

# Commercialization of the ECN MILENA gasification technology

G. RietveldA. van der DriftA.J. GrootjesC.M. van der MeijdenB.J. Vreugdenhil

June 2014 ECN-M--14-061



# Commercialization of the ECN MILENA gasification technology

Bert Rietveld, Bram van der Drift, Sander Grootjes,

Christiaan van der Meijden, Berend Vreugdenhil

www.ecn.nl



#### Content

- 1. MILENA technology explanation
- 2. MILENA development at ECN
- 3. OLGA tar removal
- 4. Cooperation and commercial projects with Dahlman
- 5. Conclusions and Outlook



## What is MILENA?



## **MILENA Indirect Gasification**

- Fluidized bed gasification
- Temperature level 650 -950°C
- Producer gas contains methane, ethylene, benzene, and tars
- Complete conversion of the fuel
- No carbon in the ash
- High efficiency
- Very little nitrogen in producer gas
- Heat transfer through bed material
- One single vessel: compact design



(steam, CO<sub>2</sub>, air, ...)





|                                     | MILENA                                                       | CFB/BFB                                       | Downdraft                                     |
|-------------------------------------|--------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| Conversion                          | 100% / white ash                                             | ~90% / black ash                              | ~90% / black ash                              |
| Cold Gas Efficiency                 | ~80%                                                         | ~70%                                          | ~70%                                          |
| Temperature<br>control              | Good control, no char accumulation                           | Lower controlability<br>due to char hold-up   | Very heterogeneous                            |
| Temperature<br>versus<br>Efficiency | lower temperature<br>=<br>higher efficiency                  | lower temperature<br>=<br>lower conversion    | lower temperature<br>=<br>lower conversion    |
| Fuel flexibility                    | waste, agricultural<br>residues<br>any size                  | less freedom<br>any size                      | woody<br>only large chunks                    |
| Producer gas                        | 12-15 MJ/Nm <sup>3</sup><br>essentially N <sub>2</sub> -free | 5-6 MJ/Nm <sup>3</sup><br>~50% N <sub>2</sub> | 5-6 MJ/Nm <sup>3</sup><br>~50% N <sub>2</sub> |
| Scale                               | Scalable (>100 MW)                                           | Scalable (>100 MW)                            | Max. 1 MW                                     |



## Markets for MILENA based gasification

#### • Co-firing in coal boilers or gas turbines

- Clean gas feeding to boiler or turbine
- With Milena lower grade biomass or waste can be used, rather than the clean wood pellets needed for direct co-firing in boilers

#### Combined heat and power

- On-site conversion of waste to energy
- In combination with gas engine or small gas turbine
- Milena produces high calorific gas, not diluted with nitrogen
- Substitute Natural Gas production
  - High methane content of producer gas makes Milena very suitable for SNG production
- Production of fuels or chemicals



## MILENA development



## MILENA development history

- 1998 First MILENA concept, based on CFB gasification experience
- 2000 Cold Flow testing / pre design commercial scale unit
- 2000 First patent application
- 2003 Engineering 30 kWth lab-scale unit
- 2004 Start test program at lab-scale
- 2007 Engineering / financing pilot
- 2008 Commissioning of 800 kWth pilot plant
- 2009 Coupling to OLGA gas cleaning
- 2010 First duration tests on demolition wood
- 2010 Basic Engineering with Dahlman of demo plant
- 2012 Second duration tests pilot plant





## 0.8 MW MILENA pilot plant

- In operation since 2008
- Fuels tested
  - Clean Wood
  - Demolition Wood
  - Waste RDF/SRF
- Runs in campaigns
- Construction similar to commercial scale (refractory lining). Same materials.
- Connected to OLGA tar removal system
- Several duration tests done on wood and demolition wood.





#### Results recent 500 hour test of 800 kW Milena + OLGA tar removal system





Repair dosing system

- Availability Milena 96%
- "Downstream downtime": in OLGA tar removal system



## OLGA Tar Removal



#### Tar removal

- All fluidized bed gasification processes produce tar.
- MILENA gasifier has been developed for high efficiency. The disadvantage of this approach is a high tar content of the gas.
- Tars condense during cooling (< 450°C) and cause problems.
- ECN has been working on tar removal for a long time, which resulted in the OLGA tar removal technology.
- Tars are removed by the OLGA system and recycled to the MILENA combustor. No tar waste!



## OLGA development history

- 2001 Patent filed in 2001
- 2003 Pilot plant constructed and operated in cooperation with Dahlman.
- 2006 Duration test of OLGA gas cleaning connected to CFB gasifier
- 2006 Commercial scale OLGA in France
- 2009 OLGA pilot coupled to MILENA pilot gasifier
- 2010 OLGA for CFB chicken manure gasifier in Portugal
- 2014 Construction of OLGA coupled to MILENA in India









## **OLGA Gas Cleaning**



All tars recycled back to gasifier, i.e. no energy loss, no waste streams



## MILENA and OLGA

## **Collaboration with Royal Dahlman**



## ECN – Dahlman cooperation

- Royal Dahlman is a Netherlands company with approx. 100 staff.
- Longstanding experience in filter technology.
- Cooperation started in 2001.
- License agreement OLGA in 2006 and MILENA in 2013.
- Several joint R&D projects, focused on testing fuels, scale up, and cost reduction.
- ECN supports engineering and commissioning of commercial plants.



**OLGA 2006** 



**MILENA 2013** 



## Present MILENA + OLGA projects

- 1 MW<sub>e</sub> MILENA OLGA GAS engine demonstration project under construction. Thermax + Dahlman
- 4 MW<sub>th</sub> MILENA Bio-Methane project in Alkmaar. 22 M€ SDE<sup>+</sup> subsidy granted recently. Final investment decision expected within months.
- 7 MW<sub>e</sub> IGCC demonstration using RDF in the UK; FID in 2-4 months.
- Many other projects under discussion with potential clients.



India, soy residue



NL Bio-Methane demo



UK Waste to Power demo



## Conclusions / Outlook

- Time from idea to market implementation can be long. In case of MILENA development over 10 years.
- Duration tests at pilot scale were very important in convincing potential clients that technology is ready for next step.
- A lot of interest in technology, many potential clients for commercial systems, but demo installation is essential.
- ECN & Dahlman continue to improve the technology (reduce cost)
- Focus on development of methanation technology for MILENA gas
- BTX co-production under development
- Modified MILENA for low rank coal to SNG tested at lab-scale, further development at pilot scale.



# Thank you for your attention

#### Visit us at booth B11

For more information: www.milenatechnology.com

Contact: Bert Rietveld +31 224 564582, +31 653 292 766 g.rietveld@ecn.nl



#### ECN

Westerduinweg 3 1755 LE Petten The Netherlands P.O. Box 1 1755 LG Petten The Netherlands

T +31 88 515 4949 F +31 88 515 8338 info@ ecn.nl www.ecn.nl