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ABSTRACT: This paper reviews our recent progress in the development of metal wrap through (MWT) cells and 
modules, produced from n-type Czochralski silicon wafers. The use of n-type silicon as base material allows for high 
efficiencies: for front emitter-contacted industrial cells, efficiencies above 20% have been reported. N-type MWT (n-
MWT) cells produced by industrial process technologies allow even higher efficiency due to reduced front metal 
coverage. Based on the same industrial technology, the efficiency of the bifacial n-MWT cells exceeds the efficiency of 
the n-type front-and-rear contact and bifacial “Pasha” technology (n-Pasha) by 0.1-0.2% absolute, with a maximum n-
MWT efficiency of 20.1% so far. 
Additionally, full back-contacting of the MWT cells in a module results in reduced cell to module (CTM) fill factor 
losses. In a direct 60-cell module performance comparison, the n-MWT module, based on integrated backfoil, produced 
3% higher power output than the comparable tabbed front emitter-contacted n-Pasha module. Thanks to reduced resistive 
losses in copper circuitry on the backfoil compared to traditional tabs, the CTM FF loss of the MWT module was reduced 
by about 2.2%abs. compared to the tabbed front emitter contact module. A full-size module made using MWT cells of 
19.6% average efficiency resulted in a power output close to 280W.  
Latest results of the development of the n-MWT technology at cell and module level are discussed in this paper, 
including a recent direct comparison run between n-MWT and n-Pasha cells and results of n-MWT cells from 140µm 
thin mono-crystalline wafers, with only very slight loss (1% of Isc) for the thin cells. Also reverse characteristics and 
effects of reverse bias for extended time at cell and module level are reported, where we find a higher tolerance of MWT 
modules than tabbed front contact modules for hotspots. 
Keywords: metal wrap through; MWT; n-type silicon; back-contact 

 
 

1 INTRODUCTION 
 

High efficiency, ease of industrialization and reliability 
are the main drivers towards low-cost (€/Wp) Silicon PV. 
The International Technology Roadmap for PV expects the 
share of rear contact technology to take off rapidly in 2013-
2014, and reach 40% in 2020. In accordance with this 
expected trend, the ECN’s n-type Metal-Wrap-Through (n-
MWT) technology is a relatively small step from the n-type 
front-and-rear contact and bifacial Pasha technology 
(developed by ECN and produced by Yingli under the 
brand name Panda cells [1] ) to a high-efficiency rear-
contact cell and module technology which offers significant 
cell and module performance gain in a cost-effective way 
[2]. With only modest changes to the n-Pasha production 
process, the n-MWT technology reproducibly increases the 
performance: up to 0.3% abs. efficiency gain at cell level 
and up to 3% power gain at module level have been 
demonstrated [2] (up to 5% module power gain 
anticipated). A full size module made using n-MWT cells 
of 19.6% average efficiency resulted in a power output 
close to 280W (despite some Isc-mismatch). To place in 
perspective, with cell efficiency over 20%, a full area n-
MWT module efficiency above 18.5% is expected.  

ECN’s MWT module technology is based on an 
integrated conductive back-foil and allows to reduce cell-to-
module power loss compared to a conventional tabbing 
technology, as used to interconnect the n-Pasha cells. Also, 
the module manufacturing based on integrated back-foil can 
be done with higher yield and reduced interconnection-
process-related stress, allowing use of (much) thinner cells 
and therefore offering additional cost reduction 
possibilities. Our latest results in this paper therefore 
include wafers of varying thickness. In addition to 

efficiency and cost improvements, module reliability is 
important. One of the technical requirements of PV 
modules according to the standard IEC61215 is to pass the 
hot spot endurance test. Higher cell efficiencies in 
combination with a trend towards 72-cell modules tend to 
increase power dissipation in hot spots, if those occur. 
Consequently, thorough investigation of cell and module 
reverse current characteristics must be part of the 
industrialization process. 

In this paper, the latest results of the n-MWT 
technology development will be discussed. In a recent 
direct comparison run between n-MWT and n-Pasha, a 
0.15%abs. efficiency gain was obtained for n-MWT over n-
Pasha and a best efficiency of 20.1% was obtained on n-
MWT (in-house measurement). Since back contact module 
technology allows the use of very thin cells, comparison of 
n-MWT cells of varying thickness is relevant: processing of 
n-MWT cells from thin mono-crystalline silicon Cz wafers 
down to 140µm (before texturing process) was therefore 
investigated. Only a small loss (1% of Isc) was found for the 
thin cells, in principle not even significant within the 
experimental scatter, but in agreement with cell modeling. 

