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Reflection by the front-side metallization of the n-
Pasha cell covering 7.3 % surface area results in an 
equivalent reduction of the generated current, with 
associated small effects on the VOC and maximum fill 
factor FF. The photogeneration is further reduced by 
reflection by the SiNx covered part of the cell, by 
parasitic absorption, in particular in the SiNx layers and 
free carrier absorption in the diffused layers of the cell, 
and by the escape reflectance, i.e. photons not absorbed 
after having bounced several times between front and 
rear surface. The direct reflection and escape reflection 
can be obtained from reflectivity measurements. The free 
carrier absorption was estimated from a model using the 
ECV diffusion profiles. The resulting data are collected 
in Table I: the optical losses not caused by the front-side 
metal reflection result in a further reduction of the 
photogeneration current by 2.6 mAcm-2 and an associated 
small reduction in ideal FF and VOC. The maximum 
power output after optical losses is calculated from 
Jph*VOC*FF. 

 
 

Table I: Break-down of the efficiency loss. Data listed 
bold are measured values. The last column gives the loss 
in efficiency compared to the previous row 
 J 

mAcm-2 
Voc 
V 

FF Power 
mWcm-2 

Δη 
%ab 

Maximum 46.0 0.745 0.85 29.25  
Metal 
reflection 

42.6 0.743 0.85 27.02 2.2 

Other  
optical 

40.0 0.741 0.85 25.31 1.7 

Recombi-
nation 

39.1 0.651 0.81 20.89 4.4 

Ohmic 39.1 0.651 0.78 19.84 1.1 
 
 

The actually measured JSC is still below the estimated 
photogeneration current density, due to recombination at 
short circuit. The maximum expected power output 
including recombination can be calculated by 
JSC*VOC*pFF. The VOC and JSC values follow from the 
IV measurements, the pFF from a Suns-Voc curve. The 
pFF includes the deviation from the ideality factor n=1, 
as well as effect of shunt losses, which are expected to be 
negligible in optimized cells. The recombination losses 
constitute 4.4 % abs. loss of efficiency. The 
recombination losses occur in the diffused layers, at the 
contacts and in the bulk of the cell. A further breakdown 
of these losses is given in section 3.2. 

The ohmic losses, finally, are calculated from the 
difference of the FF and the pFF according to: 
ΔPohmic=(pFF-FF)*VOC*JSC. They seem to be the smallest 
contribution with only 1.1 mW cm-2. The ohmic loss 
associated with lateral current transport ΔPlat through a 
diffusion profile with resistivity Rsheet can be calculated 
from ΔPlat=⅓Rsheet*(JMP)2(L)2, with L the half-pitch of the 
cell and JMP the current density at maximum power point 
MPP. Using the experimentally determined sheet 
resistances listed in Table II, and including the much 
smaller contribution of the transversal ohmic loss, the 
ohmic loss inside the silicon is estimated to be 0.8 mW 
cm-2 at MPP. This suggests that losses through the 
metallization series resistance and contact resistance of 
the metallization only contribute 0.3 mW cm-2 at MPP. 
 

 

3.2 Breakdown of recombination losses 
Recombination seems at present the largest 

contribution to the efficiency loss of an n-Pasha cell 
compared to an ideal cell. The recombination effects are 
from Auger and Shockley-Read-Hall recombination in 
the diffused layers, surface recombination, recombination 
at the contacts and recombination in the bulk. The latter 
is characterized by the bulk life time of the material, a 
value difficult to assess experimentally but believed to be 
in the order of 1 ms for the present n-type substrates with 
resistivity order 2.7 ohm cm. The recombination current 
in the bulk can then be written as:  

	
௥,௕ܬ  ൌ

௤ௐ௱௡್
ఛ

						or							ܬ௥,௕ ൌ
௤ௐ௱௡್
ଶఛ

  ( 1 ) 

for low level injection (LLI) and high level injection 
(HLI) conditions, respectively, with Δnb = Δpb being the 
excess carrier density. 

The other recombination processes can be 
characterized by J0 values, the recombination current pre-
factor. The J0 value of a diffused layer, such as the 
emitter and BSF, will be made up of recombination in the 
layer, mainly Auger, and recombination at the surface of 
the layer. The recombination current density in such a 
layer is then defined by:  
 

௥,ௗܬ	  ൌ ଴ܬ
ሺ௣బା௱௡್ሻሺ௡బା௱௡್ሻି௡೔

మ

௡೔
మ    ( 2 ) 

 
In this equation the excess carrier density Δnb is the 

excess density just outside the diffused layer in the bulk. 
J0 values of the emitter and BSF were obtained from 

life-time measurements and are listed in Table II. The 
contact recombination current can be calculated with a 
similar approach, but J0 values will differ from those of 
passivated layers due the higher recombination velocity 
at the metal and to the modifications in the diffused Si 
incurred when contacts are made.  

Estimates of the J0 for the contact regions are shown 
in Table II. Contact J0 values were obtained by 
comparison of VOC-implied on non-metallized samples 
and VOC values of the finalized cell [5]. Values for the J0 
for the contact region include recombination in the 
diffused layer in the contact region (mainly Auger). For 
the emitter contact this contribution is small. On the other 
hand, the region under the BSF contact with a higher 
doping has a substantial contribution from recombination 
in the diffused layer, resulting in almost 40% of the J0 
value listed in Table II. 
 
Table II: Measured J0 and Rsheet values   
 J0 

fAcm-2 
Rsheet 

Ohmsq-1 
Emitter 86 60 
BSF 113 73
Emitter contact region 3000  
BSF contact region  1848  
N.B. J0 values referred to ni=9.65·109 cm-3 
 

Eq. (1) and (2) show that the excess carrier density 
distribution in the cell has to be known in order to 
calculate the recombination currents in the different parts 
of the cell. A crude approximation for Δnb, resulting in a 
uniform value over the cell, can be calculated from the 
cell voltage using the narrow base approximation [4]: 
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