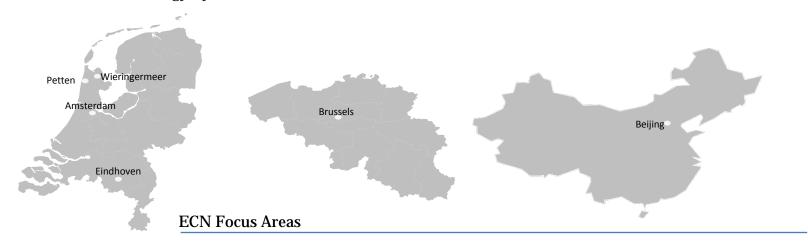


O&M strategies A lifetime optimisation process

7th annual Wind Energy O&M Forum

René van de Pieterman Hamburg, 20-21 January 2015



ECN at a glance

Mission:

...To develop, with and for the market, knowledge and technologies that enable a transition to more sustainable energy systems.

Founded in 1955
5 Commercial licensing deals p/y
600 Employees
+/-20 patents a year
€ 80 M annual turnover

Solar energy

Biomass

Policy studies

Energy efficiency

Wind energy

Environment & energy engineering

Contents

- Introduction Offshore O&M
- O&M strategy Planning Phase
- O&M Optimisation Operational Phase
- O&M Optimisation Case study
- Lifetime extension
- Conclusions

Introduction

Typical O&M concepts

Near shore / smaller farms

- Workboat for transfer of crew and small spare parts
- Optional: helicopters for crew transfer
- Heavy lift vessel for large component replacement

Far-offshore / larger farms

- Fixed base / Mother vessel?
- Reduce travel time
- Increase accessibility

Example of typical near shore maintenance strategy

Examples of compensated access gangways

O&M strategy – Planning Phase

Planning for successful O&M

Wind Farm Developers

- Find the optimal O&M strategy for a given wind farm
- Quantify O&M costs and risks for project financing
- Selection of vessels and equipment
- Verify O&M quotations from OEM's and discuss starting points

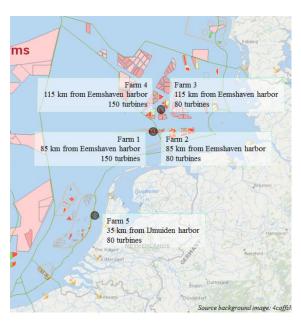
Turbine Manufacturers

- Improve design from reliability and maintainability of design
- Prepare O&M strategy and quotations for clients

Vessel and access system developers

- Quantify the effect of design assumptions
- Establish business case for new innovative solutions


Example



O&M Optimisation — Operational Phase

The most important phase!

Predictive maintenance

- Avoid long unexpected downtimes
- Reduce costs by planning ahead and clustering

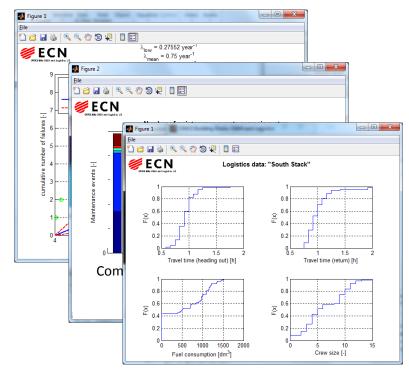
Make well-founded decisions

- Identify options for increasing production and reducing costs
- New O&M contracts, vessels and equipment
- Solid background for O&M budget
- Assist in planning predictive maintenance

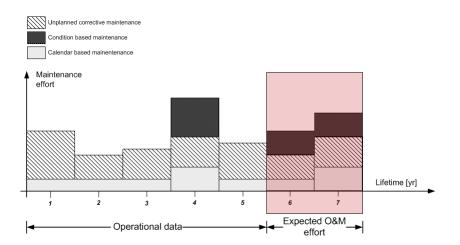
Value of operational data: Example

- Inventory of O&M data for 3 month period of RWE's Rhyl Flats wind farm:
 - List of SCADA parameters
 - Alarm list
 - Meteo and wave data
 - Monthly downtime summary reports
 - Daily work reports
 - Turbine breakdown
 - Daily vessel reports

Observations


- Many different data sources stored independently and in different formats
- ECN used supplied O&M data to manually structure and fill Event List format
- Sufficient (92%) data available for data analysis

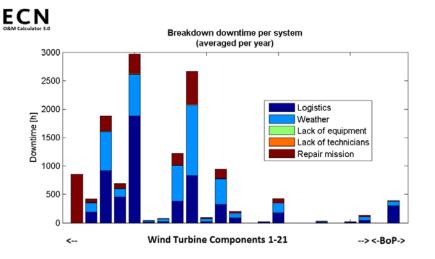
Value of operational data: Key performance information


- Apply dedicated data analysis tools to obtain actual O&M performance:
 - Trends in failure behaviour
 - Insight in repairs
 - Details on spare part usage
 - Operation of vessels and equipment
- Implement and evaluate improvement plans:
 - Is component reliability improving after solving teething issues?
 - Is the same repair performed quicker as more experience is gained?
 - Is my vessel and crew operating up to its designed limits?


