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Compared to the implied Voc derived from surface J0 determination in a Sinton lifetime tester, the SunsVoc 
measurement shows a dramatic Voc drop as the junction density increases. The Voc decreases from ~580 mV to ~550 mV as the 
number of junctions per cm increases from 5 to 20. The implied Voc extracted from the J0 determination in the 
photoconductance measurement instead shows an approximately constant value around ~655 mV, which is low because of the 
non-passivated rear side. From these results it is clear that the implied Voc calculated from the Sinton lifetime tester data does 
not take into account the effects of junction recombination, as stated earlier. Therefore, the evaluation of the pn-junction 
recombination in a cell structure featuring an interdigitated diffused area such as the IBC Mercury cell requires, for instance, a 
SunsVoc measurement on a test structure including a variation of pn-junction density as proposed above.   

 

3. PN-Junction recombination evaluation for the IBC Mercury cells 

The same method based on the fabrication of test structures including variation of the pn-junction density was used to 
evaluate pn-junction recombination as a function of boron diffusion recipe. Following our current IBC Mercury process 
including front and rear side passivation, IBC cells and test structures were processed in parallel in two groups, each group 
corresponding to one boron diffusion recipe. In this case, fire-through metal contacts were also applied by screen-printing onto 
the test structure to ensure good contacting during the Voc measurement. Metal fraction per diffused area was kept constant and 
is similar to the metal fraction used for an IBC Mercury cell. As a result, for each boron diffusion recipe, cells and their 
corresponding test structure were fabricated. A schematic of the four sub-cells with different junction density including the 
metallisation grid is shown in figure 6. Each sub-cell has a dimension of 19x38cm. A 6 inch wafer includes four rows of eight 
sub-cells. The eight sub-cells in one row are identical (one junction density). 

 

 
Fig. 6. Schematic of the 4 sub-cells with different junction density (5 to 20 junctions per centimetre). The blue and red areas 

are the boron and phosphorus-doped regions.  The grey areas are the metallisation grid. 

From the SunsVoc measurement, the Voc and pseudo-FF are reported in figure 7 as a function of junction density. Due 
to suboptimal process parameters in other process steps used in this experiment, Voc levels are below the recent best Voc 
reported in the second section of this paper. 

 

 
Fig. 7. Voc and pseudo-FF dependence of IBC test structures as a function of pn-junction density. Data are shown for 2 

boron diffusion recipes. Stars indicate the junction density of the Mercury cells in this publication. 

While the Voc (top chart) and pseudo-FF (bottom chart) trends as a function of the pn-junction density are constant for 
the test structure processed with the boron diffusion recipe 2, the test structure processed with the boron diffusion recipe 1 
shows a significant drop in Voc and pseudo-FF when the junction density increases. The trend can be assumed to be linear in a 
first approximation. By applying a linear fit, the decrease in Voc and pseudo-FF can be estimated respectively at around 0.7mV 
and 0.1%abs loss per unit of junction density. Also, from the Y-intercept, it is possible to extrapolate the theoretical Voc and 
pFF values in the absence of pn-junction. By comparing the Y-intercept of the SunsVoc curve in figure 7 of both boron 
diffusion recipes, a difference of 4 mV in Voc is found. This difference matches with the difference in implied Voc measured in 
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the Sinton QSSPC lifetime tester which excludes J02 and thus the pn-junction recombination. Therefore Voc value at the Y-
intercept of the  

SunsVoc curve in figure 7 is representative for the Voc influenced by ideal recombination, i.e. recombination 
characterized by an ideality factor n=1, and by contact recombination. Following the rational further, it can be inferred that no 
other Jo2 recombination, such as in the emitter / base junction, has a significant contribution to the Voc of the cell. 

Based on these observations, the Voc and pseudo-FF losses measured on the test structures were compared to the Voc 
and pseudo-FF measured on the corresponding IBC mercury cells processed in parallel. Results are summarized in table II for 
both diffusion recipes. In the top part of table II, Voc and pseudo-FF measured on the IBC cells are shown including the Voc 
and pseudo-FF differences relative the cell processed with the boron diffusion recipe 2. In the bottom part of the table II, Voc 
and pseudo-FF losses related to pn-junction recombination measured on the test structures are shown for a junction density 
equal to the junction density used for an IBC Mercury cell (15 junctions/cm). These losses therefore correspond to the 
difference between the value at the Y-intercept (junction density=0) and the value at 15 junction/cm junction density as 
marked on the plots in figure 7 (delta Voc between the 2 red stars).  

