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Abstract: The back junction back contact cell, and more specifically the interdigitated back contact (IBC) 

cell is among the most appropriate cell designs to achieve highly efficient solar cells. An important aspect 

to improve manufacturability (e.g. reduce cost) of the cell and module is to increase the rear side back 

surface field (BSF) region width, as this currently constitutes the smallest feature size in the diffusion 

pattern of the IBC cell. We propose a novel design of an IBC cell that enhances the effective lateral 

transport of minority carriers (holes), therefore allowing wide BSF regions. The novel design feature is to 

implement an appropriate conductive and well passivated p++-doped layer, referred to as a front floating 

emitter (FFE), on the front surface of the IBC cell. 

The design allows developing a cell process based upon ECN’s proven industrial front- and rear contact 

on n-type wafers (n-pasha) process. By combining with ECN’s back-contact module technology based on 

an integrated conductive back-foil, as is used for interconnection of MWT cells, this offers a route to an 

industrially feasible IBC cell and module. 

Keywords: Interdigitated Back Contact, IBC, silicon, solar cell, Front Floating Emitter 

1 Introduction 

IBC cells are an ideal candidate for high-efficiency solar cells mainly because all 
metallization can be placed on the rear side of the cell which reduces shading losses. The 
industrial manufacturability of these cells has been demonstrated by Sunpower for many years. 
Recently, the company reported on the industrial production of 5 inch IBC cells with median 
efficiencies as high as 24.1% [1]. Recent achievements by others are worth mentioning. A 
consortium of ANU and Trina have reported on a 2x2 cm2 IBC cell with a top efficiency of 
24.6%, featuring local back surface field (BSF) diffusions at the contacts and an undiffused front 
side that is passivated by a dielectric stack [2]. IMEC obtained on 2x2 cm2 23.1% [3]. A process 
based on implanted surface diffusions is reported by Bosch Solar achieving 22.1% on 239 cm2 
cells [4]. Also, Samsung together with Varian reported on IBC cells prepared by implantation on 
155 cm2 with 22.4% efficiency [5]. The high performance of these cells is partially obtained 
because of contact technologies such as PVD in combination with electroplating. These contacts 
exhibit much lower contact recombination losses than the conventional screen-print technology 
based on fire-through silver pastes. However, ISC Konstanz has reported on 6 inch IBC cells 
with screen-printed contacts with up to 21.3% efficiency, illustrating the potential of that 
low-cost approach [6]. Also Hareon presented on screen printed IBC solar cell and achieved 19.6% 
in 6 inch Cz [7].  
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Figure 2: Simulated (Atlas) performance comparison (Rbulk=8 Ωcm, τbulk=2.5ms, 
Rsht,FFE=65Ω/□, Rsht,FSF=140Ω/□) of the n-IBC cell with FSF or FFE on n-type wafer at Jsc 
condition. a & d) Illustration of the hole carrier density of an extremely wide BSF of 1200 µm 
(full width). Images b, c, e, f are vector plots illustrating the size and direction of the holes 
current for an FSF cell (b, c) and FFE cell (e, f). Images c and f are zoomed in at the surface 
diffusion of FSF and FFE respectively. The y-axis measures the distance from the top surface 
into the wafer in microns and the x-axis measures the distance from the centre of the BSF (blue 
bar) to the centre of the emitter (red bar). The red arrows in the vector plots indicate high current 
densities. 