Value of operational data: O&M cost modelling

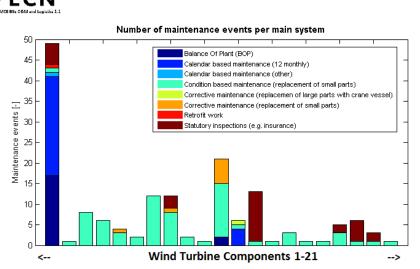
- Reliable prediction O&M effort using O&M Calculator tool:
 - Based on accurate input derived from operational experience

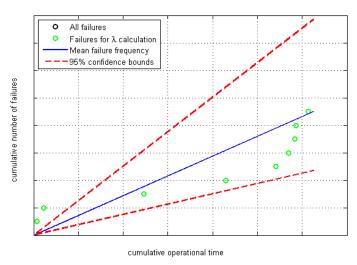
- Well-founded decision making:
 - Identify options for increasing production and reducing costs
 - New O&M contracts, vessels and equipment
 - Solid background for O&M budget
 - Assist in planning predictive maintenance


O&M Optimisation — Case study

Case study Rhyl Flats wind farm

- Step 1: Reference calculation O&M costs
 - Based on historical data and assumptions


Summary of downtime & costs						
Project	Rhyl Flats baseline		Key simulation results (average)			
Installed wind farm capacity	90,0	MW	Availability [time/yield]	94 / 93.2%		
Number of wind turbines in farm	25		Costs [¢€/kWh]	4,52		
Simulation	sim		Repair costs [M€/yr]	12,51		
Simulation period	1	yr	Rev. losses [M€/yr]	2,63		
Start-up period	1	yr	Total effort [M€/yr]	15,14		
Number of simulations	1000					



Case study

- Step 2: Analysis operational data
 - 3 months of operational data
 - Derived estimated failure rates of components

Case study

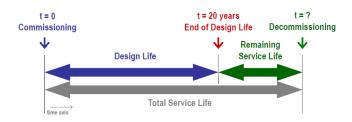
- Step 3: Update calculation O&M costs
 - Based on updated input data (e.g. failure rates)

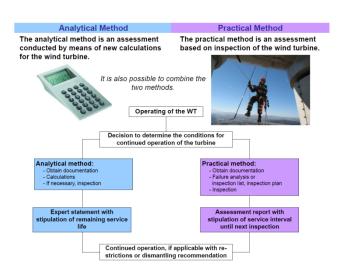
Summary of downtime & costs						
Project	Rhyl Flats updated		Key simulation results (average)			
Installed wind farm capacity	90,0	MW	Availability [time/yield]	96.2 / 95.8%		
Number of wind turbines in farm	25		Costs [¢€/kWh]	3,35		
Simulation	sim		Repair costs [M€/yr]	9,52		
Simulation period	1	yr	Rev. losses [M€/yr]	1,64		
Start-up period	1	yr	Total effort [M€/yr]	11,16		
Number of simulations	1000					

- Step 4: Implement O&M strategy improvements
 - Reduce number of available access vessels & technicians
 - Only perform preventive maintenance when wind speeds are below 4 m/s

Summary of downtime & costs							
Project	Rhyl Flats optimised		Key simulation results (average)				
Installed wind farm capacity	90,0	MW	Availability [time/yield]	96.2 / 96%			
Number of wind turbines in farm	25		Costs [¢€/kWh]	3,00			
Simulation	sim		Repair costs [M€/yr]	8,53			
Simulation period	1	yr	Rev. losses [M€/yr]	1,57			
Start-up period	1	yr	Total effort [M€/yr]	10,10			
Number of simulations	1000						

10% costs reduction 4% revenue increase




Lifetime extension

Lifetime extension

- Offshore wind farms are designed for a 20 year lifetime
- Load case calculations play an important role in the design
- Sizeable safety factors are considered for structural components
- How long can we continue?

Approaching design lifetime...

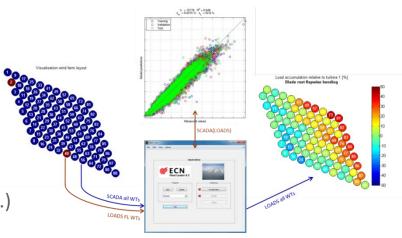
Keep track of O&M performance

- Consider service history
- Evaluate trends in failure behaviour
- Decide on remaining economic lifetime

Evaluate wind farm load history

- Relative comparison between turbines
- Comparison actual loads with design loads (when available)
- Can be done based on a short-term measurement campaign!

Wind Farm Load History


What measurements are required for a successful assessment?

Mechanical load measurements

- Blades and support structure
- Campaign with one year minimum duration
- On at least one turbine; preferably two

SCADA data

- Standard signals (e.g. power, speed, pitch, etc.)
- 10-min statistics sufficient; 1 Hz even better
- For the complete wind farm lifetime!
- From all turbines!

Conclusions

Summary

- O&M optimisation is important during every phase of the lifetime
- Initial strategy set-up at planning phase using cost modelling tools
- Data analysis and cost modelling should be performed during the operational phase and will lead to reduce costs
- Operational history supported by load measurements and inspections will be required to evaluate remaining economic lifetime

