

The importance of aerodynamics and the role of aerodynamic measurements

The importance of aerodynamics and the role of aerodynamic measurements

Illustrated with results from the NASA-Ames experiment at yaw

Gerard Schepers (ECN) and Scott Schreck (NREL)

The science of Making Torque, Oldenburg

www.ecn.nl

Content

- Importance of wind turbine aerodynamics
 - Aerodynamic design modelling
 - Aerodynamic measurements
- Aerodynamic wind turbine measurements
 - IEA projects on field and wind tunnel measurements
 (IEA Task 14, IEA Task 18, IEA Task 20 and IEA Task 29 (Mexnext-I))
 - Power at yawed conditions in NASA-Ames measurements
 - Current and future developments with regard to aerodynamic measurements

AERODYNAMICS OF WIND TURBINES

Important for:

- Energy production
- Loads (strength, costs!)
- Stability (failure, damage)
- Control
 - Stall
 - (Individual) pitch
 - Distributed aerodynamic control

And hence the overall success of a wind turbine design

AERODYNAMICS

- Aerodynamics of wind turbines is extremely difficult
 - Rotating
 - In lower part of atmosphere → extremely turbulent
 - Instationary
 - Stall(!)
 - Large variety in scales (Diameter can be twice span of Airbus A380!)
 - Constraints and interactions (e.g. costs, system dynamics)
 - Wind turbine aerodynamic calculations are extremely time consuming
 - Load calculations: Time domain, many long time series needed to get 'statistics right'
 - (~10⁶ nr of time steps) → Calculational time of a design spectrum can easily be longer than lifetime of the wind turbine
 - Generally calculations are done with simplified Blade Element Momentum (BEM) Theory with engineering add-ons to cover instationary effects, stall, 3D effects, yaw etc.

Aerodynamic modelling

- Former validation projects generally show 10-20% accuracy of blade loads calculated with BEM for standard conditions, (excluding stall) but still large uncertainties (i.e. 50%) in off-design conditions ¹)
- What about uncertainties for modern wind turbines?
 - Wind turbine designs become 'unconventional', what about the modelling aspects?
 - Aerodynamic modelling of distributed control devices
 - For very large turbines BEM may not model correctly:
 - Incoherent structures over the rotor
 - Extreme shear, low level jets, 3D shear effects (wind farms!)
- Research needed to improve the accuracy, among others by other types of modelling, e.g CFD

¹⁾ Schepers, J.G.; Heijdra, J.J.; Thomsen, K.; Larsen, T.; Foussekis, D.; Rawlinson Smith, R.; Kraan, I.; Visser, B.; Øye, S.; Ganander, H.; Carlen, I.; Voutsinas, S.; Belessis, M.; Drost, L. Verification of European Wind turbine design codes, presented at European wind energy conference and exhibition, Copenhagen, Denmark, 2-6 july, 2001.

Aerodynamics

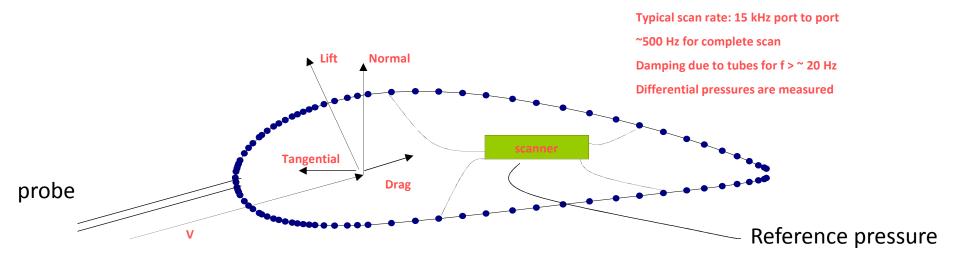
- MEASUREMENTS, MEASUREMENTS, MEASUREMENTS
- Detailed aerodynamic measurements along the blades are urgently needed at several conditions

Content

- Importance of wind turbine aerodynamics
 - Aerodynamic design modelling
 - Aerodynamic measurements
- Aerodynamic wind turbine measurements
 - IEA projects on field and wind tunnel measurements
 (IEA Task 14, IEA Task 18, IEA Task 20 and IEA Task 29 (Mexnext-I))
 - Power at yawed conditions in NASA-Ames measurements
 - Current and future developments