 
In this study we propose and report on a novel design variation of the traditional IBC cell, 

meant to enhance lateral transport properties for minority carriers. Owing to the enhanced 
transport distance, it simply allows the BSF width to be as wide as the emitter width without 
significant loss in cell efficiency. This enhancement is brought about by implementing a 
p++-doped layer on the front of the n-type IBC cell, also referred to as front floating emitter 
(FFE), which induces a pumping effect on the holes from the BSF to the rear emitter as 
illustrated in Figure 1c and which is discussed in more detail in section 2. Although front floating 
emitters have been investigated in the past [9-17], the novelty presented in this paper resides in 
the proper tuning of the conductivity of the FFE and the wafer in combination with cell structure 
dimensions. With proper tuning, the FFE can be applied as an effective means to increase the 
BSF width with marginal loss in cell performance while assuring process simplification and cost 
reduction. Besides this, the new design leads to more freedom in the interconnection lay-out and 
increases the tolerances for the module fabrication. We name this invention the Mercury cell, in 
reference to that planets proximity to the sun. Moreover we present both 2D numerical 
simulation results and experimental evidence for the working principle.  
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2 Working principle of the Mercury cell 

The working principle of an IBC cell with a front floating emitter has been explained in 
previous work in terms of equivalent circuits that prominently incorporated a transistor element 
to describe the p/n/p bipolar transistor action above the rear emitter [15-16]. Here we focus on 
the relation between electrical shading and cell design parameters such as the resistance of the 
FFE and the wafer and BSF width.  

Under illumination, a front floating emitter collects minorities from the base as 
schematically illustrated in Figure 1c. In principle, since the FFE is not contacted, these carriers 
are not extracted and the FFE-base junction will be charged towards open circuit condition. If the 
FFE is conductive enough, the FFE will be a near equipotential surface, Veq, over the full surface 
of the wafer. The working principle of the Mercury cell is an asymmetry in the working point of 
the I-V curves of the FFE-base junction. Above the BSF, the junction where most carriers will be 
collected, is the FFE. Above the emitter, both the FFE and the rear emitter can collect carriers. 
Hence, the photocurrent across the FFE-base junction is smaller above the rear emitter than 
above the BSF. This means that when the FFE-base junction above the BSF is in open circuit, 
and because of the laterally constant potential in the FFE, the FFE-base junction above the 
emitter is operating below open circuit voltage. This sets up a hole transport “conveyor belt”: 
minorities (holes) generated above the BSF are collected in the FFE and transported as majorities 
towards regions above the rear emitter, where they are re-injected into the base and subsequently 
collected by the rear emitter. Effectively, the front junction collects the minority carriers from the 
base and transports them to the section where the front emitter overlaps with the emitter on the 
rear, as is illustrated in Figure 2. 

This current flow from FFE to emitter will be in addition to the diffusion of minority carriers 
directly from the base to the rear emitter junction. In addition to providing enhanced lateral 
transport, the pumping effect drastically reduces carrier levels in the base, and hence the 
recombination rate in the base . This reduced carrier concentration is illustrated in Figure 2 a and 
d, where the case of an FSF cell shows much higher minority carrier densities than the case of an 
FFE cell. 

The re-injection of carriers from the FFE above the emitter into the base does however lead 
to a higher [h+] concentration near the front surface above the rear emitter junction in the FFE 
case than the FSF case, as can be seen in Figure 2 a and d. However, much smaller [h+] 
concentration gradients are required for vertical minority carrier transport from front to rear than 
from left to right from above BSF to rear emitter. This is explained by the geometry of the 
system. For the vertical [h+] transport in the FFE case, the full emitter width is available, 
whereas for the lateral [h+] transport in the FSF case only the wafer thickness is available. So the 
same concentration gradient can transport more carriers in the FFE case. For the vertical [h+] 
transport in the FFE, the carriers need to cross only the wafer thickness, in the FSF case the 
carriers need to cross the BSF width. This is a larger distance, and relatively large [h+] 
concentrations above the FSF are required to obtain a sufficient concentration gradient. 

