

Measurement of organic sulphur and nitrogen compounds in biomass producer gas by SPA sampling

L.P.L.M. Rabou
B.F. van Egmond
B.J. Vreugdenhil
A. van der Drift
July 2014
ECN-M-14-038

# Measurement of organic sulphur and nitrogen compounds in biomass producer gas by SPA sampling



www.ecn.nl
P.O. Box 1
1755 ZG Petten
The Netherlands

L.P.L.M. Rabou \*
B.F. van Egmond, B.J. Vreugdenhil
A. van der Drift

\* Corresponding author, rabou@ecn.nl

Solid phase adsorption (SPA), commonly used for tar measurements, can also be used for similar compounds containing sulphur or nitrogen.

Sub-ppm levels can be detected, a level required for protection of catalysts.

# **Sampling Method**

- Small volume of gas (e.g. 100 ml) is drawn slowly through SPA material (LC-NH2).
- Gas and SPA material are allowed to cool to room temperature (or lower), which reduces gas moisture content to a few percent.
- Temperature and pressure are recorded for correction to standard conditions (0°C, 1 bar).



Automated SPA sampling system

SPA material + protective cap

### Sample treatment

- Samples are stored in freezer until extraction for analysis.
- Small amount of reference standard is added to SPA material.
- SPA material + container + needle are flushed with small volume of DCM to extract tar, including heavy organic S and N compounds.
- Quantitative analysis by GC-FID for tar, GC-MS for organic S and N compounds. (Identification organic S by GC-PFPD).

## Recovery test of organic S compounds

- Small volumes of a solution with organic S compounds were applied to standard SPA material (LC-NH2).
- SPA samples were left to dry at room temperature for 1 hour.
- Samples were extracted and analysed (see Sample treatment).
- Recovery ~100% for DBT and heavier compounds, 90% for BT, lower for more volatile compounds

| Compound               | Test amount 0.13 μg | Test amount 13 μg |  |
|------------------------|---------------------|-------------------|--|
| Thiophene              | 82%                 | 73%               |  |
| 2-Methyl thiophene     | 81%                 | 78%               |  |
| 3-Methyl thiophene     | 84%                 | 78%               |  |
| Benzothiophene (BT)    | 91%                 | 87%               |  |
| Dibenzothiophene (DBT) | 108%                | 99%               |  |
| 4-Methyl DBT           | 113%                | 97%               |  |
| 46-Dimethyl DBT        | 110%                | 97%               |  |

# SPA capture of tar, organic S and N from hot gas

- Two SPA columns in tandem to investigate whether capture is complete in first one (i.e. in normal conditions).
- Tandem samples (6 pairs) extracted and analysed separately.
- Volatile tar and S compounds lower in 1<sup>st</sup> than in 2<sup>nd</sup> SPA => standard SPA not reliable at all, tandem SPA to be doubted.
- Standard SPA >95% reliable for naphthalene, BT and heavier compounds, and for polar compounds such as phenol and pyridine.

| Compound     | 1 <sup>st</sup> SPA | Compound                                         | 1 <sup>st</sup> SPA | Compound         | 1 <sup>st</sup> SPA |  |
|--------------|---------------------|--------------------------------------------------|---------------------|------------------|---------------------|--|
| Benzene      | <15%                | Thiophene                                        | <15%                | Pyridine         | 95%                 |  |
| Toluene      | <15%                | 2-Methyl thiophene                               | <35%                | 2-Methylpyridine | >95%                |  |
| Ethylbenzene | <15%                | 3-Methyl thiophene                               | <35%                | 3-Methylpyridine | >95%                |  |
| Xylene       | <25%                | Benzothiophene                                   | 100%                | 4-Methylpyridine | >95%                |  |
| Styrene      | <25%                | Dibenzothiophene                                 | >95%                | Quinoline        | 100%                |  |
| Phenol       | 100%                |                                                  |                     | Isoquinoline     | 100%                |  |
| Indene       | ~70%                | Accuracy for Methylthiophene, Methylpyridine and |                     |                  |                     |  |
| Naphtalene   | 100%                | Dibenzothiophene limited by low concentrations   |                     |                  |                     |  |

# Possible improvement: LC-NH2/active carbon

- Captures 50-100% benzene and ~100% toluene
- Significantly higher background peaks, especially near toluene
- Captures ~25% thiophene

### Conclusion

- Benzothiophene and heavier organic S compounds are captured, thiophene and methylthiophenes do not bind well.
- GC-MS SIM analysis can detect organic S compounds to about 10 ppb.
- Pyridine and heavier organic N compounds are captured.
- More polar nature of N compounds leads to higher detection level.

### Acknowledgement

This research is co-funded by





Investing in your future. The research program EDGaR acknowledges the contribution of the funding agencies: The Northern Netherlands Provinces (SNN). This project is co-financed by the European Union, European Fund for Regional Development and the Ministry of Economic Affairs. Also the Province of Groningen is co-financing the project.