IEA TASKS ON AERODYNAMIC MEASUREMENTS

- 1991-1997: IEA Task 14 (Field Rotor Aerodynamics, Operating Agent: ECN)
- 1997-2001: IEA Task 18 (Field Rotor Aerodynamics, enhanced, Operating Agent: ECN))
- 2001-2007: IEA Task 20: (Analysis of NREL's NASA-Ames, measurements, Operating Agent: NREL)
- 2008-2011: IEA Task 29: Mexnext-I (Analysis of Mexico measurements, Operating Agent: ECN)
- 2011-2014: IEA Task 29: Mexnext-II (various measurements,
 Operating Agent, ECN)



- Period: 1991-2001
- Aim: To coordinate aerodynamic test programs on field facilities
- Participants
 - Netherlands Energy Research Foundation, ECN (NL; Operating Agent)
 - Delft University of Technology, DUT (NL)
 - Imperial College/Rutherford Appleton Laboratory, IC/RAL (UK, Only Task 14)
 - National Renewable Energy Laboratory, NREL (USA)
 - RISØ, The Test Station for Wind Turbines (DK)
 - Mie University (JP, Only Task 18)
 - Centre for Renewable Energy Sources, CRES (Gr, Only Task 18)

Aerodynamic measurements

- To develop, validate aerodynamic models
- Conventional measurement programs: Only indirect, global aerodynamic information
- Desired: Direct local aerodynamic properties (I.e. pressure distributions, inflow angles, inflow velocities)

IEA Tasks 14/18: Facilities

ECN facility

NREL facility

IEA Task 14/18 some results

- •Database on http://www.ecn.nl/nl/units/wind/projecten/field-rotor-aerodynamics-database/
- 'Discovery' of
 - •Stall delay on wind turbines (underprediction of loads at inner part of the blade at large angles of attack when using 2D airfoil coefficients)
 - Overprediction of tip loads when using 2D airfoil coefficients
 - 'Compensating' errors when using global measurements

Validation measurements, status at end of 90's

1990:

Measurements of power and loads showed differences but they were too global to form a basis for improvement of aerodynamic models

Desired:

- Local aerodynamic loads (pressure distribution) in field conditions (IEA Tasks 14/18)
- But also: Constant, uniform and controlled conditions (→Windtunnel)

Measurements in NASA-Ames wind tunnel

- Carried out by NREL (National Renewable Energy Laboratory), USA
- •Spring 2000
- •24m x 36m NASA-Ames wind tunnel.
- •10 m rotor
- Measurement of pressure distributions at 5 locations along rotor blade
- Analysed in IEA Task 20 (Operating Agent: NREL)
- Participants:
 - -ETS (Canada)
 - -RISO/DTU (Denmark)
 - -CRES/NTUA (Greece)
 - -ECN/TUDelft (Holland)
 - -IFE (Norway)
 - -CENER (Spain)
 - -HGO (Sweden)

3-2-2013

Content

- Importance of wind turbine aerodynamics
 - Aerodynamic design modelling
 - Aerodynamic measurements
- Aerodynamic wind turbine measurements
 - IEA projects on field and wind tunnel measurements
 (IEA Task 14, IEA Task 18, IEA Task 20 and IEA Task 29 (Mexnext-I))
 - Power at yawed conditions in NASA-Ames measurements
 - Current and future developments

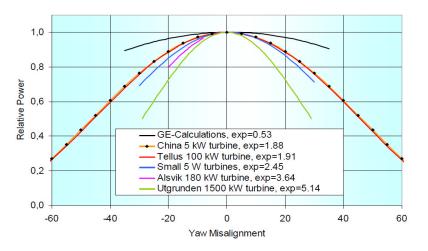
Illustration of the value of aerodynamic measurements

A study of the power at yawed conditions in NASA-Ames

Most of the attention (also in the IEA tasks) was focussed on **loads** at yawed conditions

