaneous viscous-inviscid interaction scheme. For the
viscous flow, unsteady integral boundary layer equations together with laminar and turbu-
lent closure sets are solved employing a high-order quadrature-free discontinuous Galerkin
method. Laminar to turbulent transition is modeled with the eN method. The potential
flow is solved by using the linear-strength vortex panel method. It is shown that intro-
ducing the interaction scheme leads to non-conservative mechanisms in the system. The
discontinuous Galerkin method is extended to handle these non-conservative flux terms.
Furthermore it is shown that this numerical method achieves the designed order of ac-
curacy for smooth problems. Results are presented for the individual numerical solution
methods which are verified on various test cases and subsequently for the coupled system
which is applied on a chosen test case. Evaluation of a laminar flow over an airfoil section
is shown and the results (converged to a steady state solution) are compared with other
numerical solutions as well as with the experimental data where available. It is shown that
the results of the developed numerical solution method are in good agreement with the
experimental data and other computational methods.

Nomenclature

n unit normal vector
u solution vector
v test functions
B Boundary layer flow solution
b basis functions
CD dissipation coefficient
Cf skin friction coefficient
CτEQ shear stress coefficient for equilibrium

Cτ shear stress coefficient
d space dimension
E External flow solution
H∗ shape factor for kinetic energy thickness
Hn numerical flux
I Interaction law
N amplification rate
Nw number of wake panels
Reθ Reynold number based on momentum thick-

ness
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Tu Free-stream turbulence
ue (boundary layer) edge velocity
up x-component of the velocity at a panel
Us slip velocity
u∞ free-stream velocity
wp z-component of the velocity at a panel
H shape factor

Subscripts

h approximation

Symbols

δ boundary layer thickness
δ∗ displacement thickness

δk energy thickness
γ vorticity strength
γh element boundary
λ eigenvalues
ν kinematic viscosity
Ω solution (sub) domain
Ωe element volume
σi source strength
θ momentum thickness

Superscripts

+ limit from right
− limit from left
T transpose

I. Introduction

The Flow around wind turbines are usually unsteady mainly due to natural time dependent changes in
the (wind) flow field, i.e. flow separation from the blades or body, high turbulence levels in the flow field or
by changes in the position or orientation of the blades, caused by control actuators or by interactions between
the fluid and the elastic structure. Important unsteady aspects involve not only the kinematic changes in
boundary conditions caused by the motion of a body, but the influence of an unsteady wake, especially in
wind farm configuration, when many turbines have to operate relatively close to each other.

If better aerodynamic models are already available in the design phase, significant improvement in terms
of performance, control, efficiency and maintenance can be achieved. Apparently, an accurate modeling of
the flow around the blades and in the wakes of the wind turbine rotor is required in order to satisfy such
requirements.

Current design tools for rotor aerodynamics are mainly based on the Blade Element-Momentum (bem)
approach. These methods, based on local blade section aerodynamics combined with an azimuthal averaged
momentum balance, provide quick and efficient estimates. However the range of applicability is relatively
small, due to the fundamental assumptions: it is limited to steady state, yaw aligned uniform flow, quasi-
2D blade aerodynamics, spanwise independent induction, without rotor cone angle. To overcome these
limits, many empirical corrections have been applied. These include the empirically and theoretically well
established tip and root loss corrections, as well as corrections that conflict with the basic assumptions
(skewed wake correction, dynamic stall models). Such empirical corrections may improve the model for
some situations, but limited predictive confidence can be gained. This especially applies to predicting many
relevant phenomena that could influence the design (i.e. load oscillations, dynamic stall, wake interference).

Other approaches, such as inviscid panel methods,1,2 nonlinear lifting line methods3 and viscous-inviscid
splitting methods are based on a less severe set of assumptions and can predict these physical phenomena
intrinsically (without corrections). Hence they can be applied to a wider range of rotor operating conditions.
The most accurate of these approaches is the splitting of the flow domain into viscous and inviscid regions.
Since the introduction of the boundary layer theory by Prandtl in 1904, this approach has been used in many
variants, since both regions allow a range of models to be selected, which can be combined using a range
of interaction methods (see e.g.4). Historically, the two regions were solved separately and glued together
(weak or no interaction). This approach works for attached flows, but leads to singularities associated with
flow separation, both for steady (Goldstein5) and unsteady flows (Van Dommelen and Shen6). The latter
result was interpreted by Matsushita et al.7 as the result of discontinuities in the boundary layer (analogous
to shocks in compressible flow). They used a dissipative finite difference method to capture separating flow
including the singularity.

Later approaches take into account the two-way coupling of the viscous and inviscid regions during
computation (strong interaction), thereby successfully extending the validity to (mildly) separated flow.
The interaction of the two systems is essentially stabilizing: the breakdown due to singularity does not occur
until more strongly separated flow regimes are entered, as can be seen in the analysis of Coenen.8 These
approaches saw major development in the 1980s, with the quasi-simultaneous9 and fully simultaneous10

approach. The xfoil code11 is a well known example, for 2D steady flow around an airfoil. For rotor
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aerodynamics, this code has been extended into rfoil,12 which includes corrections for rotational effects
on the boundary layer as introduced by Snel et.al.13 This improves the prediction of stall delay, thereby
overcoming some limitations of the quasi-2D assumption. Other fully 3D methods also exist, developed by
Nishida,14 Coenen8 and very recently by Drela.15 Few truly unsteady applications are also noted: a dynamic
stall simulation by Cebeci16 and a flutter computation by Zhang and Liu,17 both of which show significant
effects due to the viscous part. A more recent method18 includes an unsteady formulation which seems very
promising, but no validation results have emerged yet.

Unsteady effects are expected to become important near separation since the timescale of the boundary
layer increases and the characteristics form envelopes around separated regions and information propagates
more slowly. High pitch rates, aeroelastic behavior and wake interference further decrease the timescale at
which unsteady effects play a role. Another reason to search for unsteady solutions is that steady solutions
may simply not exist for separated flows (e.g. the Von Karman vortex street behind airfoils with a thicker
trailing edges.). The nonconservative effects are expected in all (quasi-)simultaneous integral formulations,
affecting the unsteady behavior and the location of equilibria. In effect this causes the resulting solutions to
depend not only upon the physics of the problem but on the numerical strategy as well.19 To prevent this
undesirable condition, specialized nonconservative numerical schemes should be applied.

Within this study an unsteady interacting boundary layer method is presented. Unsteady integral bound-
ary layer equations together with laminar and (unsteady) turbulent closure equations are solved by using the
discontinuous Galerkin method developed for an arbitrary order of accuracy in space and 4-th order explicit
Runge-Kutta scheme in time. Furthermore the numerical method is extended for the non-conservative flux.
A linear-strength vortex panel method is employed for the inviscid flow field and both viscous and inviscid
solutions are coupled by a quasi-simultaneous interaction scheme introduced by Veldman.9

In the next section the details of the method and the numerical solutions are presented. In section (III)
the numerical results of various verification and validation test cases is shown and finally conclusions are
summarized in section (IV).

