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CFD computations of the second round of MEXICO

rotor measurements
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x Energy Research Center of the Netherlands, ECN, P.O. Box 1, 1755 ZG Petten Holland.
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Abstract. A comparison, between selected wind tunnel data from the NEW MEXICO
measuring campaign and CFD computations are shown. The present work, documents that
a state of the art CFD code, including a laminar turbulent transition model, can provide good
agreement with experimental data. Good agreement is shown for the integral loads, radial
distributions of blades forces, pressure distributions, and the velocity profiles up- and down-
stream of the rotor.

1. Introduction

The development, application, and acceptance of CFD solvers for wind turbine rotor flows
have been greatly dependent on the availability of good experimental data under controlled
conditions. The NREL/NASA AMES Wind Tunnel Experiment in 1999 [3, 14] might be the
most well known. Other series of wind tunnel experiments exist, and the Swedish experiment in
the Chinese CARDC tunnel, performed in 1989 and 1992 [12] and [11], is an early example. Here,
the focus is on the recent NEW MEXICO campaign of measurements of the MEXICO rotor,
performed within the European INNWIND project, and relying on European ESWIRP project
for wind tunnel time. One obvious feature, of both the MEXICO [15] and NEW MEXICO
measurements [2], is the fact that this specific experiment encompasses both detailed rotor
load measurements on the wind turbine blades and simultaneous detailed PIV measurements
in the wake behind the rotor. Another unique feature of the NEW MEXICO experiment is
the availability of both natural and tripped flow conditions, allowing investigation of the effect
of laminar/turbulent transition. This proved important in the original MEXICO experiment,
[13], where the simultaneous availability of loads and wake measurements revealed inconsistency
between loads and wake deficit. In the new measurements, a large effort is put into revealing
the cause of this issue [2]. The original MEXICO experiment has spawned a long row of
computational studies, as reported e.g. in [1, 10, 4, 5, 16]

An important aspect, addressed in the new experiment, is the laminar/turbulent transition
process. In the original experiment, the blades were equipped with boundary layer trips, to
assure fully turbulent flow at the relatively low Reynolds numbers present in the wind tunnel
setup. In the second round of measurements, the effect of running the outer part of the blade
with free transition is investigated, due to the increasing focus on the transition process for wind
turbine flows.
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2. Method

In this work, the EllipSys3D incompressible CFD solver is applied in RANS mode, [7, 8, 18].
The turbulent closure is accomplished by the k−ω SST turbulence model of Menter [6]. For the
laminar turbulent transitional computations the k − ω SST model is used in combination with
the En method, as implemented by Michelsen [9]. In the present simulation, the intermittency
constant is overwritten on the inboard part of the rotor, to enforce fully turbulent flow. All
the present simulations deal with axial flow situations and are computed using a steady state
approach.

3. Grid Generation

The Mexico rotor is a three bladed upwind turbine, with a rotor diameter of 4.5 meters. The
rotor is equipped with DU-91-W2-250 airfoils at the inboard part of the blades, Risø-A21 at the
central part, and NACA 64-418 airfoils on the outer part, see [15, 13]. The turbine is equipped
with five rows of pressure tabs, at r/R=[0.25, 0.35, 0.60, 0.82, 0.92], to allow determination of
the span-wise load distribution.

Figure 1. The three bladed MEXICO rotor, with the substantial nacelle geometry. The left
figure shows the geometry and the right figure shows mesh details.

Table 1. The operational conditions for the three investigated cases.
CASE Vtunnel RPM Pitch Density Tinf Pinf

[m/s] [deg] [kg/m3] [deg K] [N/m2]
1 10.05 425.1 -2.3 1.197 293.63 101398
2 15.06 425.1 -2.3 1.191 294.91 101345
3 24.05 425.1 -2.3 1.195 294.25 101407

Based on a CAD description of the MEXICO blade and nacelle a surface grid is generated
by an in-house surface grid generation library, while the 3D grid is generated by a 3D in-house
hyperbolic grid generator. In contrast to previous computations, using the EllipSys3D code for
the MEXICO setup, the substantial turbine nacelle is included in the computations, see Figure 1.
The mesh has 129 cells in the span-wise direction, 256 cells in the chord-wise direction, and 128
cells in the normal direction. In the normal direction the wall normal cell size is 1×10−5 meter,
which assures an y+ below 2. The far-field boundary is placed 10 diameters away from the rotor
center in all direction. The effect of including the substantial nacelle will not be discussed in
detail as this is not the main focus of the work. A breif comparison of fully turbulent results
revealed that the presence of the nacelle increase the power and the axial load by approximately
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Table 2. The integral loads for the three considered cases, giving the axial force and shaft torque
for experimental exp, the computed results for transitional conditions Ell,tr, and the computed
results for fully turbulent conditions Ell,ft.

CASE Faxial,exp Faxial,Ell,tr Faxial,Ell,ft Texp TEll,tr TEll,ft

[N ] [N ] [N ] [Nm] [Nm] [Nm]
1 974 984 969 68 58 59
2 1663 1752 1704 317 285 278
3 2173 2494 2532 716 704 727

1-2 percent. The effect is much larger than should be expected for a full size turbine, where the
nacelle is much smaller compared to the rotor area.

4. Results

In the present paper, a comparison of selected experimental conditions in axial flow is compared
to computations, see Table 1.
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Figure 2. Radial load distributions for the three considered cases. The left figure shows the
normal loads and the right figure the tangential loads. The experiments are shown with symbols,
the fully turbulent computations with lines, and the transitional conditions with dashed lines.
The red, blue, and green color corresponds to the Vtunnel =10, 15, and 24 [m/s] cases respectively.