- What happens with the power in yaw?
- It is proposed to assume a cosinuidal behaviour (inspired by ¹)
 - $-P \sim P_0 \cos^x \phi_v$ with P_0 the power at zero yaw and x the exponent to be determined

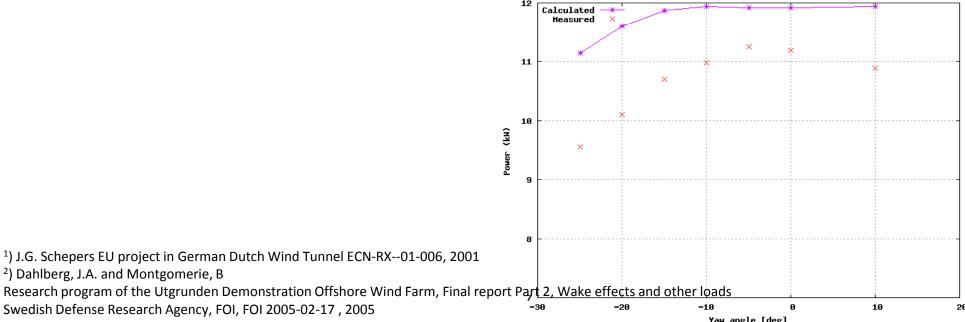
1) Dahlberg, J.A. and Montgomerie, B Research program of the Utgrunden Demonstration Offshore Wind Farm, Final report Part 2, Wake effects and other loads
Swedish Defense Research Agency, FOI, FOI 2005-02-17, 2005


$$x = 3$$
?

- Some people think that x = 3: $P \sim P_0 \cos^3 \phi_y$ based on the assumption that:
 - $-P \sim V_{axial}^3$
 - $V_{axial} = V_{w} \cos(\phi_{y})$
 - This (implicitly) assumes a constant induction with yaw angle
- However induction changes with yaw angle!

Research from Jan-Ake Dahlberg 1)

- Jan Ake Dahlberg (Vattenfall/FFA) finds on basis of field and wind tunnel measurements that:
 - $P \sim P_0 \cos^x \phi_v$ with x to vary between **1.88** and **5.15**
 - BEM overpredicts the power at yawed conditions



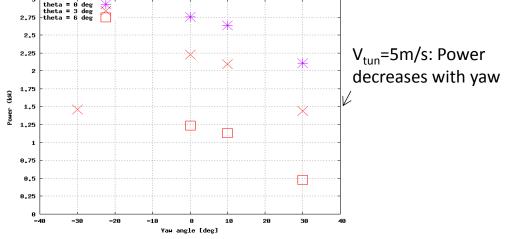
¹) Dahlberg, J.A. and Montgomerie, B Research program of the Utgrunden Demonstration Offshore Wind Farm, Final report Part 2, Wake effects and other loads Swedish Defense Research Agency, FOI, FOI 2005-02-17, 2005

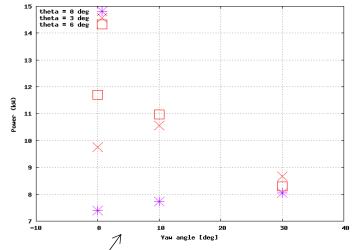
DATA measurements on rotor with D=4.5 m in German \neq **ECN** Dutch Wind Tunnel DNW at design conditions 1)

- $P \sim P_0 \cos^x \phi_v \text{ with } \mathbf{x} \sim \mathbf{1.8}$
- BEM overpredicts the power at yawed conditions
- →Generally consistent with findings from ²)

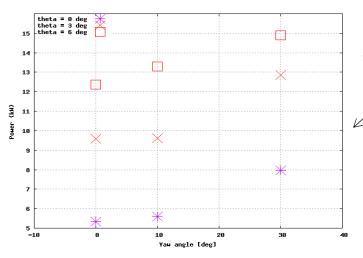
¹⁾ J.G. Schepers EU project in German Dutch Wind Tunnel ECN-RX--01-006, 2001