II. Unsteady interacting boundary layer method

For large varieties of flow conditions, the Navier-Stokes equations together with turbulence models deliver
accurate solutions both for steady and unsteady cases. The main issue arises when large scale differences
exist in the flow field and the time dependency can not be avoided where solving the Navier-Stokes equations
become computationally too expensive. Especially when the design phase of wind turbine blades are con-
sidered, these computational times become critical and makes the use of full flow-field solutions impractical.

When the flow considered is at a very high Reynolds number or with a very small viscosity we have the
flexibility of making simplications to the Navier-Stokes equations. Prandtl showed in 1904 how viscosity
effects the Reynolds number and for this limiting case he derived the boundary layer equations. However
this reduced form of equations still represent the flow field variables in the number of space dimension under
consideration (see i.e.20). When the special case of designing airfoil sections of a blade considered in order
to predict the loading on these (wind turbine) blades we do not need to resolve the flow field in detail but
rather we are interested in certain integral quantities of the boundary layer and their effects on the pressure
distribution. These integral values depend on the lengths x and y along the surface in three-dimensions and
only the length x in two-dimensions. For the global description of the boundary layer these integral values
are obtained by integrating the boundary layer equations with respect to the direction normal to the no-slip
surface, z, over the boundary layer thickness that leads to the integral boundary layer equations.

Integral boundary layer equations have been used widely for the global description of the flow21,22,23

especially in engineering applications for aircraft aerodynamics. The methods based on these equations have
the advantage of lowering the space dimension by one, and as a consequence there is no need for a volume
grid. This leads to a reduction in computational costs and input efforts. At the start of the CFD era these
methods therefore were used as airfoil analysis tools and even today some successful applications are based on
this approach.11 Integral boundary layer equations have been commonly discretized with Finite-Difference
schemes.24,10 More recently also Finite-Element and Finite-Volume discretizations are employed.25

In the remainder of this section, individual components that form the unsteady interacting boundary layer
are presented in details. The unsteady form of integral boundary layer equations and the linear vorticity
panel method are presented that are the solution for the viscous and inviscid flow regions respectively.
Furthermore, the interaction scheme is briefly explained and the complete set of equations are summarized.
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Finally the numerical solution of the equation set is given.

II.A. Integral boundary layer method

The integral boundary layer equations (ibl) can be derived starting from the unsteady, two-dimensional
boundary layer equations with a fundamental assumption that the only effect of the boundary layer and
the wake is to displace the inviscid flow away from the physical body to create an effective displacement
thickness. Lighthill26 showed that this assumption is accurate when the ratio of the boundary layer thickness
to streamline radius of curvature is small. This assumption is valid for most aerodynamic flows of interest.
At the trailing edge region there is a possibility where the accuracy of this assumption is arguable. The
streamline curvature at the trailing edge or impingement of a shock wave can cause a significant normal
pressure gradient in the boundary layer where whole boundary layer approximation breaks down. To obtain
these useful integral values for the global description of the boundary layer the boundary layer equations
should be integrated with respect to the transverse direction z (normal to the no-slip surface) over the
boundary layer thickness. The integral boundary layer equations can be derived either starting from a
control volume and setting up the mass and momentum balance or from the boundary layer equations and
integrating over the boundary layer thickness.

In the literature the derivation of the integral boundary layer equations are given in various ways where
one is slightly differing from another (i.e. see references27,28,29). It is interesting to note that in a recent
study, Seubers30 showed the derivation of the integral boundary layer equations with a streamline based
control volume approach including terms for non-classical (separating) boundary layers.

Integrating the following equation for n = 0, 1, ... with respect to the transverse direction (normal to
the no-slip surface) over the boundary layer thickness, we can derive the n-th moment of boundary layer
equation:

momentum equation× (n+ 1)un − continuity equation× (un+1
e − un+1),

in which the free-stream velocity ue = ue(x, t) is presumably known from a potential-flow analysis.
In the current study the 0-th (momentum integral) and 1-st (kinetic-energy integral) moments of mo-

mentum equations are used to obtain the global quantities such as displacement, momentum and energy
thicknesses of the boundary layer as given below

∂δ∗

∂t
+

∂

∂x
(ueθ) =

Cf
2
ue − (δ∗ + θ)

∂ue
∂x
− δ∗

ue

∂ue
∂t

, (1)

∂(δ∗ + θ)

∂t
+

∂

∂x
(ueδ

k) = CDue2δ
k ∂ue
∂x
− 2

θ

ue

∂ue
∂t

, (2)

where δ∗ is the displacement thickness, θ is the momentum thickness, δk is the energy thickness, Cf is the
friction coefficient, CD is the viscous diffusion coefficient and ue is the velocity at the edge of the boundary
layer.

The system of Eqs. (1) and (2) are accurate for laminar flows and for turbulent flows when the turbulence
production and dissipation are in near equilibrium. In such a scenario, the dissipation coefficient, CD
depends only on local boundary layer parameters. However, experiments (eg Goldberg31) show that there
are significant upstream history effects on Reynolds stresses for flows with adverse pressure gradients. These
effects are included by introducing Reynolds stress an additional unknown in a stress-transport equation
as described by Green’s lag-entrainment method.32 Özdemir33 derived the unsteady form of this so called
shear-lag equation and in a recent study it is further simplified by Ye34 to take the following form:

∂
(
ue
u Cτ )

∂t
+
∂
(
ueCτ )

∂x
=
Cτue
δ

Kc

(
C

1
2
τEQ − C

1
2
τ )− ue

u

2Cτ
ue

∂ue
∂t
− Cτ

∂ue
∂x

, (3)

with Cτ the shear stress coefficient, CτEQ shear stress coefficient for the equilibrium flow conditions and

Kc = 2a1
ue
u

δ

L
, (4)

and

δ = θ

(
3.15 +

1.72

H − 1

)
+ δ∗, (5)
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The commonly used values are ue
u = 1.5 and δ

L = 12.5 but Thomas35 takes in to account the dependency on

the shape factor and gives ue
u = 3H

H+2 , which is more accurate for separated flow profiles.
Vector form of Eqs. (1), (2) and (3) can be formulated as:

∂u

∂t
+

∂

∂x

[
f(u)

]
= s(u) , (6)

where the new conservation variable u, flux f(u) and source s(u) have been introduced:

u =

 δ∗

δ∗ + θ
ue
u Cτ

 , f(u) =

 ueθ

ueδ
k

ueCτ

 , s(u) =


Cf
2 ueδ

∗ + θ ∂ue∂x −
δ∗

ue
∂ue
∂t

CDue − 2δk ∂ue∂x − 2 θ
ue

∂ue
∂t

Cτue
δ Kc

(
C

1
2
τEQ − C

1
2
τ )− ue

u
2Cτ
ue

∂ue
∂t − Cτ

∂ue
∂x

 . (7)

The above equation set forms a conservation form when the interaction scheme is not considered and the
system is shown to be hyperbolic.36,20

II.A.1. Laminar to Turbulent transition

Within this study laminar to turbulent transition is modeled by the eN method. The eN (originally e9)
method was introduced by van Ingen37 and Smith.38 Based on the linear stability theory,34 this semi-
empirical method provides a good practical prediction of natural transition onset for incompressible two-
dimensional boundary layers.

