

Synthesis of CCN data from the ACTRIS network and complementary observation sites

Synthesis of CCN data from the ACTRIS network and complementary observation sites

A33G-0255

J. Schmale¹ (julia.schmale@psi.ch), F. Stratmann², S. Henning², J.S. Henzing³, G.P.A. Kos⁴, P. Schlag^{5,6}, R. Holzinger⁵, P.P. Aalto⁷, H. Keskinen⁷, M. Paramonov⁷, L. Poulain², K. Sellegri⁸, J. Ovadnevaite⁹, M. Krüger¹⁰, S. Carbone¹¹, J. Brito¹¹, A. Jefferson¹², J. Whitehead¹³, K. Carslaw¹⁴, S. S. Yum¹⁵, M. Park¹⁵, R. Fröhlich¹, E. Herrmann¹, E. Hammer¹, U. Baltensperger¹, M. Gysel¹ and the CCN Team^{16,17} ¹Paul Scherrer Institute, Villigen, Switzerland, ²Leibniz Institute for Tropospheric Research, Leipzig, Germany, ³Netherlands, ⁴Energy Research Centre of the Netherlands, Petten, The Netherlands, ⁵University of Utrecht, The Netherlands, ⁶Forschungszentrum Jülich, Germany, ⁷University of Helsinki, Finland, ⁸Observatoire de Physique du Globe de Clermont-Ferrand, University of Ireland Galway, Ireland, ¹⁰ Max Planck Institute for Chemistry, Mainz, Germany, ¹¹University of Sao Paulo, Sao Paulo, Brazil, ¹²National Oceanic and Atmospheric Administration, Boulder, US, ¹³University of Leeds, Leeds, UK, ¹⁵Yonsei University, Seoul, South Korea, ¹⁶University of Lund, Sweden, ¹⁷University of Crete, Heraklion, Greece

Objectives

- comparison of cloud condensation nuclei (CCN) characteristics in a number of different atmospheric regimes:
 - Arctic
 - boreal forest
 - bontinental remote
 - high altitude
 - marine
 - monsoon-influenced
 - rain forest
 - urban
- investigation of persistence and seasonal behavior

Data Base and Data Handling

ATT **BRW** CES JFJ SEO LON MEL MHD PUY

ATT: ATTO tower, Brazil, rainforest

BRW: Barrow, USA, Arctic remote

- **CES**: Cabauw, The Netherlands, rural / marine
- JFJ: Jungfraujoch, Switzerland, high-altitude

SEO: Seoul, South Korea, Urban, monsoon

LON: London, UK, urban

MEL: Melpitz, Germany, rural-remote MHD: Mace Head, Ireland, marine

PUY: Puy de Dôme, France, remote-elevated

- all data sets were directly obtained from and discussed with the PIs
- averaged to 1 h (4h or 6h), time stamp is the end of saving interval, time in UTC, all in STP
- cloud condensation nuclei concentration (DMT CCNC-100 and mini- CCNC models) measured at or interpolated to 0.2, 0.5 and 1.0 % SS
- chemical composition of PM₁, derivation of kappa after Petters and Kreidenweis (2007)
- size distribution of PM₁, determination of the critical diameter with kappa-Köhler theory
- auto-correlation, the 12 months period with the least data gaps at each station was chosen, gaps were filled

quality assessment and assurance of ACTRIS CCN data

L	20	07	2008	2009	2010	2011	2012	2013	2014	201
	NMS /	CNC	SMPS	SMR						

SMR: Hyytiälä, Finland, boreal forest

VAV: Vavihill, Sweden (upcoming)

with the previous 12h average

median and interguartiles for SS = 0.2 % are shown

Seasonal & Geographical Variability at SS = 0.2 %

hygroskopicity parameter kappa is based on kappa-Köhler theory (derived from the chemical composition of the particles)

Persistence of CCN concentrations: Winter vs Summer

lighter color = winter

Summary

• Different environmental conditions lead to station specific CCN variability:

- rural and marine locations show flat annual and only weak diurnal cycles
- mountain stations show clear concentration maxima during summer with boundary layer influence and diurnal patterns
- in the Arctic the Haze season has a strong influence
- in the rainforest and in Seoul the wet season leads to markedly lower CCN concentrations
- Kappa values are lowest in forest environments, highest near the ocean, and intermediate for remote continental, free tropospheric and urban conditions.
- The activated fraction of particles at each station generally increases with larger geometric mean diameters, independent of higher or lower kappa values.
- Only at the mountain stations CCN are more persistent in summer.
- Largest differences in seasonal persistence occur at the marine site, the rain forest and remote continental locations.

CCN Team: G. Motos¹, N. Bukowiecki¹, A. Wiedensohler², A. Sonntag², W. Birmili², K.F.A. Frumau⁴ A. Kiendler-Scharr⁶, M. Kilmala⁷, D. Picard⁸, C. O'Dowd⁹, J. Bialek⁹, C. Pöhlker¹⁰, H. Su¹⁰, U.Pöschl¹⁰, M. Andreae¹⁰, P. Artaxo¹¹, H. Barbosa¹¹, J. Ogren¹², G. McFiggans¹³, E. Swietlicki¹⁴, G. Frank¹⁴, K. Bougiatioti¹⁵

Acknowledgements: ACTRIS CCN measurements were performed with the ACTRIS FP7 grant. The first author is funded by the FP7 project BACCHUS (grant agreement no. 603445).

ECN

Westerduinweg 3 1755 LE Petten The Netherlands P.O. Box 1 1755 LG Petten The Netherlands

T +31 88 515 4949 F +31 88 515 8338 info@ ecn.nl www.ecn.nl