The lower Voc at the Y-intercept of the “boron diffusion 1” group compared to the “boron diffusion 2” group is related 
to J01-type recombination and could differ due to differences in, e.g., surface passivation or Auger recombination. This Voc 
difference, reported in table II and marked in the plots of figure 7 (delta Voc between the blue star and the upper red star), also 
contributes to the overall Voc loss measured on the cells of the “boron diffusion 1” group relative to the “boron diffusion 2” 
group.  

 

 Average Voc (mV) Average Pseudo-FF (%) 

IBC Cells 
 (7 cells per diffusion recipe) 

Cell - B diff 1 627 79.2 

Cell - B diff 2 643 80.7 

Total losses at cell level 
of B diff 1 group, relative to B diff 2 group 

16 1.5 

Test structures 
(16 sub-cells per diffusion recipe) 

pn-junction related losses - B diff 1 group 11 1.8 

pn-junction related losses - B diff 2 group 0 0 

Ideal recombination related losses  
of B diff 2 group, relative to B diff 1 group 

4 0.5 

Total losses at test structure level 
of B diff 1 group, relative to B diff 2 group 

15 2.3 

Table II. Voc and pseudo-FF losses measured on IBC cells and on their corresponding test structures. Voc and pseudo-FF 
losses of the “boron diffusion group 1” are calculated at cell level and test structure level relative to the Voc and pseudo-FF of 

the cells and test structures of the “boron diffusion group 2”. 

As shown in table II, the Voc loss of the “boron diffusion 1” group relative to the “boron diffusion 2” group measured 
at cell level is in fair agreement with the total Voc loss calculated on the test structures. However, the pseudo-FF loss measured 
on test structures is slightly higher than the pseudo-FF loss measured on the cells. Also, the absolute pseudo-FF value 
extrapolated from the test structures at the 15 junction/cm mark is higher than the pseudo-FF measured on its corresponding 
IBC Mercury cell. This discrepancy in the pseudo-FF results is for the moment not well-understood and needs further 
investigation. One possible explanation could be related to the non-uniformity of the pn-junction recombination activity across 
the cell, result of the non-uniformity of some process steps. The test structure design includes several sub-cells, with different 
pn-junction densities, on one wafer. Therefore, in contrast to an I/V measurement performed on a cell influenced by the 
complete area of the cell, the SunsVoc measurement performed on the test structures remains rather local.  

Despite this slight divergence of the pseudo-FF, this method allows us to reliably estimate the effect of the pn-
junction recombination activities on the Voc of our IBC Mercury cell. By processing these test structures in parallel to IBC 
cells, which only involves a simple change of pattern, we could compare several boron diffusion recipes and correlate their 
performance differences with the recombination activity present at the pn-junction. Detailed correlation between boron and 
phosphorus doping profile (e.g. doping concentration or junction depth) and pn-junction recombination activity is still to be 
investigated. Thanks to these test structures, any process modification made to our IBC Mercury cell (such as diffusion 
patterning method, diffusion recipes, passivation schemes…) can be monitored and optimised with respect to their impact on 
the pn-junction recombination activity and Voc of the cell. The boron diffusion recipe 2 was selected to manufacture our 
current most efficient IBC Mercury cell presented in the previous section. 
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IV. FURTHER OPTIMISATION OF THE CELL PROCESS 

 
Table V illustrates the potential of three scenarios for increasing cell efficiency. The scenarios are based on 2-D 

Quokka [11] simulations on a cross-section of a single unit cell (indicated by the dashed box in Figure 1). Tables III and IV 
give details on some key input parameters of the simulations. In these scenarios, several BSF and FFE diffusions and different 
metallization techniques are considered. The resistance of the metal grid (fingers and busbars) are calculated separately, and 
included as a lumped series resistance in the 2-D Quokka simulation. We consider for instance standard fire-through (FT) and 
gentler non-fire-through (non-FT) screen printed metallization, and metallization deposited by physical vapor deposition 
(PVD). A FT metallization can penetrate a significant distance (a typical number can be upto ~200 nm) into the diffusion 
during firing, resulting in high recombination, especially on light diffusions.  