The prediction of the natural transition is based on the evolution of small disturbances introduced in the
laminar flow. An exponential decay of disturbances with time, implies the mean flow remains laminar and
is stable. However, if the disturbances increase with time, the flow is considered unstable and transitions to
turbulent flow.39

The N in the eN method stands for the maximum amplification rate of the disturbances at a given
location. The flow is said to transition to a turbulent regime, at that location, when this amplification
rate(N) exceeds a critical value(Ncrit) determined from experiments. In this study, the value of this critical
amplification rate is adopted from Drela:40

Ncrit = −8.43− 2.4ln
Tu

100
. (8)

Tu is the free-stream turbulence intensity nominally taken as 0.07% for airfoils in wind tunnel conditions.
The amplification rate N at any location is determined by:

N =
dN

dReθ
(Reθ −Reθcrit), (9)

where Reθ is the Reynolds number based on momentum thickness, θ,

Reθ =
θue
ν
. (10)

The slope is given by Drela10

dN

dReθ
= 0.028(H − 1)− 0.0345e−(3.87 1

H−1−2.52)2 . (11)

Ye34 slightly modified the Reθcrit that is based on Arnal’s experimental work41 to find the onset as follows

log(Reθcrit) = (
0.267659

H − 1
+ 0.394429) tanh(

12.7886

H − 1
− 8.57463) +

3.04212

H − 1
+ 0.6660931. (12)

For similar flows, H is constant and Reθ is uniquely related to the stream-wise coordinate x. Eq. (8)
immediately gives the amplification factor N as a unique function of x.
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For the unsteady form of the ibl equations amplification rate can be modified to contain the time
dependent term:

∆N =
∂N

∂t
∆t+

∂N

∂x
∆x (13)

to give

∆N =
∂N

∂Re

(
∂Reθ
∂t

∆t+
∂Reθ
∂x

∆x

)
. (14)

For the solution of the IBL equations the last line of Eq. (7) is replaced by the Eq. (14) for the laminar
region of the flow field to check the transition to the turbulent flow. The complete system can be written in
vector form for the laminar system can be written as follows:

u =

 δ∗

δ∗ + θ

0

 , f(u) =

 ueθ

ueδ
k

N

 , s(u) =


Cf
2 ueδ

∗ + θ ∂ue∂x −
δ∗

ue
∂ue
∂t

CDue − 2δk ∂ue∂x − 2 θ
ue

∂ue
∂t

∂N
∂Re

(
∂Reθ
∂t ∆t+ ∂Reθ

∂x ∆x

)
 . (15)

When N value is equal to the defined Ncrit value, the onset of transition is triggered and the equations will
switch to the turbulent ones (Eq. (7)). Alternatively the equation for N can be applied as a check after each
time step.

II.A.2. Closure set

The integration over the direction normal to the surface applied in order to derive the IBL equations removes
some physical information. In the equation set (15) the displacement thickness δ∗, kinetic energy thickness
δk, momentum thickness θ, friction coefficient Cf , viscous diffusion coefficient CD and the edge velocity ue
are unknowns. Assuming that the edge velocity is provided by the potential flow solver there are still 3
more unknowns than the number of equations. In order to close this system the so-called closure relations
are introduced. These closure relations can be derived by modeling unknowns in terms of other unknowns
using experimental data or analytical solutions of representative test cases under certain assumptions (e.g.
Drela,10 Nishida14).

Laminar closure set

Within this study the laminar closure relations that are given by Nishida14 and Drela10 are used for the
computation of laminar boundary layer flows. The shape factor, H for the displacement thickness and the
shape factor, H∗ for the kinetic energy thickness are defined as follows

H =
δ∗

θ
, H∗ =

δk

θ
. (16)

Althought the closure set for laminar system can be found from the literature for the sake of completeness
they are given here as well:

H∗ =


0.0111

(H − 4.35)2

H + 1.0
− 0.0278

(H − 4.35)3

H + 1.0
+ 1.528− 0.0002[(H − 4.35)]2 H < 4.35 ,

0.015
(H − 4.35)2

H + 1.0
+ 1.528 H ≥ 4.35 ,

(17)

ReθCf =


0.0727

(5.5−H)3

H + 1.0
− 0.07 H < 5.5 ,

0.015

(
1.0− 1

H − 4.5

)2

− 0.07 H ≥ 5.5 ,
(18)

ReθCD
H∗

=


0.207 + 0.00205(4.0−H)5.5 H < 4.0 ,

0.207 + 0.0016
(H − 4.0)2

1.0 + 0.02(H − 4.0)2
(4.0−H)5.5 H ≥ 4.0 .

(19)
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The accuracy of the IBL system is bounded by the accuracy of the closure relations. The analytical models
used for the closure relations do not include unsteady effects and experimental data are correlated with trial
and error curve-fits, which might bring non-negligible fit-errors. Due to the complex form of the closure
relations, the high order numerical method applied will also have limited order of accuracy, as it will be
discussed later.

The laminar system is analyzed in details previously (see36 and20) and it is shown that both eigenvalues are
positive for low values of H until a point of separation, where ∂H∗/∂H = 0 and H = 4.19808. Downstream
of this point the flow is separated and one of the characteristics travels in the upwind direction. As noted first
by Goldstein in 1948,5 at the point of separation solution is singular. This should not constitute a problem
for the unsteady application since inversion of the operating matrix is avoided. However, as discussed by
van Dommelen and Shen the unsteady method presented is not able to reach the correct steady solution
for separating flows, due to the spontaneous generation of the singularity in a separating laminar boundary
layer.6 One way to avoid this problem is to couple the viscous method analyzed here with an inviscid one
which brings the necessity of a viscous-inviscid interaction (VII) scheme where the interaction changes the
equations to be solved but allows the computation of the correct solution also for separated flows.