The pumping effect of the FFE cell hence allows to increase the pitch of the cell, while 
maintaining a good current.  
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recombination. The input parameters for Jo, Rsheet and tbulk are tabulated in the appendix. The 
most striking difference between both cells is the Jsc behaviour for changing width of emitter and 
BSF. Whereas the Jsc plummets for the FSF cell with broad BSF widths due to electrical shading 
losses, the FFE cell maintains high currents for a large part of the parameter space. The fill factor 
of the FFE cell is slightly lower than of the FSF cell  while the Voc is identical as the Jo values 
are kept similar for both cells. The FF presented in Figure 4, includes practical ohmic losses in 
the contacts, finger and busbars. The resulting efficiency plots clearly show that high cell 
efficiencies can be obtained for a broad range of cell geometries including the case of equal 
widths and reasonable cell pitch which are preferred with respect to the optimal metallization 
solutions as discussed earlier.  

Figure 5: Modeled conversion efficiency vs. pitch comparison of FSF and FFE IBC cell with 
equal emitter and BSF widths (a,b,d,e). The performance is evaluated for relatively conductive 
(70 Ω/sq) and relatively resistive (1000Ω/sq) front diffusions and 2, 6 and 10 Ω.cm wafers at a 
bulk lifetime of 2 ms. The optimal efficiency of the 70 Ω/sq FSF cell with narrow BSF (340µm) 
is marked by the dashed line. In c,f the path of least efficiency decay is shown for BSF widths 
between 0 en 2mm (full width) and its corresponding emitter fraction. The dashed horizontal line 
indicates the 50% emitter fraction. 

4 Mercury cell design 

To illustrate the potential of the Mercury cell design, an IBC cell with conductive FFE and 
broad BSF, we evaluate in Figure 5 the conversion efficiency dependency on the cell pitch for 
IBC cells with equal widths for emitter and BSF with screen printed fingers. This is done for 
IBC cells with varying sheet resistance of the front diffusion and different wafer resistivities. 
From the Figure 5b, it becomes apparent that the efficiency of the Mercury cell with a 70 Ω/sq 
FFE and a 6 Ω.cm wafer, nearly saturates at  20.8%. This plateau is reached for cell pitches up 
to 1.5 mm which are cell dimensions that can be practically made. A further increase of the pitch 
up to 2.3 mm can be achieved at the expense of 0.3% lower efficiency. It should be noted that at 
lower bulk lifetimes the electrical shading losses in the FSF cell increase more strongly than for 
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the FFE cell due to the lower carrier density in the Mercury cell as discussed above. 
Consequently, the benefits of the Mercury cell are more pronounced at lower bulk lifetimes than 
the 2 ms lifetime used in the illustrated simulation. For fair comparison to the conventional IBC 
cell, it is required to compare the efficiency of the Mercury plateau to that of the optimal FSF 
IBC cell with a narrow BSF. The optimal FSF cell efficiency at a BSF and emitter width of 340 
and 840µm respectively is 21.0% which is only marginally higher (0.2% absolute) than the 
Mercury plateau. Finally, the Mercury cell with relatively high resistive FFE approaches the 
pitch dependency of the FSF cell due to the deminished pumping current caused by the 
significant voltage drop that builds in the FFE as the pitch and thus the BSF width increases.  

In Figure 4h we can see that for every BSF width there is an emitter width that gives optimum 
efficiency. We plot in Figure 5c and 5f, for completeness, as a function of BSF width the maximum 
efficiency attainable for that BSF width (solid coloured lines), and the emitter width that 
corresponds to that maximum (expressed as fraction of the total pitch, dashed coloured lines). 

5 Validation 

Wafers with different bulk resistivity were taken from a single ingot to study the effect of the 
wafer resistivity and BSF width on the I-V parameters of the Mercury cell. Resistivity values of 
2, 4, 7 and 9 Ω.cm were chosen for investigation. Mercury cells featuring an emitter width of 
1600 µm and three different BSF widths (600, 1200 and 1600 µm) were manufactured. The Jsc 
results are presented in Figure 6, and clear trends are observed. In all cases, the Jsc increases with 
higher wafer resistivity (ρ). In addition, the slope of the Jsc as function of the BSF width 
decreases  with ρ. Generally, for both IBC cells, but mostly for the FSF IBC cell, Jsc suffers 
from higher doping levels as this results in higher SRH recombination rates especially in the bulk 
due to increased carrier concentrations. However, for the FFE cell also the pumping effect is 
enhanced by the higher wafer resistance as discussed in paragraph 2. The Jsc of the cells with 
high ρ wafers is nearly independent of the BSF width, which is in contrast to the large Jsc 
differences for BSF widths at low ρ.  