The difference between PVD and non-FT metallization is not only in the J0 values (see Table III), but also in the 
shape of the contacts. Both require opening of the dielectric prior to application of the metallization. However, the non-FT 
metallization is assumed to be screen printed, as (narrow) fingers. The PVD metallization is applied nearly full-area, with 
suitable gaps isolating contacts of opposite polarity. 

We considered two geometries: a geometry with BSF and emitter width of 250 and 800 μm respectively (“high 
efficiency”, abbreviated as HE), and one with both BSF and emitter having a width of 1000 μm (“easy manufacturing”, 
abbreviated as EM). The different geometries and scenarios result in different metal coverages, as indicated in Table IV. 

 
 

scenario BSF emitter 
  J0 (non-c ) J0 (c) J0 (non-c) J0 (c) 
  fA/cm2 fA/cm2 fA/cm2 fA/cm2

A 230 1200 57 2000 
B 72 500 57 450 
C 72 500 57 450 

Table III. J0 values applied for contacted (c) and non-
contacted (non-c) diffusions 

 

 BSF contact emitter contact 
scenario HE EM HE EM 

  % % % % 
A 7.6 4.0 4.0 3.3 
B 7.6 4.0 4.0 3.3 
C 2.9 1.5 1.5 1.5 

Table IV. Metal contact fractions values for different 
scenarios and geometries 

For our current cell, which features the BSF and metallization scheme according to scenario A, we achieved the cell 
efficiency of 20.9% on a full 6 inch wafer, as presented in Table I. However, the difference between the parameters of this cell 
and of the simulation of scenario A (as shown in Table V) is in the FF, which should be improved significantly and the reasons 
for its reduction are being investigated. 

For the other two scenarios we employed a lighter BSF, which is more difficult to contact using our standard fire-
through metallization, but should be well contactable using non-FT metallization in scenario B and PVD metallization in 
scenario C. The emitter and BSF contact recombination in both scenario B and C were assumed to decrease from 2000 to 450 
fA/cm2 (emitter) and from 1200 to 500 fA/cm2 (BSF), and will therefore boost the efficiency potential to 22.6% for scenario B 
and to 23.1% for scenario C. The optional use of a lighter FFE in scenario C is expected to give an additional 0.2% absolute 
increase in efficiency to 23.3% (not shown). The sheet resistance of this lighter FFE was 150 Ωcm while the associated J0 was 
set to 30 fA/cm2. The complete set of I/V parameters that resulted from HE scenario A, B and C is listed in Table VI. It can be 
seen that only slightly lower efficiencies are expected for the EM geometry, thanks to the presence of the FFE and the pumping 
effect, which mitigates the electrical shading to a large extent. 

 
 
 
 
 
 

scenario BSF diffusion metal Efficiency [%]
A heavy FT 21.8 
B light non-FT 22.6 
C light PVD 23.1 

Table V. Efficiency potential of mercury IBC cell in 
different scenarios (Rbulk=5 Ωcm, HE geometry) 

scenario HE EM 
 Jsc Voc FF η η 
 mA/cm2 mV % % % 

A 41.2 656 80.8 21.8 21.5 
B 41.3 672 81.6 22.6 22.4 
C 41.4 680 82.3 23.1 22.9 

Table VI. I/V parameters of mercury IBC cell in different 
scenarios (Rbulk=5 Ω.cm) 

V. CONCLUSION 

We developed an industrial process to manufacture IBC Mercury cells featuring a front floating emitter on 6 inch n-type 
mono-crystalline Czochralski (Cz) silicon wafers. In the course of the process optimisation, we investigated a method to 
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determine the recombination losses due to the pn-junctions in Mercury IBC cells and their impact on the performance of these 
cells. Based on the use of dedicated test structures and from a linear approximation of the losses associated with the number of 
pn-junctions, we could consistently quantify the effect of pn-junction recombination on the Voc of the cell. For a specific case 
in which the boron diffusion was varied, we could correlate the recombination activity at the pn-junction with different emitter 
boron diffusion recipes. By using the boron diffusion recipe that result in no noticeable pn-junction recombination and with 
additional optimisation of our industrial process, efficiency of our IBC Mercury cells could be improved by more than 1% 
absolute, leading to cell efficiency close to 21%. The ECN module manufacturing technology based on integrated back-foil 
will soon be used to make the first 60-cells IBC Mercury module. From 2-D Quokka simulation results, we foresee that 23% 
Mercury IBC cells are within reach upon changing the BSF diffusion to a lighter profile, and changing the metallization to less 
recombination-inducing alternatives. 
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