In addition to the latest cell results and effect of wafer 
thickness, focus will be on reverse characteristics of the n-
MWT cells and on module reliability aspects. Efficiency 
and reverse characteristics, compared between the n-Pasha 
and n-MWT technologies, will be described in more detail. 
Potentially adverse effects of leakage current on n-Pasha 
and n-NWT single-cell laminates were investigated for a 
range of reverse currents. Distribution of power dissipation 
under reverse bias voltage and effect of leakage current in 
n-MWT cells were investigated by thermal imaging and 
direct reverse current measurement. Attention was paid to 
possible instability of cell parameters after prolonged 



reverse bias 
which we fo
modules wer
leakage curre
modules. 
 
 
1 MWT CO
1.1 Benefits 

material 

MWT te
standard H-p
gain due to
integration in
contacted. T
conductive a
MWT modu
reduced. Co
interconnecte
density can b
grid benefits
cells (cf. fig
for low seri
efficiency lo
related to no
shading loss
are absent [4

In additi
layout, effic
material with
n-type wafer
p-type wafe
material, bo
material. Th
degradation 
metastable d
silicon has 
common tran
lifetimes of 
type Cz. The
and Amtech 
into product
back-contact
benefiting fr
has other ad
rear side op
standard p-ty
(independent
production [
reached. Rec
ECN’s pilot 

MWT ce
to conventio
simplicity of
allows large
structure com
be less sens
contact back
cell and mod
type technolo

 
1.2 Approac

The n-ty
industrial pro
is used to for
is wrapped t
cell structur
Back Surfa

in light of re
ound to be not s
re found to be m
ent under rever

ONCEPT FOR
of combining M

echnology prese
pattern cell tech
o reduced fron
nto a module is

The mechanical
adhesive based

ules) is low, an
onsequently, th
ed without yiel
be significantly
s from a small 
. 1). The cell in
es resistance l

oss from cell t
ormal front-to-b
 from the widt

4]. 
on to the effici
ciency can be
h improved elec
rs generally allo
ers [5,6]. In c
oron-oxygen co
herefore it w
due to format

defect upon il
been proven 
nsition metal i
several millise

e n-Pasha cells 
(and daughter c
ion by Yingli 
t H-pattern ce
rom high base d
dvantages, in pa
ptical and elec
ype cells. So fa
tly confirmed 
[11,12] and 20
cently, efficien
line on high qu

ell process tech
onal front con
f the rear-side c
 tolerance rega
mprises a front
itive to materi

k-junction cell 
dule technology
ogy.  

h to cell proces
ype MWT pr
ocess used for 
rm via-holes by
through the wa
re comprises a
ace Field (BS

ecent reports o
severe. Interesti
more tolerant t
rse bias than fro

R N-TYPE MAT
MWT technolog

ents several adv
hnology. Apart
nt-side metalli
s easier as the 
l stress induced
d interconnecti
nd as a result

hinner and larg
ld loss. In addi
y increased. Th

unit cell patte
nterconnection 
losses and sign
to module, sinc
back tabbed inte
th of tab, and s

iency enhancem
e increased us
ctrical propertie
ow (much) hig
contrast to bor
omplexes are 
will not suffe
tion of a boro
llumination [7,
to have a hig
mpurities [9,10
conds are read
developed by E
company Temp
Solar, use the 
ll structure [1
diffusion length
articular, signif
ctrical properti

ar, best cell effi
by Fraunhof

0.1% in produ
ncies of 20.2% 
uality n-Cz mate
hnology in gene
ntact cell proc
contact pattern 
arding print ali
t side emitter a
al quality vari
designs. Also, 

y has already pr

ss development 
rocess is very
n-Pasha cells. 

y which the fro
afer. Like the n
a boron emitter
SF) and an 

on this effect [
ingly, also, MW
o a given level
ont contact tabb

TERIAL 
gy with n-type 

vantages over t
t from the curr
ization covera
cell is fully bac
d on the cells 
ion (used in o
, the breakage
ger cells can 
ition, the packi
e front side me

ern allowing lar
can be optimiz

nificantly reduc
ce the constrai
erconnection (i
stress on the ce

ment due to MW
sing silicon ba
es. In that respe
her lifetimes th
ron-doped p-ty
absent in n-ty

er from lifetim
on-oxygen relat
,8]. Also, n-ty
gher tolerance 
0,11]. In practi

dily obtained in
ECN, Yingli So
press) and broug
conventional n
]. In addition 
h, this cell desi
ficantly improv
ies, compared 
iciency of 19.49
fer ISE) in tr
uction have be
were obtained

erial [13]. 
eral remains clo
cessing, and t
of the MWT ce
ignment. The c
and therefore w
ations than bac
integrated MW

roven itself for

y similar to t
Laser processi

ont side metal g
n-Pasha cells, t
r, a phosphoro
open rear s

[3], 
WT 
l of 
bed 

the 
ent 

age, 
ck-
by 

our 
e is 

be 
ing 
etal 
rge 
zed 
ced 
ints 
.e., 
ell) 