These results were validated in ATLAS (Silvaco). For that purpose, a cross-section 
perpendicular to the fingers was simulated. The unit cell consisted of half a BSF and half an 
emitter. The physical models used were Klaassen’s Unified Low-Field Mobility model, a 
Saturation Velocity Model according to Caughey and Thomas, Fermi-Dirac statistics, Klaassen’s 
bandgap narrowing model, radiative recombination, temperature and concentration dependent 
Auger recombination and SRH recombination. Surfaces were treated as flat, however the 
increased recombination activity due to surface area increase by presence of a pyramidal texture 
was taken into account by multiplying Auger recombination coefficients near the surface with a 
factor of 1.7. Generation profiles were obtained from PC-1D for a case with texture on front- and 
rear side. Screen printed contacts were modelled by assuming that the firing process etches into 
the diffusion. Diffusion profiles were based upon ECV measurements of the actual doping 
profiles used in the experiment. 

In an initial experiment, Mercury cells were compared to IBC cells with a front surface field 
(FSF). The Jsc decrease with increasing BSF width is especially pronounced for the cells with 
FSF, and much less for the cells with FFE, as shown in Figure 6b. It has to be noted that in this 
experiment the total pitch was fixed rather than the emitter width, so it is not possible to directly 
compare the results to the experiment with different wafer resistivities and BSF widths. 
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possibilities. The cell interconnection based on an interconnection foil with integrated Copper or 
Aluminium conductor layer can be optimized for low series resistance losses and significantly 
reduced efficiency loss from cell to module, since the constraints related to normal front-to-back 
tabbed interconnection (i.e., shading loss and series resistance from the tab, and stress on the cell) 
are absent [25]. The mechanical stress induced on the cells by conductive adhesive based 
interconnection (used in our MWT modules) is low, and as a result, the breakage is reduced. The 
MWT module technology passes the IEC61215 standard. 

This module technology is well suited to use with mercury IBC cells. Compared to a 
tab-based interconnection, the rear-side foil interconnection allows to reduce the module series 
resistance by using more interconnect metal (more cross-sectional area) and thereby reducing the 
cell-to-module FF loss. In the tabbed case, collected current needs to pass through broad busbars 
on the cell which can easily measure millimetres in width. In an FSF cell these areas would 
significantly increase electrical shading losses as calculated by Hermle et al. [8]. In this report an 
emitter and a BSF busbar of 3 mm on a 125 mm wafer would result in a 0.8%abs efficiency loss. 
This loss is nearly equally divided in FF loss above the emitter busbar and electrical shading 
losses above the BSF busbar. The Mercury cell would significantly mitigate the part of the 
electrical shading losses as illustrated in the previous sections. The flexibility of the conductive 
foil interconnection technology allows to increase the number of interconnection points while 
optimising their distribution on the cell. As a consequence, grid related series resistance can be 
reduced and busbars can be slimmed down allowing reduction of the metal load on the wafer.  