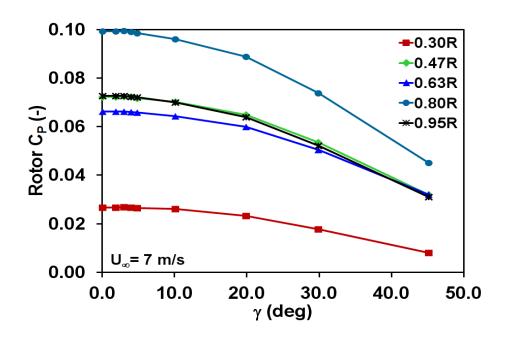
Swedish Defense Research Agency, FOI, FOI 2005-02-17, 2005

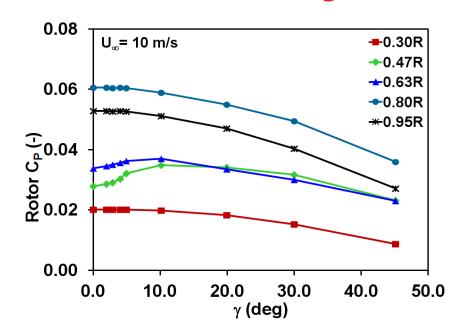

19


²) Dahlberg, J.A. and Montgomerie, B

Analysis on NREL Phase VI(NASA-Ames) $P(\phi_v)$ measurements



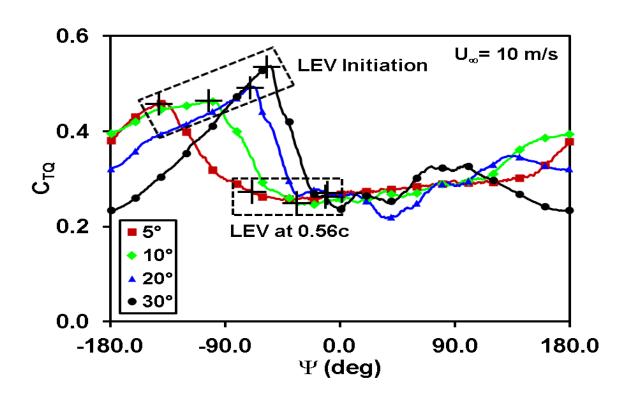

 V_{tun} =10m/s: Power decreases with yaw for θ =6 deg **increases** with yaw for $\theta = 0$ deg



V_{tun}=15m/s: Power increases with yaw

> Trend: Power decrease with yaw seems less apparent for larger angles of attack (high wind speed and low pitch angle) and eventually the power even increases with yaw!

Analysis on NREL Phase VI(NASA-Ames) $C_P(\phi_y)$ measurements \emptyset ECN



- Sectional C_P as function of yaw angle at 7 m/s and 10 m/s
- Conclusion:
 - 7 m/s: Monotonic decrease
 - 10 m/s: Initial increase at 47% and 63% span

Analysis on NREL Phase VI(NASA-Ames) measurements at yaw

Sectional torque coefficient as function of azimuth angle at different yaw angles Conclusion:

- Strong unsteady aerodynamic effects dependant on yaw angle
- Non-linear unsteady aerodynamic effects determine the rotor averaged torque (i.e. power)

Value of aerodynamic wind tunnel measurements because:

- The $P(\phi_v)$ behaviour could be determined at well defined conditions
- The sectional $P(\phi_v)$ behaviour could be determined
- The unsteady airfoil aerodynamics could be determined at yaw
- The conclusion can be drawns that high wind speeds, low pitch angles, and the inner part of the blad makes a a power increases with yaw angle more likely
 - → large angles of attack lead to a power increases due to unsteady airfoil aerodynamics
- Remaining question: Why does BEM overpredicts the power at yawed conditions
 - Possibly related to the generally accepted calculation of disc averaged induction according to Glauert:

$$F_{ax} = \rho A_r | V_w + U_{i0} | .2 U_{i0}$$

Content

- Importance of wind turbine aerodynamics
 - Aerodynamic design modelling
 - Aerodynamic measurements
- Aerodynamic wind turbine measurements
 - IEA projects on field and wind tunnel measurements
 (IEA Task 14, IEA Task 18, IEA Task 20 and IEA Task 29 (Mexnext-I))
 - Power at yawed conditions in NASA-Ames measurements
 - Current and future developments

