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ABSTRACT: We present a new approach to improve the efficiency of n-type solar cells by tuning the boron emitter 
doping profile and optimizing the surface passivation. The boron emitter profile is tuned using a new method of just 
etching the surface by 10-30 nm. The etching was carried out after diffusion and glass removal. This resulted in a 
boron emitter without boron depletion at the surface, a higher VOC by 6 mV and a higher efficiency by 0.2% absolute. 
To improve the surface passivation, we found that a very high implied VOC of 680±2 mV can be obtained with an 
improved pre-cleaning followed by a wet chemical surface oxidation and ALD Al2O3 capped with PECVD-SiNx.  
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1 INTRODUCTION 
 

ECN works with partners on the improvement of the 
efficiency of bifacial n-Pasha solar cells and modules 
using cost effective and industrial processing. In recent 
years, improvements of Back Surface Field (BSF) and 
metallization resulted in a highest efficiency of 20.4%, 
and average efficiencies of 20.2% [1]. In the present 
work, the focus shifts to the emitter and its passivation. 
The purpose of the work presented in this paper is to 
show cost effective and industrial solutions for the tuning 
of boron emitters, surface preparation and passivation. 

A previously published loss analysis identified the 
boron emitter and its passivation as one of the current 
limiting factors for high efficient n-type front junction 
solar cells [2]. In that study it was found that the surface 
recombination rate accounts for about 50% of the total 
recombination rate associated with the passivated emitter, 
the balance being Auger recombination. Whereas the 
Auger recombination rate is related to high doping 
concentrations and therefore has a trade-off in the form of 
a low sheet resistance and an ensuing better fill factor, the 
surface recombination merely reduces both VOC and JSC. 
Minimization of surface recombination is therefore a pre-
requisite for a high cell efficiency.  

The surface recombination rate is determined by the 
defect density at the surface (Dit) and the concentration of 
minority charge carriers at the surface, and therefore a 
reduction of either, or both, will lead to improved cell 
efficiency. This has been the rationale behind all 
commonly used passivation schemes that rely on 
chemical passivation to reduce the Dit, or on  heavy 
doping or on built-in surface charges of the passivation 
layer to reduce the minority carrier concentration [3]. In 
this study we also considered etching of the boron 
depletion layer as a means to reduce the minority surface 
concentration. Such an etching is not expected to result in 
a large increase of the sheet resistance.  

Experimentally the Dit and the minority carrier 
concentration are not well accessible. To further explain 
and distinguish the role of the Dit and the minority carrier  
surface concentration, the experimental work was 
complemented by numerical simulations.  
 
 
 
 

2 EXPERIMENTAL 
 
2.1 Etched boron profiles 

Boron profiles using the standard ECN BBr3 
diffusion process were applied on textured n-type Cz 
wafers. This typically results in emitters with a 60 
ohm/sq sheet resistance. A wet-chemical etch was then 
applied to remove 10-30 nm of this emitter. The emitter 
was further passivated by application of our patented 
technology of chemical oxidation [4] and PECVD 
application of a 70 nm thick SiNx layer. Symmetrical test 
structures featuring identical emitters at both sides of the 
wafer as well as complete n-Pasha cells [1] containing 
this emitter were made. The resulting boron profiles were 
measured by Electrochemical Capacitance-Voltage 
(ECV), as described previously [5]. Quasi-Steady-State 
Photo Conductance (QSS-PC) was used to measure the 
implied VOC of the test structures. Finally of complete n-
Pasha cells including the modified emitter were made and 
the IV characteristics measured.  

 
2.2 Modified surface passivation 

Standard, unetched BBr3 diffusion profiles were made 
on one side of a textured n-type Cz wafer. Modifications of 
the subsequent steps were considered:  
 changing the chemical pre-treatment (originally a 

diluted HF dip) 
 application of an ALD Al2O3 layer using a Levitrack 

tool developed by Levitech [6]. This layer has a 
thickness of about 2 nm. 
 
The passivation was completed by applying a 

PECVD SiNx capping layer. In these experiments no 
symmetrical test samples were made but implied VOC 
measurements were done on structures that included the 
BSF but did not have any metallization. After 
metallization the IV characteristics of the cells were 
measured.  
 
 
3 NUMERICAL SIMULATIONS 
 

The semi-conductor device modelling package Atlas 
from Silvaco was used [7] to calculate J0E, the 
recombination current prefactor or dark saturation current 
density of the emitter. The procedure was  as described in 
a previous paper [2]. It is of importance to notice that 1) 
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be mostly due an improved chemical passivation, caused 
by the presence of an Al2O3 layer between the SiO2 and 
SiNx layers.  

 
4.3 Implementation at cell level 

The current n-Pasha baseline process typically has an 
average efficiency of >20% and relies on the emitter 
profile 1 and passivation schemes as in the reference 
groups in this experiment. Compared to the reference 
groups the present n-Pasha baseline process includes some 
rear side improvements. Cell runs on high quality Cz 
material resulted in 20.4% top efficiencies, as shown in 
Table III.  

 
Table III: IV results for standard n-Pasha ‘baseline’ solar 
cells (in-house measurements, spectral mismatch 
corrected) 

  Jsc 
(mA/cm2) 

Voc (V) FF 
(-) 

eta (%) 

Avg(12cells) 38.9 0.651 0.797 20.2 

top 39.2 0.654 0.800 20.4 

 
The improved oxidation pre-treatment and the 

etching of the boron depletion layer have been 
implemented on n-MWT cells by ECN. The recent 
excellent results (up to 20.8% efficiency measured in-
house, including spectral mismatch correction) obtained 
for  the n-MWT cells can be partly attributed to these 
modifications [13].  

It must be noted that the efficiency gains related to 
modified profiles and improved passivation are not always 
additive. In the case of a very low SRV value, resulting in 
an J0E  limited by Auger recombination, reduction of the 
boron depletion layer will not lead to further improvement. 
 
 
4 CONCLUSIONS 
 

Important steps were made to improve the front side 
passivation of the n-Pasha cell. The high surface 
recombination can be minimized by either reducing the 
minority carrier concentration or by reducing the Dit. In 
all cases the sheet resistance is not affected. One viable 
option is to remove the boron depletion layer that 
normally exists in the  first 10-30 nm of the profile. The 
J0E of the standard 60 ohm/sq emitter improved from 100 
fA/cm2 to 70/55 fA/cm2 by removing the boron depleted 
region. The J0E reduction resulted in a VOC gain of 6 mV 
and efficiency gain of 0.2% absolute on cell level. 

The most important progress in optimizing the 
passivation stack is that by improving the pre-cleaning, 
preceding the wet-chemical oxidation step, and by 
introducing ALD Al2O3 capped with PECVD-SiNx the 
implied VOC can be improved by almost 20 mV to 680 
mV, realizing a reduction in SRV from >104 cm/s to 
<1000 cm/s. Combining the improved emitter profile and 
the improved surface passivation values of J0E close to 
the Auger limit of 40 – 50 fA/cm2 are within reach for 60 
ohm/sq emitters without compromising on the sheet 
resistance or the contact resistance.  

Implementation of these modifications will result in a 
large step towards efficiencies of 21% with n-Pasha cells. 
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