Turbulent closure set

Turbulent boundary layers have a two-layer structure (and an overlap region), the thickness of which scales
differently with the local Reynolds number Reθ, a one-parameter velocity profile is not adequate to describe
all turbulent boundary layers and such a dependency on Reθ must be considered. Many closure sets can be
found in literature for the turbulent closure set as well. For the present study the closure sets from Drela
and Giles42 and Nishida14 are taken, with small corrections suggested by Ye34 and neglecting compressibility
effects.

The skin friction coefficient Cf is given by:

Cf = 0.3e−1.33H

(
logReθ
2.3026

)−1.74−0.31H

+ 0.00011

[
tanh

(
4.0− H

0.875

)
− 1.0

]
. (20)

For the energy thickness shape factor H∗ the following relation is used:

H∗ =



1.505 +
4

Reθ
+

(
0.5− 4

Reθ

)(
H0 −H
H0 − 1.0

)2
1.5

H + 0.5
, H < H0 ,

1.505 +
4

Reθ
+ (H −H0)2

0.007
logReθ

H −H0 +
4

Reθ

+
0.015

H

 , H ≥ H0 ,

(21)

where H0 is defined as

H0 = min

(
3 +

400

Reθ
, 4

)
. (22)

Equilibrium shear stress coefficient

CτEQ =
H∗

2

0.03

1− Us

(
H − 1

H

)3

. (23)

Dissipation coefficient

CD =
Cf
2
Us + Cτ (1− Us). (24)

with the slip velocity

Us =
H∗

6

(
4

H
− 1

)
, (25)
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II.B. Linear-strength vortex panel method

Figure 1. Nomenclature for linear strength sin-
gularity panel.43

For the solution of the inviscid region a panel method based
on constant strength doublets and sources can be used. But as
argued by Katz and Plotkin43 and also as stated in the previ-
ous studies20,44 use of constant strength doublets and sources
leads a slight disagreement near the maximum suction area and
near the rear stagnation point. Katz and Plotking suggests
to use either a grid stretching towards the trailing edge or to
use the velocity formulation for the Kutta condition. Within
this study we employed linear-strength vortex panel method
instead to overcome this problem which is also a higher order
panel method. The panel surface is assumed to be planar and
the singularity strength will change linearly along the panel
(see Fig. (1)). Consequently, the singularity strength on each
panel includes two unknowns and additional equations need to
be formulated. The detailed derivations can be found in the
work of Koodly Ravishankara44 ans is not repeated here.

The velocity components at a location P (x, z) due to a panel j, with vorticity strengths varying from γj
to γj+1 in panel coordinates is expressed as:43

up =
z

2π

(
γj+1 − γj
xj+1 − xj

)
ln
rj+1

rj

+
γj
(
xj+1 − xj

)
+
(
γj+1 − γj

) (
x− xj

)
2π
(
xj+1 − xj

) (
θj+1 − θj

)
,

wp =
z

2π

(
γj+1 − γj
xj+1 − xj

)[
xj+1 − xj

z
+
(
θj+1 − θj

)]
−
γj
(
xj+1 − xj

)
+
(
γj+1 − γj

) (
x− xj

)
2π
(
xj+1 − xj

) ln
rj
rj+1

. (26)

The Eqs. (26) can be used to compute the influence coefficients for all the panels. Thus we have N + 1
unknown singularity strengths for N panels. A zero normal velocity condition is enforced to form the
required equations. Denoting the influence on i− th panel by the j − th panel with vorticity strengths γj to
γj+1 as aij and aij+1, we can write the condition for zero normal velocity at the first panel as

a11γ1 + a12γ2 + ...+ a1N+1γN+1 = u∞ sin (αθ) (27)

where u∞ is free stream velocity, α is the angle of attack and θ is the panel angle.
A similar equation can be written for all N panels, and the Kutta condition (Eq. 28) provides the N+1th

equation.
γ1 + γN+1 = 0. (28)

The system of N + 1 equations can be solved for the unknown vorticity strengths γ1 to γN+1. The edge
velocity distribution is then found by using the influence coefficients for tangential velocity from Eqs. (26)
along with the contribution of free stream velocity,43

uei =

N+1∑
1

aijγj + u∞ cos (α− θ) . (29)

Computation of wake geometry

The wake geometry can be determined once the inviscid solution is found. The first point on the wake is
taken to be a very small distance from the trailing edge and subsequent points are found using the constraint
that there is no flow across the wake. First, the velocity at the first trailing edge point is determined and
subsequent points can be found by moving in the direction of the velocity at previous points.
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Effect of boundary layer

To incorporate the effect of boundary layer in the potential flow method the concept of transpiration velocity
is used. The viscosity which is effective only in the region around the airfoil, reduces the velocity in the
vicinity. Since there must be a constant volume flow per unit span between the surface and the streamline
just outside the boundary layer, due to continuity requirements, the flow reduction inside the boundary layer
must be compensated for by an outward displacement of such a streamline of a distance δ∗, whose value
at any point of the surface can be calculated, to a first approximation, directly from the integral boundary
layer equations, this effect should be taken into account. The additional outflow8 is as if the flow around the
body were supplemented by the effect of a surface distribution of sources, whose strength per unit area is:

σi =
d

dx
(ueδ

∗), i = 1, 2..N +Nw (30)

where N is the number of panels on the airfoil and Nw is the number of panels on the wake. The new edge
velocity distribution is then found11 as

uei = uINVi +

N+Nw∑
1

bijσj . (31)

uINVi is the value from Eq. (29) and bij are the influence coefficients of sources and σj is given in Eq. (30).

II.C. Viscous-inviscid interaction scheme

BOUNDARY LAYER 
+ 

INTERACTION LAW 

Time 

2kt

kt

1kt

)2*()2( ,
 ktkt

eu 

 
INVISCID REGION 

 

BOUNDARY LAYER 
+ 

INTERACTION LAW 

 
INVISCID REGION 

 

*

*

eu

eu

)1*()1( ,
 ktkt

eu 

)*()( ,
ktkt

eu 

Figure 2. Global organization of unsteady
quasi-simultaneous method.45

The equations of motion in each of the subdomain provide a
relation between the velocity along the edge of the boundary
layer ue and the displacement thickness δ∗. A symbolic nota-
tion is here used to denote these relations:

external flow: ue = E [δ∗] , (32)

boundary-layer flow: ue = B [δ∗] , (33)

where E denotes “external” and B “boundary layer”. The
inverse form of the boundary layer formulation has been in-
dicated with B since it is assumed that this formulation does
possess a (unique) solution after discretisation even at separa-
tion points, while the direct one does not.46 If a steady solution
is sought, the two edge velocities for given displacement thick-
ness need to match. A justification of this requirement is also
given by the functional approach theory for steady flows, ex-
tensively treated by Brune et al.47 and Williams and Smith.48

In order to decrease the computational effort required by the
simultaneous method but preserving the asset to allow a strong
interaction between the layers, based on the triple-deck theory,
the quasi-simultaneous method was developed by Veldman.9

The idea behind this scheme is to combine the advantages of
the direct and simultaneous methods, and avoiding the singu-
larity problems at separation. Instead of solving viscous and
inviscid regions simultaneously, the boundary layer calculations
are performed together with an approximation for the external
inviscid flow. The boundary layer is therefore informed instantaneously about how the external flow reacts
on changes inside the boundary layer itself through a simple, but sufficiently accurate approximation of the
external flow, called interaction law, and denoted here with I. The following iterative process is therefore
created: ue

(n+1) − I
[
δ∗(n+1)

]
= E

[
δ∗(n)

]
− I

[
δ∗(n)

]
,

ue
(n+1) −B

[
δ∗(n+1)

]
= 0 .