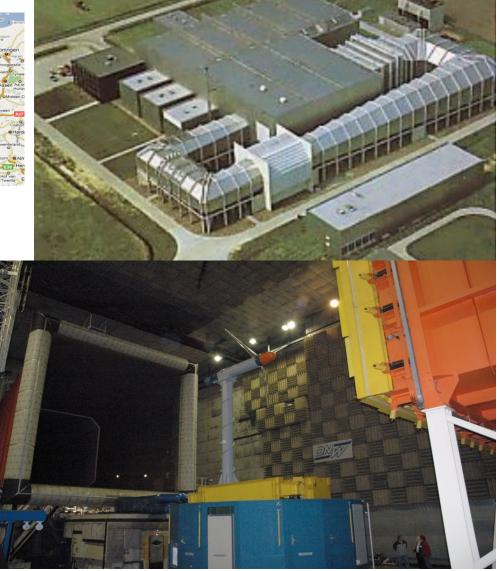
Validation measurements, status at ~2005

1990:

Measurements of power and loads showed differences but they were too global to form a basis for improvement of aerodynamic models

Desired:

- Local aerodynamic loads (pressure distribution) in field conditions (IEA Tasks 14/18)
- Constant, uniform and controlled conditions (→NASA-Ames windtunnel measurements from IEA Task 20)
- But also: Induced velocities and wake velocities (→ Detailed flow field measurements from Mexico project)


Rotor aerodynamic measurements: EU project Mexico Model rotor EXperiments In COntrolled conditions ¹)

- Coordinated by ECN
- 2001-2006
- Measurements in German
 Dutch Wind tunnel, DNW
 - North East Polder (Netherlands)
 - Open test section:
 9.5 x 9.5 m²
 - Diameter of rotor:4.5 m
 - Fast pressure measurements at 5 positions
 (25%, 35%, 60%, 82% and 92% span) along
 the blade
 - Particle Image Velocimetry (PIV):
 Quantitative flow visualisation

1) Participants: see http://www.ecn.nl/nl/units/wind/rd-programma/aerodynamica/projects/mexico/

Rotor aerodynamic measurements: IEA Task 29 MexNext-I: Goals and Participants

- Goal: Analysis of Mexico measurements
- Participation from the following institutes from 11 different countries:
 - Canada (École de technologie supérieur, Montreal (ETS), University of Victoria (UVic)
 - Denmark(DTU-RISO/DTU(Mek))
 - Germany(University of Stuttgart (IAG), University of Applied Sciences, Kiel, Forwind)
 - Israel (Israel Institute of Technology (Technion))
 - Japan (Mie University/National Institute of Advanced Industrial Science)
 - Korea((Korea Institute of Energy Research (Kier) and Korea Aerospace Research Institute (Kari))
 - Netherlands (Energy Research Center of the Netherlands (ECN), University of Delft (TUDelft), Technical University of Twente, Suzlon Blade Technology)
 - Norway (Institute for Energy Technology/Norwegian University of Science and Technology (IFE/NTNU))
 - Spain(Renewable Energy National Centre of Spain (CENER) and National Institute for Aerospace Technology, INTA)
 - Sweden(Royal Institute of Technology/University of Gotland (KTH/HGO))
 - USA (National Renewable Energy Laboratory (NREL))

Results from Mexnext-I

 Has already been presented where it is mainly the combination of flow field measurements and detailed aerodynamic measurements on the blade which made the Mexico experiment unique

Content

- Importance of wind turbine aerodynamics
 - Aerodynamic design modelling
 - Aerodynamic measurements
- Aerodynamic wind turbine measurements
 - IEA projects on field and wind tunnel measurements (IEA Task 14, IEA Task 18, IEA Task 20 and IEA Task 29 (Mexnext-I))
 - Power at yawed conditions in NASA-Ames measurements
 - Current and future developments

Current and planned developments on the **ECN** field of aerodynamic measurements

