

CACHET II WP1 Pd membrane engineering, development and PDU testing

Frans van Berkel,¹
Andreas Goldbach,²
Hengyong Xu²,
Chunhai Jiang,³
Chuanyong Hao,³
Daniel Jansen¹

¹ECN, ²DICP, ³IMR

Presented at the 1st International Conference on Clean Energy, 10-13 April 2011, Dalian, China

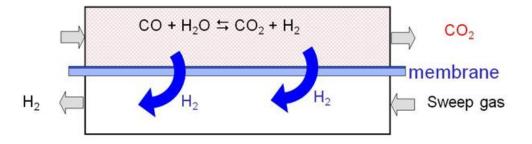
ECN-M--11-055 APRIL 2011

CACHET II WP1

Pd membrane engineering, development and PDU testing

Frans van Berkel,¹ Andreas Goldbach,² Hengyong Xu², Chunhai Jiang,³ Chuanyong Hao,³ Daniel Jansen¹
¹ECN, ²DICP, ³IMR
vanberkel@ecn.nl

1st International Conference on Clean Energy, 10-13 April 2011, Dalian, China


Outline

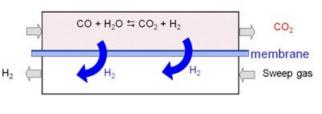
- Introduction
- Objectives
- Interaction of WP1 with other WP's
- WP1 approach/structure
- Description and status of activities
- Conclusion

Introduction combined CO_2 CO conversion cycle H_2 NATURAL GAS/ power COAL water-gas shift plant separation reaction **STEAM** CO₂ for underground storage O_2

Membrane watergas shift (M-WGS)

Removing hydrogen → shift equilibrium

Introduction


- Critical issues in the field of Pd-membranes:
 - Manufacturing and testing of upscaled membranes up to 1 m
 - Membrane seals and integration into industrial installations
 - Long term performance stability of membrane plus seal
 - H₂-separation and M-WGS

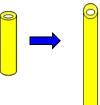
Membrane performance:

$$J_{H2} = Q(T)^*(p_f^n - p_p^n)$$

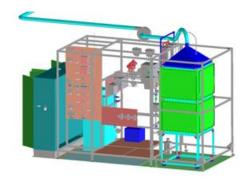
- High H₂-selectivity
- Stable permeance Q(T,t):
 - Mass transfer
 - Contaminants
 - Inhibition effects

Membrane watergas shift (M-WGS)

Removing hydrogen -> shift equilibrium


In case WGS integrated: Water gas shift catalyst:

- Stable activity
 - gas composition (inlet → outlet)
- Stable selectivity:
 - no by-products


Objectives

1. Membrane production: Upscaling to 1 m membranes

- Long term separation testing (150 days) with
 5 cm long membranes and different seals at DICP
 - Less than 2% decline in hydrogen flux
 - Selectivity for H₂-separation > 200
- 3. Scaled down version of a full scale multi-tube M-WGS reactor with 1 m long membranes to be tested over 1000 hours at ECN:
 - Production of at least 95 % pure hydrogen
 - Capture of at least 90% CO₂

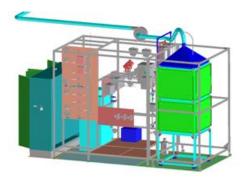
Interaction with other workpackages

WP1:

Pd-membrane engineering, and development (DICP, ECN, IMR)

- Membrane operating conditions
- Validation membrane modelling
- Design of benchscale test module

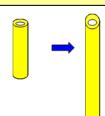
WP4:


Module design,
Process integration,
Economics

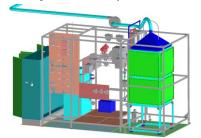
- Robust membrane materials
- Operating conditions under high temperatures or contaminants

WP2:

High Flux and high stability membrane development

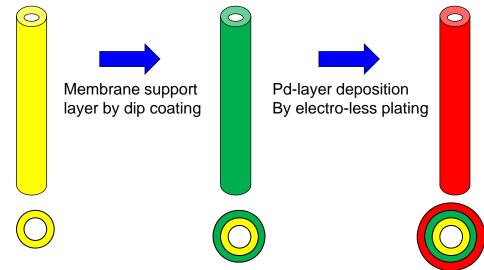

Scaled-down reactor

WP1 structure/approach

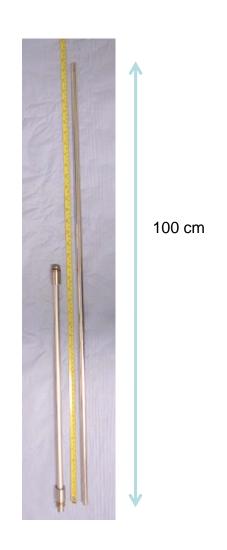

 Scaling up Pd membranes (DICP) to a length of 1 m

2. Development of improved sealing technology (IMR, ECN)

- 3. Membrane performance testing (ECN, DICP):
 - Long-term stability testing of single Pd membranes (0.05 0.5 m) and seals
 - Membrane (0.5 to 1 m) testing at DICP and ECN (multi tube in parallel)
 - Non-integrated/integrated (H₂-separation and M-WGS)