(34)
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Since the goal of the interaction law is to make the numerical calculations survive the separation point,
a good description of the local interactive physics is essential. When this requirement is fulfilled, a fast
convergence can be pursued. It is remarked by Veldman that the choice of the interaction law does not
influence the converged solution. This is in fact only determined by the choices made for the inviscid and
viscous flow operators E and B in Eqs. (32) and (33). The interaction law only controls the rate with which
the viscous-inviscid solution is obtained.49 In the quasi-simultaneous method the boundary layer is solved
together with an approximation of the inviscid flow. Every time-step, iterations are performed in order to
reach a converged solution between the edge velocity provided by the boundary layer modelling together with
the interaction law and the complete inviscid modelling described by Eq. (34). The stopping criterion can be
either based on the difference between the two edge velocities or on a fixed number of iterations. Cebeci16

assumed that 20 viscous-inviscid iterations even for flow involving stall are sufficient, while less iterations
are required when stall does not occur. Unless an unsteady panel method based on Helmholtz theorem of
conservation of vorticity is developed,50a fixed number of iterations is performed. The time advance is kept
fixed during the iteration process by fixing the initial conditions to the solution at the previous time-step.
Only when the iteration procedure is terminated the solution computed is used as the new initial condition
for the next iterations. A schematic of the unsteady quasi-simultaneous method is shown in Fig. ( 2).

Veldman49 suggests that a simple thin-airfoil approximation of the external inviscid flow is sufficiently
useful for the development of the method. Other choices are possible. The interaction law implemented has
the form:

ue(x) = ue0(x) +
1

π

∫
χ

d

dζ

(
ueδ
∗
) dζ

x− ζ
(35)

where ue0 is the edge velocity distribution without displacement effects and χ is the region where strong
interaction is required, as indicated by triple-deck theory.

When the edge velocity distribution ue is considered as an additional unknown and the interaction law
Eq. (35) is added to the set of Eqs. (7) (or to the laminar version of the mentioned equation), the nature of
the problem changes. This can be shown just looking at the integral boundary-layer equations, independent
of the interaction law chosen. The terms where the derivatives of ue appear can not be considered sources any
more, and by indicating the unknown vector as u = (u1, u2, u3)T = (δ∗, δ∗ + θ, ue)

T , the integral boundary
layer equations are written in the form:

∂u1

∂t
+
u1

u3

∂u3

∂t
+u2

∂u3

∂x
+

∂

∂x

[
u3(u2 − u1)

]
=
Cf
2
u3 , (36a)

∂u2

∂t
+

2(u2 − u1)

u3

∂u3

∂t
+ 2H∗(u2 − u1)

∂u3

∂x
+

∂

∂x

[
u3H

∗(u2 − u1)
]

= CDu3 . (36b)

Already the above equations present the problem that they contain non-conservative products that cannot
be transformed into divergence form, i.e. the equations in the form ∂tu + ∂xf(u) + g(u)∂xu = s(u) cannot
be written as ∂tu+ ∂xh(u) = s(u). This causes problems once the solution becomes discontinuous, because
the weak solution in the classical sense of distributions then does not exist.

Therefore in order to couple the system described by the integral boundary layer equations with the
interaction law, a numerical method for non-conservative systems is required. In the section below the
discontinuous Galerkin method is presented including a non-conservative flux scheme for genuinely non-
conservative problems.

II.D. Numerical solution

As discussed above introducing the boundary layer edge velocity ue as an unknown to the integral boundary
layer equations (either to laminar or turbulent set) by means of the (quasi-)simultaneous viscous-inviscid
interaction scheme leads to a non-conservative system of equations independent of the chosen interaction
scheme. This leads to a need of a special treatment of the chosen numerical solution method namely it is
required to introduce a non-conservative flux scheme. Within this study the IBL equations together with the
closure set are solved with a high-order discontinuous Galerkin (DG) method. In various literature51,52 as
well as in the previous studies53,36,54,20 the conservative form of discontinuous Galerkin method is presented
in details for conservative systems. Within this study the DG method applied to non-conservative hyperbolic
systems is briefly discussed.

It has been shown19 that the interacting boundary layer equations do not form a set of conservation laws,
but rather a more general non-conservative hyperbolic system. The difficulties in defining and modeling
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these type of systems originate from their dependence on the limit of the physical process from which they
are derived; in contrast with conservation laws, whose definition and modeling do not require such additional
information. In case of the interacting boundary layer, this information is contained in the averaged Navier-
Stokes formulation for the shear layer. The second order diffusive terms, neglected in the hyperbolic system,
can be used to determine the correct behavior. This additional physical information affecting the solution is
to be implemented in a numerical approximation, more specifically in a discontinuous Galerkin framework.
The limiting behavior of the numerical approximation is determined by two aspects: the choice of physical
paths in the solution space Ω (as introduced by Dal Maso, LeFloch and Murat55), and the choice of numerical
test function paths in Ω∗ (as introduced by Seubers19). Existing numerical approaches can be divided into
two categories, based on convergence to physically relevant solutions. The well-balanced schemes focus
on the use of correct solution paths where available. These schemes preserve equilibrium solutions. The
entropy conserving schemes impose an additional conservation principle by construction of a special artificial
diffusion term. The existence of the relation between the artificial diffusion terms and the test function
paths is a requirement for well-balancing, which is attained when using the physically correct solution paths.
Since the exact paths for the interacting boundary layer system are not available analytically, simplified
linear solution paths can be used to obtain convergence to the physical solution, as long as the numerical
stabilization is consistent with the higher order diffusive terms in the limiting physical process, as in the
entropy-stable-path-consistent scheme.

