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ABSTRACT: A BIPV research facility ‘SolarBEAT’ has been initiated in the Netherlands by the Solar Energy 
Application Centre (SEAC). This facility enables and supports research and development of new products in the field of 
BIPV, solar thermal and PVT. Projects are carried out by consortia in which research institutes and companies work 
together. The SolarBEAT facility is a cooperation between SEAC, the branch organization Holland Solar and the TU 
Eindhoven and is located on a large south oriented roof with a clean horizon. The roof is equipped with a variety of high 
quality sensors and measurement equipment in order to enable research projects on BIPV and PVT in a realistic outdoor 
setting. IR-thermography and outdoor Electroluminescence (EL) are developed for thermal research and reliability and 
durability monitoring over longer periods. We define three new effective ways of analyzing results, which can and will be 
applied to all BIPV-prototypes. They are an irradiance stamp plot (figure 6), thermal stamp plot (figure 9) and integrated-
NOCT plot (figure 10). The performance of the first project in SolarBEAT can be understood quite well by comparing it 
to the thermal model that we have developed for BIPV-products. The quantitative heating up of the various panels as a 
function of air gap width, position in the setup, and weather conditions can be understood. 

 
 
1 INTRODUCTION 
 

Photovoltaic plays an important role in the National 
Renewable Energy Action Plans of many European 
countries. An important reason for this is that PV is one 
of the few suitable technologies for decentralized 
renewable energy production in an urban environment. 
Between 2007 and 2013 the price of standard PV 
modules declined by 75%. This enables the use of low 
cost PV laminates as a starting point for a largely 
diversified BIPV market. Added value of BIPV is 
realized by improved aesthetics and by multi-functional 
application of BIPV in the building skin. Increased 
attention for BIPV in the Netherlands has also lead to a 
dedicated norm NEN 7250 ‘Solar energy systems - 
Integration in roofs and facades - Building aspects’ [1], 
which is probably going to serve as a basis for a 
European version. 

 
To our opinion, the main research topics on BIPV(T) 

can be summarized as: 
 Performance of BIPV, to be understood in a 

performance (yield) model that incorporates all 
relevant environmental parameters and boundary 
conditions,  like irradiation, orientation, ambient 
temperature, partial shading situation, etc. 

 Design of the various BIPV products, like design of 
back ventilation to prevent excessive heat-up. And 
the BIPV functionality as a building material in a  
cost-effective way. 

 Use of alternative materials in BIPV with building 
code compliant materials, and non-glass materials. 

 BIPV system design, including repair and 
maintenance aspects, ‘plug-and-play’ design, and 
prevention of power loss from shading and 
pollution. 

 Architectural aspects of BIPV, like aesthetics, and 
full flexibility in color, shape and size. 

 
To address al these topics, the SolarBEAT facility 

has been initiated early 2014. It is an outdoor Research & 
Development infrastructure for new BIPV- and PVT-
products. This facility is a cooperation between SEAC, 

Holland Solar and the TU Eindhoven. Project partners 
that are using SolarBEAT come from institutes, small & 
medium enterprises (SME) and multinationals. Most of 
them work in the field of solar energy or building 
physics. Especially fruitful are project consortiums which 
are a balanced mixture with partners from both fields. 
Other stakeholders of SolarBEAT are real estate 
developers and architects, that can benefit from the 
demonstrated prototypes, and adapt them into their own 
plans. In this paper we present the SolarBEAT 
infrastructure to the solar community,  and discuss some 
of the major topics of research which are mentioned 
above. 

 
2 SOLARBEAT INFRASTRUCTURE 

 
2.1 Dummy houses/attics 

SolarBEAT is located on a large south oriented roof 
with a clean horizon. The roof is equipped with a variety 
of high quality sensors and measurement equipment in 
order to investigate all key topics of BIPV(T) research in 
a realistic outdoor setting.  

 

 
Figure 1: A dummy house with a typical Dutch attic. 
Three rows are used for experiments with a new BIPV-
product that is combining thermal insulation and CdTe 
PV-panels. The insets shows the air gap depth, which is 
varied between 4 and 8 cm to investigate thermal effects. 
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The SolarBEAT facility can accommodate six 
independent projects which each have their own attic to 
carry out experiments. The attics have a dimension of 6m 
x 5m floor print, and a tilt angle of 35⁰. See figure 1 for 
an example. Mutual shading is limited to a minimum. 
Each project has a clean horizon for 99% of the time, as 
has been measured with the Solmetric SunEye fish-eye 
camera and corresponding software. Every project has a 
first class pyranometer in the Plane Of Array (POA). 