WT 
ase 
ect, 
han 
ype 
ype 
me 
ted 
ype 

to 
ice, 

n n-
olar 
ght 
non 

to 
ign 
ved 

to 
9% 
rial 
een 
d at 

ose 
the 
ells 
cell 
will 
ck-

WT 
r p-

the 
ing 

grid 
the 
ous 
ide 

m
de
fu
sc
pr
ba
th
lo
lo
in
th
sig
Pa
Co
th
lo
ce
of
se

 
Fi
(2
(le

 
 
2

 
2.

fro
cm
pr
py
pr
m
da

metallization sui
eposited by in
urther requirem
creen-printing 
rocess. The fro
ased on a H-pat
e unit cell con
okalike grid be
sses between 
terconnection o
e front of th
gnificantly slim
asha cells. As 
orrespondingly
e total series re
sses are balanc

ells compared to
f the cells made
een in Figure 1.

 

igure 1: Imag
239cm2) with a
eft picture) and 

N-TYPE MW
DIRECT PER

1 Experimental
n-type MWT

om 200 µm thi
m², around 1.
rocessed in para
yramids formed
rofiles, passiva

metal paste for 
ata are presente

 
 

itable for thin 
ndustrial screen
ents regarding 
process used 

ont and rear si
ttern lookalike 
ncept [14]. W
ecause it is wel
n-MWT and 

of n-MWT cel
he cells, the f
mmed down co
a result, total 
, however, resi

esistance of the 
ced to increase p
o the n-Pasha c
e according to t

  
ge of n-type 
H-pattern base
rear side (right

WT VERSUS N
RFORMANCE

l results and an
T and n-type Pas
ick and neighbo
7 Ωcm resist
allel and receiv
d by alkaline 

ation, SiNx ant
emitter and B
d in Table I.  

wafers. Metal 
n-printing proc
alignment com
in the indust

ide metal grid
grid design, co

We have chosen
ll suited for a c
n-Pasha cells.

lls does not req
front side bus
ompared to con
shading losses 
stance in the bu
cell. Shading a

power output o
ells. The front a
this process seq

MWT silicon
d unit cell desi
t picture) 

N-TYPE PASHA
E COMPARISO

alysis – n-MWT
sha solar cells w
oring n-type Cz
tivity). Both 

ved identical tex
etching), emit

ti-reflective co
SF contacts an

 contacts are 
cess with no 
mpared to the 
trial n-Pasha 

d patterns are 
ombined with 
n a H-pattern 
comparison of 
. As module 
quire tabs on 
sbars can be 
nventional n-
are reduced. 

usbars affects 
and resistance 
of the n-MWT 
and rear sides 
quence can be 

 
n solar cells 
ign: front side 

A CELLS – 
ON 

T vs. n-Pasha 
were prepared 
z wafers (239 
groups were 

xture (random 
tter and BSF 
ating (ARC), 
nd firing. I/V 



Table I: I/V characteristics of n-type Pasha cells and n-type 
MWT cells (continuous light source), with comparable Jo 
and metallization parameters, to illustrate the gains 
associated with MWT design. ESTI calibrated reference 
cell (2% Isc  uncertainty). Rse obtained from fit to two-
diode model. Jsc corrected for spectral mismatch. N-type 
Pasha and n-type MWT measurement chucks have a 
reflective surface to simulate the operation in a module with 
white back sheet (* indicates FF overestimated due to 
shorting of the n-Pasha rear grid on the electrically 
conductive measurement chuck) 

 
JSC 

(mA/cm2) 
VOC 

(mV) 
FF 
(%) 

η 
(%) 

Rse 
(mΩ) 

Av. on 12 cells 

n-Pasha 38.90 652 78.4* 19.89 4.9 

n-MWT 39.95 652 76.8 20.04 5.7 

Best efficiencies 

n-Pasha 38.97 653 78.5* 19.98 4.8 

n-MWT 40.01 653 77.0 20.10 5.6 

 
The Jsc gain of 2.6% for the n-MWT cells is related to 

the reduced front metal shading losses thanks to the 
narrower front busbars. Because the n-Pasha process used 
non-contacting front busbar paste, front surface 
recombination below the large n-Pasha busbar is reduced 
[1]. Consequently, in contrast to previously reported results 
[2], no Voc gain related to reduced metal recombination is 
obtained. 

Even with a lower FF, a resulting efficiency gain of 
0.15% absolute is measured on the back-contacted cells 
compared to the H-pattern cell. Contributions to series 
resistance and FF losses are summarized in Table II. 
 
Table II: Calculated contributions to series resistance and 
FF losses of the n-MWT cells compared to the n-Pasha cells 

Source of Rseries in MWT cell Rseries FF loss 
Metal via resistance  0.2 mΩ 0.3% abs. 
Front side busbars  0.7 mΩ 1.1% abs. 
Increase of Isc  0.1% abs. 
Total 0.9 mΩ 1.5% abs. 