A general hyperbolic non-conservative system can formally be written in the following form:

∂u

∂t
+

d∑
i=1

Ai(u)
∂u

∂xi
= s(u) , in (0, T )× Ω , (37)

where Ω is a bounded sub domain of Rd, d = 1, 2 or 3, u = (u1, u2, . . . , um)T , s(u) is a source term and

the matrices Ai(u), i = 1, . . . , d are such that any linear combination
∑d
i=1 ξiAi(u) has m real eigenvalues

and a complete set of eigenvectors. The latter property ensures that the system is hyperbolic.56 Within
the classical DG method based on the conservative expression the flux expressions on element boundaries
is provided by means of integration by parts. However, for equations in non-conservative form or if a
conservative form does not exist, as it is the case for the system of equations investigated, it is not clear
how to perform such integration. Another approach, which describes the DG method as a Galerkin method
with element-wise weakly imposed boundary conditions is shown by Hulsen57 but still requires integration
by parts. The procedure followed here for non-conservative systems is based on the method suggested by
Hulsen but instead of integration by parts, introduces extra terms accounting for the jumps across element
boundaries. Multiplying Eq. (37) by a test function v(x) and integrating over the domain Ω gives:∫

Ω

vT
(∂u

∂t
+

d∑
i=1

Ai(u)
∂u

∂xi
− s(u)

)
dΩ = 0 , ∀v ∈ V , (38)

where V is a a suitable function space for both u and v, e.g. (H1(Ω))m. The space V is then approximated

by V
(e)
h . Inserting the approximation in Eq. (38) requires the integral to be split into a sum over the

element integrals and a sum across the boundary integrals. The latter terms appear because on the element
boundaries the normal component of the derivative of uh is infinite. The following form is obtained:

ne∑
e=1

(∫
Ωe

vTh

(∂uh
∂t

+

d∑
i=1

Ai(uh)
∂uh
∂xi
− s(uh)

)
dΩ

)
+

∫
γh

vTh∆n dγ = 0 , (39)

where γh = ∪nee=1∂Ωe, which consists of all element boundaries. The expression of ∆n is:

∆n =

∫ n+

n−

d∑
i=1

Ai(uh)
∂uh
∂xi

dn =

∫ n+

n−

d∑
i=1

Ai(uh)ni
∂uh
∂n

dn

=

∫ u+

u−

d∑
i=1

niAi(u) du =

∫ u+

u−
Kn(u) du ,

(40)
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where n is a coordinate in the direction of the unit normal vector n = (n1, n2, n3) on γh and is not uniquely
defined yet as it may point to either side of γh. Matrix Kn is defined as:

Kn(u) =

d∑
i=1

niAi(u) . (41)

For non-conservative systems ∆n depends on the path chosen (in the u-space) for u : u− → u+. As the
solution is assumed to be smooth, and thus the jump [u]→ 0 for h→ 0, such integral can be approximated
as:

∆n = Hn(u−,u+) [u] +O
(

[u]
2
j

)
, (42)

where Hn can be called flux and Hn(a,a) = Kn(a). The most obvious choice is:

Hn(a,b) = Kn

(1

2

(
a + b

))
, (43)

but others are possible. The same form is obtained by choosing the following linear path:

u = [u] τ +
1

2

(
u− + u+

)
, τ ∈

[
− 1

2
,

1

2

]
, (44)

so that:

Hn(u−,u+) =

∫ 1
2

− 1
2

Kn([u] τ +
1

2

(
u− + u+

)
dτ , (45)

which leads again to Eq. (43) when the integral is approximated with the mid-point rule. The method
therefore takes the form:

ne∑
e=1

(∫
Ωe

vTh

(∂uh
∂t

+

d∑
i=1

Ai(uh)
∂uh
∂xi
− s(uh)

)
dΩ

)
+

∫
γh

vThHn(u−,u+) [u] dγ = 0 . (46)

A definition of vh on γh is still required. The choice is based on the characteristic decomposition of
Hn(u−,u+).

Characteristic Decomposition

Characteristic decomposition is based on the solution of the eigenvalue problem for the non-defective matrix
Hn(u− ,u+) defined in Eq. (43). The following notation is used:

λi : eigenvalues of Hn(u− ,u+) ,

ri : right eigenvectors of Hn(u− ,u+) ,

li : left eigenvectors of Hn(u− ,u+) .

The eigenvectors ri and li can be chosen such that:58

lTi rj = δij , i, j = 1, . . . ,m , (47)

where δij is the Kronecker delta defines as:

δij =

1 if i = j ,

0 if i 6= j .
(48)

The characteristic decomposition of a vector a is therefore defined with respect to the right and left eigen-
vectors by writing such a vector as a linear combination of the right ri or left li eigenvectors:

a =

m∑
i=1

a
(r)
i ri , with a

(r)
i =

lTi a

lTi ri
, (49)

a =

m∑
i=1

a
(l)
i li , with a

(l)
i =

aT ri

lTi ri
. (50)
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For non-conservative systems, the jump [u] is decomposed into characteristic components with respect to
the ri base:

[u] =

m∑
i=1

lTi [u]

lTi ri
. (51)

Substitution of Eq. (51) in Eq. (46) and using Hn(u−,u+)ri = λiri yields the following form for the integral
on the boundary:∫

γh

vThHn(u−,u+) [u] dγ =

∫
γh

vTh

m∑
i=1

lTi [u]

lTi ri
λiri dγ =

∫
γh

m∑
i=1

v
(l)
ih lTi [u]λi dγ , (52)

where v
(l)
ih is the characteristic component of vh with respect to the li base. Its value is taken as:57

v
(l)
ih =

αv(l)−
ih + (1− α)v

(l)+
ih , if λi < 0 ,

αv
(l)+
ih + (1− α)v

(l)−
ih , if λi > 0 .

(53)

Rearranging Eq. (46) with Eqs.(52,53) into a sum over elements and considering each element independently,

yields to the final formulation of the method, which states: for each element e = 1, . . . , ne, find vh ∈ V (e)
h

such that: ∫
Ωe

vTh

(∂uh
∂t

+

d∑
i=1

Ai(uh)
∂uh
∂xi
− s(uh)

)
dΩ (54)

+α
∑
(in)

∫
∂Ωe

vTh
lTi [u]

lTi ri
λiri dγ + (1− α)

∑
(out)

∫
∂Ωe

vTh
lTi [u]

lTi ri
λiri dγ = 0 , ∀ vh ∈ V (e)

h ,

where inner summation is a sum over all i with λi < 0, outer summation is a sum over all i with λi > 0 and
n unit normal vector used to define Kn is pointing out from the volume Ωe.

Discretization and Solution of the System

The approximate solution uh and the test function vh are expanded formally in terms of the basis function
as:59

uh(x, t) = ujk(t)bk(x), vh(x, t) = bm(x), (55)

where Einstein summation convention is used. Here b are the linearly independent basis functions (i.e.
monomials), k and m index denote the basis function considered k,m = 1, 2, . . . , N(p, d), while j index
denotes the j-th element j = 1, 2, . . . Ne, with Ne number of elements.