7 Current experimental status 

Mercury cells were processed on 156x156 mm2 semi-square n-Cz wafers using the same 
process tools as our industrial n-pasha cell process. Screen printed metallization was used and an 
isolation gap between rear emitter and BSF is omitted. In parallel, substrates with multiple small 
cells were prepared to study the impact of the BSF width. On small cells, on which we only 
illuminated the active part of the cell between two emitter busbars but, including a BSF busbar, 
we obtained a maximum efficiency of 19.4% with a Jsc of 41.6 mA/cm2 for a 600 µm wide BSF. 
This is to our knowledge the highest Jsc value reported for n-type or p-type IBC solar cells 
employing a front floating emitter [9-17]. The high Jsc proves that bulk lifetime and front surface 
passivation are sufficient for near ideal current collection. Very high Jsc values up to 41.2 
mA/cm2 were even reached for cells with an extremely wide BSF of 1600 µm, demonstrating the 
effectiveness of the Mercury concept. For the 6 inch cells we obtained a best cell efficiency of 
19.5% as shown in Table 1. The efficiency loss of the Mercury cells at low bias light conditions 
compared to 1 sun was analysed. In contrast to earlier reports on linearity issues with IBC cells 
employing an FFE [9], the efficiency loss at low illumination intensity appeared to be virtually 
absent; less than a standard p-type reference cell. The IV measurements have been conducted 
with a Class AAA solar simulator (Wacom). The IV measurements where checked for capacitive 
effects of the cells: they were performed at ramp rates between 0.1 V/s and 4V/s. The results 
mentioned in the table are not affected by capacitive effects. 
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TABLE I. IV parameters of best Mercury IBC cells. 

Cell type Active Area
(cm2) 

Voc 
(mV) 

Jsc  
(mA/cm2) 

FF  
(%) 

eta  
(%) 

600 µm BSF, 1600 um emitter 13 627 41.6 74.2 19.4 
1600 µm BSF, 1600 um emitter 13 629 41.2 73.1 18.9 
1200 µm BSF, 1600 um emitter 239 635 40.5 73.9 19.0 
350 µm BSF, 830 um emitter 239 638 40.0 76.6 19.5 

 
 

 
Figure 8: linearity of Mercury IBC cells. The ratio Jsc/Jsc(1-sun) was plotted as function of 

the irradiance for 3 cell types: FSF-IBC, FFE-IBC, p-type front junction. 

In Figure 8 we show results of a linearity check. Within the accuracy of the measurements 
all 3 cell types are linear from 1 sun down to 0.1 suns. 

By 2D modelling, we obtained insight in the main loss factors of the current cell design. 
Further improvement of passivation, diffusion profiles and interconnection design are likely to 
yield cell efficiencies between 21 and 22% on the short term using processing based on screen 
printed contacts. For PVD and/or plating type metallization we expect to achieve between 22-23% 
with the Mercury concept with the additional process and cost advantage of omitting the 
isolation steps due to equal widths in BSF and emitter diffusions.  

8 Conclusion 

We proposed a novel design variation of a traditional IBC cell, named the Mercury cell, that 
features a relatively conductive front floating emitter (~70 ohm/sq) and a broad BSF. This 
configuration significantly alleviates the problem of electrical shading especially at higher wafer 
resistivity and allows to design efficient IBC cells with interdigitated BSF and emitter regions of 
equal widths. Apart from relaxed alignment tolerances for the patterning and metallization steps 
of the solar cell process, equal widths of both polarities allow to metalize the IBC cell with 
blanket metallization technologies such as PVD and plating without the need of an isolation layer. 
This is a significant process simplification and thus a potential for cost reduction. In combination 
with ECN’s back-contact foil based module technology, that allows more contacts to the IBC 
cells at the rear side, IBC modules from 6’’ cells with low cell-to-module losses are possible. 

So far our best cell efficiencies obtained for this cell concept are 19% on 6 inch cells with a 
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BSF width of 1.2 mm, 19.5% with a BSF width of 350 um. On 13 cm2, we reached 19.4% with 
an exceptionally high Jsc value of 41.6mA/cm2 for a front floating emitter cell with an BSF 
width of 0.6mm. This high current was nearly maintained at an extremely wide BSF of 1.6 mm, 
illustrating excellent front passivation for efficient current collection and minimal electrical 
shading losses. 
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10 Appendix: 

Input parameters for Quokka simulation: 

Diffusion j0 
fA/cm2 

Rsht

BSF 70 40 

BSF contact 1500 40 

emitter 60 70 

emitter contact 3000 70 

FSF 60 70 

FFE 60 70 

tbulk 2ms  

 