 
From the results in Table II, approximately 1.5% 

additional FF loss present in the n-MWT cells, compared to 
n-Pasha cells, can be explained. The discrepancy between 
model and experiment is small compared to measurement 
and modeling uncertainties. In particular the FF 
measurement of an n-Pasha type cell is quite dependent on 
experimental configuration. 

 
2.2 Solutions to reduce series resistance of n-MWT cells 

and increase efficiency 
Several options exist to reduce the FF loss of n-MWT 

cells relative to n-Pasha cells. A straightforward option is 
increasing the number of vias [15]. As illustrated in Figure 
2, when the number of via-holes increases, FF and Jsc 
increase thanks to the reduction of resistive and shading 
losses (dashed black and solid blue lines). However, this 
may also increase recombination, and therefore, cause Voc 
loss (dotted blue line in Fig. 2). From modeling we expect a 
maximum efficiency increase of around 0.2% absolute 
compared to the current number of via-holes. 

 

 
Figure 2: Calculated relative FF, shading and Voc changes 
as a function of the number of via-holes for n-MWT cells 
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3.1 Initial results 

The ECN module manufacturing technology used to 
interconnect the n-MWT cells is based on an 
interconnection foil with integrated Copper conductor layer, 
on which the cells are electrically contacted using a 
conductive adhesive. Compared to the front to rear side 
tabbed interconnection used for the n-Pasha cells, a rear-
side foil interconnection allows to reduce the module series 
resistance by using more interconnect metal (more cross-
sectional area) and thereby reduce the cell to module FF 
loss.  

N-MWT and n-Pasha 60-cells modules were 
manufactured from cells prepared as described in the 
previous section (neighboring n-type Cz wafers, 200µm 
thickness, 239cm2, and parallel processing). However, 
because the cells were fabricated further back in time, the 
process parameters used were not as optimum as they 
currently are. As a result, average efficiencies of n-MWT 
and n-Pasha cells are lower than they are today. N-MWT 
and n-Pasha modules were measured at ECN using a class 
A multiflash tester (8-flash measurement). Average cell 
efficiency, maximum power and absolute FF loss from cell 
to module (CTM) are presented in Table III. The n-MWT 
module outperforms the corresponding n-Pasha tabbed 
module with a power gain of 8 Wp and a CTM FF loss of 
only 0.8% which is more than 3 times lower than the FF 
loss for n-Pasha. 
 
Table III: n-type MWT and n-type Pasha average cell 
efficiency, corresponding module power and FF loss from 
cell to module (multi-flash class A, IEC60904-9 
measurement, ESTI reference module) 

 
Average cell 

η 
Pmax 

(W) 
cell-to-module 

FF loss 

n-MWT module 18.9% 273 0.8% 
n-Pasha module 18.6% 265 3% 

 
The reflectivity of the back-foils used for the n-MWT 

module is much lower than the standard TPT back-foil used 
for the n-Pasha tabbed module. Therefore, significant gain 
(on the order of 1%) in Isc is possible for n-MWT modules 
by employing high reflectance back-foils. Fig. 3 illustrates a 
first step towards a back-foil with improved reflectance, 
which results in at least 0.5% gain in Isc.  
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patterns integrated on the backfoil). In a full size module 
(60 cells) comparison experiment between MWT and 
equivalent n-Pasha tabbed modules, a power increase of 
approximately 3% for the n-MWT module was obtained. 
Interconnection of a batch of cells with average efficiency 
of 19.6% resulted in a module power close to 280Wp. 
Module power gain above 290Wp is expected to be reached 
by better Impp matching, further optimization of the back-
sheet reflectivity and of course by use of cells with 
efficiency above 20%.  

Successful processing of 140µm thin n-MWT cells was 
demonstrated: low breakage rate (similar to standard 
thickness cell processing), and a small Jsc loss of 1% 
compared to standard thickness n-MWT cells. This small Jsc 
loss, as well as IQE and reflection measurements, match 
PC1D modeling of  lower light coupling inherent to the 
wafer thickness. These results together with the low 
interconnection stress of the ECN’s MWT technology add 
another possibility to reduce cost of the technology. 

Stability of the dark reverse as well as illuminated I/V 
characteristics of n-MWT cells after prolonged reverse bias 
voltage was found to be satisfactory, independently from 
the level of initial reverse current. Despite a brief rise of the 
reverse current in the first minutes of reverse bias in some 
cases, stability is rapidly reached. Reverse voltage in 
MWT-back contact modules typically causes less 
thermally-induced damage than in n-Pasha modules with 
similar Irev, thanks to more optimum distribution of the 
power dissipation over the via-holes (if those are the main 
leakage locations) and dissipation by the metal back-foil. 
This latter benefit needs to be investigated further.  
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