The reader is referred to previous studies53,20 for the detailed derivation of the final discrete equation
that reads as follows:

dujk
dt

+
1

Jj

[
M−1
mkGkmlAjlujk + α

∑
(in)ε

M−1
mkB̃εHjujk + (1− α)

∑
(out)ε

M−1
mkB̃εHjujk

]
= sjk, (56)

with Jj is the Jacobian matrix, and α is the weight factor the pre-computed and stored matrices given below

Mmk ≡
∫

Ω̂

bk(ξ)bm(ξ) dΩ̂, Gmkl ≡
∫

Ω̂

∂bm(ξ)

∂ξl
bk dΩ̂, B̃ε ≡

∫
Γε

bmb̄k dΓ̄. (57)

The explicit four stage Runge-Kutta Scheme is used for time discretization.53,60

un,0j = unj , (58a)

un,kj = unj + γk∆tKun,k−1
j , k = 1, ..N, (58b)

un+1
j = uN,nj , (58c)

where N = 4, and γ1 = 1/4, γ2 = 1/3, γ3 = 1/2, γ4 = 1.
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III. Results

In this section, the numerical solutions of the individual components namely viscous flow solution and
potential flow solution are verified. Later on, the solution of the coupled system is demonstrated on chosen
test cases.

III.A. Viscous flow solution

In previous studies the DG method applied to various academic test cases and the convergence rate of both
the space and time discretization are presented (up to 4th order of accuracy) and the method is verified
(see i.e.61,19,20). Within this study the focus is mainly on applying the numerical method on the IBL
equations. To this end various test cases on flat plate and various airfoils (and angles of attacks) are shown
in the following sections. Converged steady results are compared with the aforementioned solutions and
the accuracy of the method is demonstrated. It is important to note that although the numerical method
is developed for an arbitrary order of accuracy it is a tedious work to discretize the equation set used to
close the system for higher order of accuracies and therefore their accuracy is kept at second order which is
bounding for the whole system. It should also be noted that since the aim of this section is to demonstrate the
solutions obtained by the viscous flow solver only, the edge velocity distribution is assumed to be prescribed
(only in this section) and furthermore these velocity distributions are either set to certain (analytical) values
or obtained from other numerical solutions (i.e. XFOIL) when necessary.

III.A.1. Laminar flow over a flat plate

An interesting preliminary test case for the modeling of a boundary layer flow with the integral boundary
layer equations is a laminar flow over a flat plate. The reason for this is that an analytical solution is
available for this type of flow and a proper comparison and analysis of the discretisation method can be
performed. The exact solution of the flat plate is obtained by solving the Blasius equation (e.g. White62).
The introduction of closure relations, Eqs. (17,18 and 19), which are optimized for airfoils, introduces an
error compared to the exact solution. For this test case a reference solution is derived in36 and here recalled
together with the exact solution. The edge velocity prescribed for a flat plate is ue = V∞ , where V∞ is the

Variable Blasius IBL

δ∗ 1.72079

√
xL

Re∞
1.71029

√
xL

Re∞

θ 0.66411

√
xL

Re∞
0.66599

√
xL

Re∞
H 2.59110 2.56805

Table 1. Solutions for a flat plate boundary layer
Flow.36

p = 0 p = 1

N = 100 - -

N = 200 1.0067 1.9870

N = 400 1.0021 1.9821

Expected 1.00 2.00

Table 2. Order of Accuracy of DG discretization for
boundary layer flow over a flat plate.

free stream velocity. The unsteady simulation is hence performed until a steady solution is obtained for a
Reynolds number of Re = 105. The effectiveness of the method can be perceived by a simulation with very
few elements. In Fig. (3(a)), the solution converged to a steady state is obtained at the end of the simulation
with N = 10 elements for the basis functions of degree p = 0 and p = 1 is shown, together with the analytical
solution.

As can be seen from Fig. (3(a)), already a very coarse mesh give results very close to the exact solution.
The first element is of course the most problematic and where the numerical solution is less accurate due
to the infinite slope which can not be well represented by low order polynomials. The problem is reduced
by p-refinement or h-refinement. For p = 0 the method actually reduces to a finite volume scheme, but
an increase on the degree of the basis function increases the accuracy of the solution faster than a mesh
refinement.

As previously discussed, due to the complex form and not exact derivation of the closure relations, the
practical implementation of the method is currently limited up to second order accuracy. The order of
accuracy is tested with a grid refinement study. The convergence study is accomplished by evaluating the
solution on an interrogation mesh with 10000 common points used for the meshes under analysis, which have
100, 200 and 400 elements in the streamwise x-direction. The number of evaluation points per element is
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Figure 3. Comparison of the numerical solution with the analytical solution for the flow over a flat plate for the
displacement thickness, δ∗, and for the momentum thickness, θ.

therefore 100, 50, and 25 respectively. The L2-norm is employed to measure the error e(x) = δ∗(x)−δ∗exact(x):

‖e(x)‖L2 =
{ 1

L

∫ L

0

[
δ∗(x)− δ∗exact(x)

]2
dx
}1/2

=
{ 1

10000

10000∑
j=1

[
δ∗(xj)− δ∗exact(xj)

]2
dx
}1/2

. (59)
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2

 

 

p = 0
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Figure 4. L2 error norms for the steady state
solution of the flat plate test case for different
degree p of the basis functions.

Fig. (4) shows the L2-norm of the error for the variable δ∗

(similar results are obtained for the other variable θ). Lesaint
and Raviart63 demonstrated that the method can be hp+1 ac-
curate for cartesian grids, where h is a reference length for the
elements size. Computation of the slopes of the error norm
in a logarithmic graph gives exactly the accuracy expected as
shown in table (III.A.1).

In Fig. (3(b)) finally the displacement thickness δ∗ and mo-
mentum thickness θ for p = 1 and the finest grid with N = 400
elements are shown. The results agree very well with the ana-
lytical solution.

III.A.2. Turbulent flow over a flat plate

As a second test case turbulent flow over a flat plate is con-
sidered. The experimental data used to validate the numerical
solution are from Wieghardt and Tillmann64 as identified with
the flow number 1400. Free-stream velocity is ue = 33 m/s with
no pressure gradient along the five meter long flat plate. The
corresponding Reynolds number is ReL = 1.0927 × 107. For
the unsteady simulations the simulation time is chosen to be
long enough such that the boundary layer may be considered to
converge to a steady state. In Fig. (5) comparisons of the nu-
merical solution for the displacement thickness δ∗ and friction
coefficients Cf to the experimental data are shown. Numerical
solution is in a very good agreement with the experimental data for the turbulent flow over a flat plate case.