 

 
Figure 2: Solar Measurement and Weather Station at 
SolarBEAT. The green building in the background is in 
the North. 

 
2.2 Solar Measurement and Meteorological Station 

We measure the irradiance  by one central installed 
Solar Measurement Station (SMS), see figure 2. This 
SMS is equipped with a first class pyrheliometer for the 
Direct Normal Irradiance (DNI), a secondary standard 
pyranometer with shading ball for the Diffuse Horizontal 
Irradiance (DHI), and an unshaded secondary standard 
pyranometer for the Global Horizontal Irradiance (GHI). 
The pyrheliometer and shading ball are mounted on a 
tracker which is following the sun through the sky by a 
combination of internal calculations and adjustment by 
measurement. The azimuth and solar zenith are used 
directly to calculate the extraterrestrial global horizontal 
irradiance G0.  

The SMS is completed with a meteorological weather 
station, which is measuring per minute: ambient 
temperature, averaged wind speed, gust wind speed, wind 
direction, dew point, pressure, relative humidity, and 
precipitation (both rain and snow). These parameters are 
used to study the influence of weather on the 
performance. 
 
2.3 Sensors and data analysis 
For BIPV-product development, it is necessary to 
measure the building related physics accurately. The air 
velocity in the ventilation shaft (air gap) behind the PV-

panel is measured by hot-wire anemometers. The relative 
humidity is measured with a capacitive sensor. 
Temperatures are measured by various methods. A Pt100 
thermal resistance is used whenever space allows. In case 
of limited space (for very small shafts), thermocouples of 
type T are used. All sensors related to the thermal 
behavior are monitored per minute. Building parameters 
are also sampled once per minute, unless for specific 
cases faster sampling would be needed, e.g. in case of 
wind gust speed fluctuations. For shading research on the 
electrical efficiency of inverters or Module Level Power 
Electronics (MLPE) in general, the default sampling time 
is once per second. At the moment, we monitor in total 
754 sensors producing 13.1 million data points per day. 
To manage this amount of data, we have designed a 
dedicated dataflow procedure. Every data logger is 
uploading the results of the previous day at midnight. 
Dedicated software is processing this data in a structured 
way into an SQL-database. During the day, project 
members can view all data of their own project by a GUI, 
or by requesting Excel or CSV-files from their own 
preferred sensors from specific time periods and 
intervals. Moreover, complex data analysis can be done 
by a comprehensive mixture of Python-coding and SQL-
querying. 
Finally, it should be noted that all measurements and 
reporting are complying with IEC61724 [2]. For specific 
BIPV-parameters that are not covered by this norm (like 
e.g. air speed measurements in ventilation shaft) we make 
use of the most relevant building norm. Table I gives an 
overview of the most important equipment including 
accuracy. 
 
Table I: Sensors and measurement equipment. 
equipment brand type accuracy 
Sun tracker EKO Str-22G  
Pyranometer (for GHI) EKO MS-802 sec.standard 
Shading ball (for DHI) EKO MB-12  
Pyrheliometer (for DNI) EKO MS-56 first class 
Pyranometer (for GPOA) EKO MS-402 first class 
Hot-wire anemometer DeltaOhm HD2903T 0.06m/s 
Pressure sensor DeltaOhm HD404T 1 Pa 
RH sensor DeltaOhm HD4817ET 2% 
Temperature sensor DeltaOhm HD4817ET 0.3⁰C 
Thermocouples Roessel TypeT 1.0⁰C 
Weather station Lufft WS600  

 
2.4 Outdoor IR-thermography 

Building integration is crucial for the overall 
performance of the BIPV-product, and therefore one 
should perform this analysis outdoor and built-in the roof. 
Using IR-thermography on the first prototype already 
provided useful results, both on the overall heat 
production, as well as on various detailed zoomed areas. 
Shown in figure 3 is the lower part of a prototype that has 
two distinctive heated areas, which are caused by the 
micro-inverters at the back of the panel. The outcome of 
the thermal model of the complete building element, will 
make clear if this extra amount of heating by the micro-
inverters is acceptable or not. 
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