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ABSTRACT: The n-Pasha cell is a bifacial solar cell concept with average efficiencies between 19.8% and 20% and 
is optimized to enable high efficiencies with narrow distribution on wafers from the complete n-type ingots (2 to 10 
-cm). This reduces the yield losses from a wafer point of view, which is important since the wafer costs make up 
the largest part (~40%) of the total module costs for n-Pasha modules. The module fabrication itself adds up to ~35% 
of the module costs/Wp costs, which leaves ~25% of the costs/Wp for the cell production. We found that the 
costs/Wp for the 20% n-Pasha cell and module process are very similar to those of a 19% p-type cell, assuming 
similar wafer and module manufacturing costs. In the paper the successful implementation of a reduction of >60% in 
BBr3 consumption, and a reduction of >50% in Ag consumption are described, while keeping the n-Pasha cell 
efficiency at the same level. According to our calculations, the achieved reduction of the Ag and BBr3 consumption 
will lower the costs/Wp for n-Pasha modules below that of p-type.  
The majority of the efficiency losses in the n-Pasha cell are due to recombination in the diffused layers and below the 
contact regions. By tuning both the emitter and BSF profile, an efficiency gain of 0.4% absolute has been obtained. 
Based on the simulations and experimental results, the path towards further optimization and efficiencies approaching 
21% is shown. 
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1 INTRODUCTION 
 
 Currently, majority of PV manufacturing still relies 
on mc-Si p-type. The fourth edition of the International 
Technology Roadmap for Photovoltaics [1] predicts a 
clear shift from p-type to n-type mono-Si within the 
crystalline Si market, with the share of n-type mono cells 
rising to over 30% in 2023. Compared to p-type material, 
n-type Cz material is known for its stable high carrier 
lifetimes because of the absence of light-induced 
degradation (LID) and its higher tolerance of the most 
common metallic impurities, such as Fe [2,3]. The 
highest efficiency crystalline silicon modules that are 
currently on the market are fabricated on n-type Cz 
material by the companies Sunpower, Panasonic and 
Yingli Solar [4-6].  

To realize high efficiencies at low cost, ECN has 
developed the n-Pasha solar cell concept on n-type 
Czochralski (Cz) base material [7]. The n-Pasha cell is a 
bifacial solar cell concept with average efficiencies 
between 19.8% and 20%; on high quality material a top 
efficiency of 20.2% has been demonstrated [8].  

To remain competitive in the solar market, modules 
with n-type cells need to be processed at low €/Wp. This 
can be achieved by improving the cell efficiency and 
preferably together with reducing the cell productions 
costs simultaneously. The work presented in this paper 
demonstrates how to reduce the cost of major processing 
steps in the n-Pasha solar cell production process such as 
boron diffusion and metallization while increasing the 
efficiency to values above 20%. 
 
 
 
 
 

2 N-PASHA CELL CONCEPT 
 
2.1 Cell structure 

At ECN, the n-Pasha cells are fabricated on 6 inch n-
type Cz wafers. All processing steps used for the n-Pasha 
cell are compatible with an industrial scale. The first 
processing step is to texture the wafers with random 
pyramids using alkaline etching. The boron emitter and 
phosphorous BSF are formed with a co-diffusion step 
using an industrial tube furnace from Tempress. A 60 
Ω/sq emitter is made using BBr3 as precursor. The BSF 
is made using POCl3 as precursor and provides 
additional lateral conductivity at the rear side. This 
results in a good fill factor despite the open rear side 
metallization, even for cells processed on high resistivity 
base material  (~10 Ωcm). In this way the BSF is an 
important element of the cell design providing a solution 
for reduced performance sensitivity towards variations in 
the n-type wafer resistivity, as will be discussed in 
Paragraph 2.2. Both the front and rear side are coated 
with SiNx layers for passivating and anti-reflective 
purposes. The metal grids are printed, and the contacts on 
emitter and BSF are formed during a single co-firing 
step. Both front and rear metallization can be directly 
soldered so no additional metallization step is necessary 
to enable interconnection into a module. The module 
manufacturing and costs are therefore the same as for 
standard p-type cells. 

The symmetric structure of the open front and rear 
side metallization ensures that the bowing of the cells 
will be strongly reduced when (very) thin wafers are 
used, which is a distinct advantage to the bowing that 
occurs for full area aluminum BSFs on p-type solar cells. 
Furthermore, the dielectric coating on the rear side results 
in an improved surface passivation as compared to the 
conventional full area aluminum rear side of p-type cells, 
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has been achieved. Based on Implied Voc measurements, 
the potential gain in efficiency for the combined 
optimization of emitter and BSF is around 0.7% absolute. 
To obtain even higher efficiencies, the emitter contact 
recombination needs to be further reduced as this will 
counter the emitter improvements should the profiles 
become too shallow. One way to achieve this, is to use a 
selective emitter approach. In this way, emitter profiles 
for contact and non-contact regions can be tuned 
separately. Another method to reduce the contact 
recombination is by improving the contact mechanism 
itself; for instance by so called ‘passivated’ contacts or by 
using less aggressive metallization pastes. Both 
approaches are currently being evaluated at ECN, on both 
an efficiency and cost level. 

Besides reducing the recombination, also other parts 
of the n-pasha cell can still be improved. Optical losses 
also still play a substantial role. A significant gain in 
current density would be obtained by adopting a MWT 
design [13], while also reduction of (free carrier) 
absorption, improved (anti-)reflection and improved light 
trapping can contribute to a current gain. For the latter 
two, the dielectric coatings, especially at the rear, and 
their interaction to the (bifacial) module will be 
investigated. 
 
 
5 SUMMARY AND CONCLUSIONS 
 

The n-Pasha cell concept is shown to be a robust 
process, that enables stable and high efficiencies (19.8% 
average) over a wide base resistivity range. This will 
reduce the yield losses of n-type Cz ingots. On specially 
selected, high quality material, an average efficiency of 
20% with top efficiency of 20.2% has been achieved. 

We found that the costs/Wp for the 20% n-Pasha cell 
and module process are very similar to those of a 19% p-
type cell, assuming similar wafer and module 
manufacturing costs. According to our calculations, the 
achieved reduction of the Ag and BBr3 consumption will 
lower the costs/Wp for n-Pasha modules below that of p-
type.  

The majority of the efficiency losses in the n-Pasha 
cell are due to recombination in the diffused layers and 
below the contact regions. By tuning both the emitter and 
BSF profile, an efficiency gain of 0.4% absolute has been 
obtained. Based on the simulations and experimental 
results, the path towards further optimization and 
efficiencies approaching 21% has been shown. 

The combination of efficiency improvements and the 
cost reduction makes the n-Pasha cell concept a very 
cost-effective solution for manufacturing highly efficient 
solar cells and modules. 
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