The fully turbulent and transitional computations are compared with the measured data with
respect to integral loads, span-wise force distributions, pressure distributions, and velocities in
the wake of the turbine. The loads, in both the experiment and computations, are derived
from the the five sectional pressure distributions by integration. The integration is based on a
simple linear variation between the sections assuming zero value at the root and tip. As viscous
friction contributions are not available in the experiment, friction is not included in the load
determination from the CFD computations.

Looking first at the integral loads, we see that in comparison with the old MEXICO
measurements, taken under very similar conditions, the error in the thrust were varying as
[18, 15 , 10] percent, and the error in the torque is varying [20, 14, 6] percent for the [10, 15, 24]
[m/s] cases. As seen in Table 2, the thrust error in the present comparison is reduced to [1, 5,
1.5] percent, while the error in the torque is reduced to [15, 10, 2] percent. As explained in the
preliminary analysis of the New MEXICO measurements [2], the two main issues responsible
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Figure 3. Pressure distributions at four span-wise sections for Case-1 (10 [m/s]), comparing
the experimental values with fully turbulent and transitional computations.

for the mismatch of the loading and wake velocities, in the original MEXICO experiment, were
an overestimation of the tunnel speed by approximately 0.2-0.3 [m/s] and under estimation of
the loads, due to direct usage of the standard calibration curve provided by the manufacturer
instead of individual calibration curves for the Kulite pressure measurement equipment. The
present results, with a few percent error in the thrust and a somewhat higher error in the torque,
agrees well with our general findings for typical CFD predictions of rotor flows. The highest
error observed in the CASE-1 scenario is assumed to be connected to the conditions being close
to vortex ring state.

The radial load distributions are shown in Figure 2 for the three considered cases. Compared
to the old predictions, the agreement is improved, due to the removal of the consistent
overestimation of the loads in the experiment, see Figure. 2. Additionally, it can be observed
that the effect of the transition model is relatively weak, even though generally beneficial for
the agreement.

The pressure distribution show very good agreement, see Figures 3 to 5, with the exception
of the inboard sections at low wind speed, where it is known from [2] that the pressure sensors
range is insufficient to resolve the actual physics.

The improved agreement of the computations are also observed in the velocity profiles. In the
following, only the transitional results are shown, as the difference between the fully turbulent
and transitional results are very minor. Starting with the axial transects of axial and tangential
velocity, the computations show an excellent agreement both up- and down-stream of the rotor,

The Science of Making Torque from Wind (TORQUE 2016) IOP Publishing
Journal of Physics: Conference Series 753 (2016) 022054 doi:10.1088/1742-6596/753/2/022054

4



-1000

-500

 0

 500

 1000

 1500

 2000

 0  0.05  0.1  0.15  0.2  0.25

P 
[N

m
-2

]

Chord [m]

r/R=0.25

Exp
Ell, turb
Ell, tran

-1000

-500

 0

 500

 1000

 1500

 2000

 2500

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18  0.2

P 
[N

m
-2

]
Chord [m]

r/R=0.35

Exp
Ell, turb
Ell, tran

-3000

-2000

-1000

 0

 1000

 2000

 3000

 4000

 5000

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

P 
[N

m
-2

]

Chord [m]

r/R=0.60

Exp
Ell, turb
Ell, tran

-6000

-4000

-2000

 0

 2000

 4000

 6000

 8000

 10000

-0.02  0  0.02  0.04  0.06  0.08  0.1  0.12

P 
[N

m
-2

]

Chord [m]

r/R=0.82

Exp
Ell, turb
Ell, tran

Figure 4. Pressure distributions at four span-wise sections for Case-2 (15 [m/s]), comparing
the experimental values with fully turbulent and transitional computations.

see Figure 6. This is in contrast with the ’under prediction’ in the old simulations, which were
caused by an error in the measured tunnel speed.

Finally, Figures 7 to 9 show radial profiles of azimuthally averaged velocities. Here the
computations show very good agreement with the measured profiles. In the old measurements,
a light reflection from the turbine caused erroneous measurements of the axial velocity profile,
see Figure 3 in [17]. The discussion, whether this feature existed or not, caused great debate
in the modelling community, and it illustrates how combining measurements with computations
can help gain physical understanding.

5. Conclusion

The present paper, illustrates the level of agreement which can typically be obtained between
well executed controlled experiments and state of the art CFD computations, with respect to
integral loads, span-wise load distributions, sectional pressure distributions, and wake velocities.
The agreement is good, especially considering that the experiment features large separated areas
for the highest wind speed. For the lowest wind speed the situation is close to vortex ring state,
a very complicated flow situation where reversed flow regions exist in the wake region of the
rotor. Additionally, it is discussed how the combination of experiments and computations can
validate each other, making sure that the right conclusions are drawn with respect to the flow
physics. The three present cases are only a small fraction of the measured cases from the New
MEXICO campaign, and it is expected that the new data set will be very useful in connection
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Figure 5. Pressure distributions at four span-wise sections for Case-3 (24 [m/s]), comparing
the experimental values with fully turbulent and transitional computations.
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Figure 6. Velocity profiles along a line at r=1.5 [m], at the 9 o’clock position, with blade 1
pointing vertically up. The left figure shows the axial velocity and the right figure shows the
tangential velocity. Only transitional conditions are shown.

with future flow solver validations and improvements.
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Figure 7. A comparison between measured and computed radial profiles of averaged axial
velocity 0.3 [m] up- and down-stream of the rotor. From top to bottom Vtunnel is 10, 15, 24
[m/s]. Only the transitional results are shown.
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velocity 0.3 [m] up- and down-stream of the rotor. From top to bottom Vtunnel is 10, 15, 24
[m/s]. Only the transitional results are shown.
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