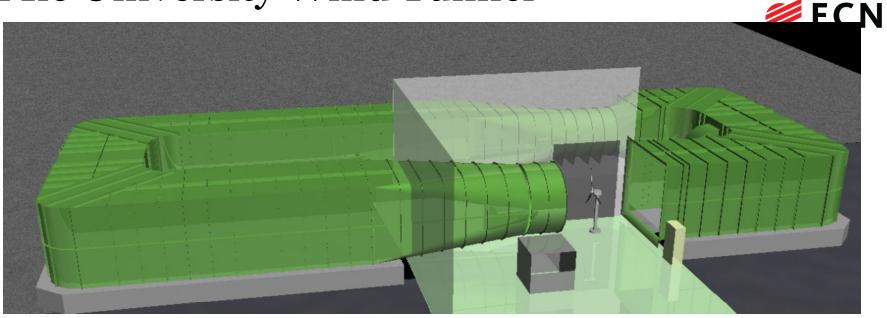
- IEA Task 29, Mexnext-II:
 - Unexplored aerodynamic data from several facilities (both wind tunnel and field) to be discussed at
 - New Mexico measurements in DNW wind tunnel ¹) based on the existing measurement set-up to complement the database
- UAE Phase VII: New measurements in NASA-Ames wind tunnel
- TUDelft wind tunnel measurements
- Mie wind tunnel measurements ---- and some more wind tunnel measurements
- Dan-Aero: Danish field aerodynamic measurements
- EERA (European Energy Research Alliance): New field facility

<u>DU Windtunnels for aerodynamic research</u> **ECN** <u>on wind turbines</u> (Courtesy Gerard van Bussel)

LSTL tunnel $V_{max} = 110 \text{ m/s}$

test section 1.2 x 1.85 m mainly for airfoil development

Open Jet tunnel V_{max}=15 m/s


test section 2.2 m O/ mainly for rotor flow analysis

Open Jet Facility (2009) $V_{max} = 35 \text{ m/s}$

test section 3.0 m O/13 m long rotor- and unsteady flow analysis

Mie University Wind Tunnel

Single return wind tunnel with open test section

Outlet diameter 3.6m

or 3.0m using high contraction nozzle

Suction section 4.5m x 4.5m rectangular cross-section

Length of test section 4.5m

Wind speed 0 - 30m/s for 3.6m nozzle

Uniformity < 1.5% (7m/s)

Turbulence level < 0.5% (7m/s)

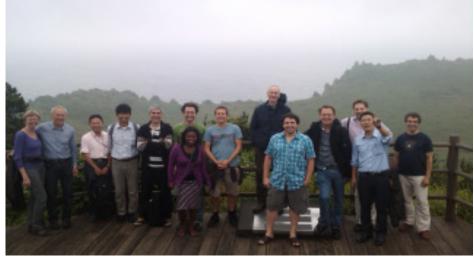
Measurements e.g. pressure measurements along blade, LDA

Rotor with diameter of 3.4 meter

EERA Field experiment, background

- Wind tunnel measurements and field measurements should be seen as COMPLEMENTARY
 - Wind tunnel measurements are done at well known (but less representative) conditions
 - This facilitates the interpretation of data and enables the determination of e.g. the $P(\phi_v)$ behaviour
 - Field measurements are done at representative (but less known) conditions
- We see initiatives on wind tunnel measurements (e.g. New Mexico/NASA-Ames/TUDelft) but not on field measurements:
- The time is ripe for a PUBLIC aerodynamic field experiment on a wind turbine representative for the current and future generation of wind turbines based on:
 - Most innovative measurement techniques
 - Carried out under auspices of EERA (European Energy Research Alliance)

Conclusions


- Since the end of the 80's/beginning of the 90's dedicated aerodynamic measurements have been performed on wind turbines both in the field and the wind tunnel.
- The level of maturity of these measurements has been improved enormously over the years.
- The measurements have delivered a huge amount of data and knowledge by which design codes could be improved and validated which led to more reliable and efficient wind turbine designs.

Questions?

3-2-2013

ECN

Westerduinweg 3 1755 LE Petten The Netherlands P.O. Box 1 1755 LE Petten The Netherlands

T +31 88 515 4949 F +31 88 515 8338 info@ ecn.nl www.ecn.nl