III.A.3. Laminar flow over airfoil profiles

Unsteady simulation of a flow over a NACA 0009 airfoil profile is presented. The airfoil is considered to set
into motion instantaneously where the boundary layer is developed in time. A steady solution is obtained
with the aerodynamic design software XFOIL11 in order to compare the results with the ones obtained by
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Figure 5. Turbulent boundary layer over a flat plate with Re = 1.09× 107, denoted as Flow 1400.64

the present method. NACA 0009 is a symmetric airfoil with maximum thickness of 9 percent of the chord.
Reynolds number for the numerical simulation is kept relatively low (Re = 104) in order to ensure the
flow to be fully laminar. A simulation with zero angle-of-attack is performed. Since the airfoil geometry
is symmetric only one side of the solution is presented. In Fig. (6) the evaluation of the solution for δ∗ in
time is presented. Since the initial and boundary conditions are not time dependent it is expected that the
solution converges to a steady state solution as can be seen from the comparison with the solution obtained
by XFOIL.

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

X

δ
∗

 

 

XFOIL
DG

(a) Initial condition.
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(d) Steady solution

Figure 6. Unsteady simulation for NACA 0009 at Re = 104 and α = 0◦. Time evaluation of the displacement thickness
δ∗ is compared to the results obtained by XFOIL.

In order to have some asymmetries on suction and pressure side, a cambered airfoil NACA 2205 is then
tested for 0 deg angle of attack and for the Reynolds number of 104.

Distributions of displacement and momentum thickness along the cord for the solution converged to a
steady state are shown in Fig. (7) together with XFOIL results which shows a good agreement.
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Figure 7. A comparison of the results converged to steady state for NACA 2205 airfoil profile for Re = 104 and α = 0◦

obtained by the unsteady simulation with the results obtained by XFOIL.

III.B. Potential flow solution

The panel method based on the linear-strength vorticity singularity is tested on the 12% thick van de Vooren
airfoil (Fig. (9)). Fig. (8(a)) and Fig. (8(b)) show the comparison of the numerical solutions for the pressure
coefficients obtained by the panel method with the one obtained by XFOIL at angles of attack 1 and 5 degree
respectively. It can be clearly seen that the numerical solution is in very good agreement with XFOIL. Fig. (9)

(a) Angle of Attack = 1◦. (b) Angle of Attack = 5◦.

Figure 8. Comparison of the pressure coefficient between Panel method and XFOIL.

shows the wake trajectories that are computed for different angles of attacks.

Figure 9. Airfoil with wake trajectory for various angles of attack.

III.C. Solution with the coupled system

The individual numerical methods presented above coupled with the unsteady form of the quasi-simultaneous
viscous-inviscid interaction scheme to form the complete interacting boundary layer method. The method
is applied to a flow over a NACA 63418 airfoil profile for the cases where a natural transition to turbulent
flow is allowed and also where the flow is triggered at the leading edge to become fully turbulent. The
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numerical solutions are obtained for the Reynolds number of 3.0× 106 and for the angles of attack of −1◦,
1◦ and 3◦ where mild separation is expected. Fig. (10(a)) shows a comparison of the solution for the lift
coefficient to the experimental data and the numerical solutions obtained by other numerical methods. A
similar comparison is made for the drag coefficient in Fig. (10(b)). Although for the present method only
three representative angles of attacks are chosen it can be seen that for the linear part of both polar curves
lift coefficient is slightly over-predicted while the drag coefficient is slightly under-predicted. It should be
noted that the closure equation set used in the aerodynamic design tools (like XFOIL) are usually fine tuned
by considering many test cases which is not (yet) the case for the presented method.
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Figure 10. Comparison of numerical solution to the experimental data and other numerical solutions for lift and drag.

In Fig. (11(a)) a comparison of the numerical solution for the displacement thickness, δ∗ is shown to
the numerical solution obtained by XFOIL where the flow naturally transitions from laminar to turbulent
conditions for NACA 63418 airfoil for Re = 3.0 × 106 and α = 1◦. The present (unsteady) method is
simulated for a long enough time to achieve a steady state solution. It is interesting to note that the wake
simulation in the present method is performed in a rather unconventional manner where two layer of panels
are introduced (i.e. can be interpreted as pressure and the suction sides of the wake). This implementation
can be seen in Fig. (11(a)) clearly. The upper (suction side) end location of the wake is located to x = −1
and continues until x = 0 where the trailing edge of the suction side starts. The leading edge of the airfoil is
around x = 1 and the pressure side of the airfoil geometry continues until around x = 2 reaching the trailing
edge of the body on the pressure side. Finally the lower side of the wake (pressure side) extends until x = 3.
Within this setting when the upper and lower sides of the wake is examined a difference in the solution
(displacement thickness) can be noticed. This result is expected for non-symmetric airfoils. Furthermore
from the comparison it can be seen that the transition onset and the behavior of the transition is different for
both solutions. Although the transition model applied involves unsteady terms this model needs a further
attention. In order to avoid the use of transition model the same test case is considered for a fully turbulent
flow condition where the solution is compared to the XFOIL result as presented in Fig. (11(b)). Considering
the differences between the present method and XFOIL one naturally does not expect to see an exact match
in the solutions. It can be concluded that the solution obtained with the present method is in good agreement
with XFOIL.

IV. Conclusion

Within this study an unsteady, two-dimensional interacting boundary layer method is presented for the
incompressible flow around wind turbine rotor blade sections. The main approach is to divide the flow field
in to two regions; the one in the vicinity of the surface where the viscosity is effective (so called boundary
layer) and the one away from the surface where the flow can be assumed as inviscid. The solutions obtained
from these two regions are matched with a quasi-simultaneous viscous-inviscid interaction scheme.

The unsteady integral boundary layer equations are presented together with the laminar and turbulent
closure sets. For the turbulent flow conditions, an unsteady shear lag equation is employed. Laminar to
turbulent transition is modeled with the eN method where an unsteady term is introduced to the amplification
rate (N). The potential flow is solved by using the linear-strength vortex panel method.
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Figure 11. Comparison of the solution for the displacement thickness, δ∗ to the solution obtained by XFOIL for natural
transition and fully turbulent flow conditions for NACA 63418 airfoil for Re = 3.0× 106 and α = 1◦.

It is shown that introducing the interaction scheme leads to non-conservative mechanisms in the system
that requires a special treatment for these non-conservative flux terms. The viscous boundary layer flow
represented by the unsteady integral boundary layer equations is solved using a high-order quadrature-free
discontinuous Galerkin method, where the method is extended to handle aforementioned non-conservative
flux terms. Furthermore it is shown that this numerical method achieves the designed order of accuracy for
smooth problems.

The individual numerical solution methods are verified on various test cases including laminar and tur-
bulent flow over a flat plate and airfoil profiles. The time dependent solution of the developing boundary
layer is presented. Later, the coupled system is applied on a test case and the results are compared to
experimental data and the numerical results obtained from other numerical solution methods. It is shown
that the developed numerical method is in good agreement with experimental data and results from other
numerical methods.
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