4. Construction and testing of scaled down full scale WGS membrane (1 m) reactor for at least 1000 hours (ECN)


Membrane scale-up and production

- Aim: Scale-up to 1 m membranes
 - ECN supplies porous supports (alumina)
 - DICP will scale up Pd-layer deposition

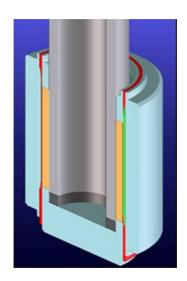
- Status:
 - 1 m membranes have been manufactured

New sealing technologies

- Aim: Improved seal stability and seal dimensions
 - Stability up to 500°C under WGS-conditions
 - Improved seal footprint ensuring mass transfer optimized catalyst bed thickness

Status:

- Seals have been developed
- Seals are in the process of validation

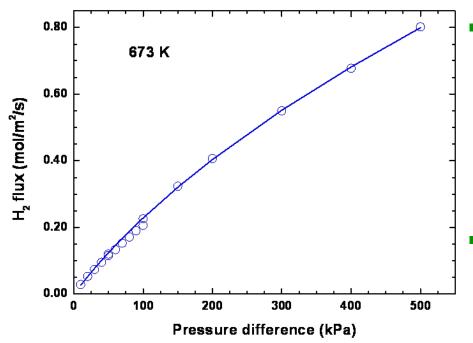

New sealing technologies

1/ Patented ECN compression seal based end-cap

- Sealing material: Graphite
- End-cap: stainless steel
- Design pressure = 38 barg
- Design temperature = 700°C

2/ Patented IMR-seals:

- Direct metal-ceramic joint
- Thermo-shock stability > 10 cycles (RT 700°C)
- Smaller footprint
- Design pressure = 50 bar
- Design temperature = 500-700 °C



Membrane performance

 0.5 m long DICP Pd membranes with 5-7 μm thick Pd layers and ECN seals

Typical H₂ permeation rate: 1.75×10⁻² mol/m²/s/Pa^{0.5}

× exp(-12.9 kJ/mol/RT)

 $\times (P_{\text{feed}}^{0.5} - P_{\text{perm}}^{0.5})$

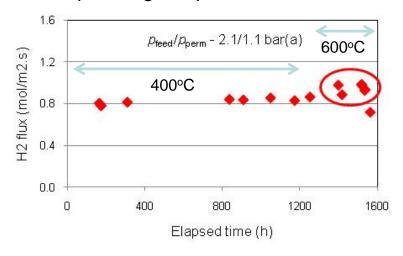
Typical ideal selectivity at 673 K:

$$\sim 10000 (P_{\text{feed}}/P_{\text{perm}} = 500/100 \text{ kPa})$$

Long term stability testing

Aim:

- Demonstration of stability membranes, support and sealing under realistic testing conditions:
 - High pressure 25-40 bar
 - Simulated WGS conditions
 - 150 days testing

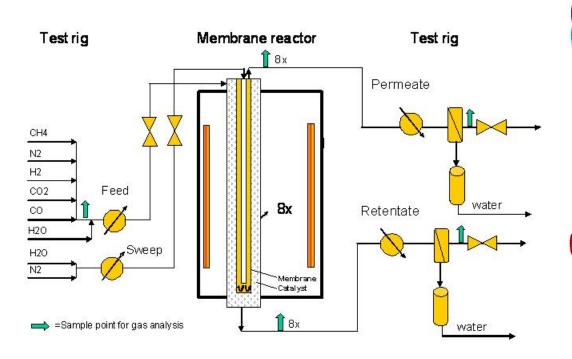

Status:

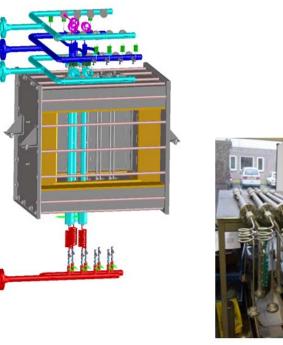

 Stable membrane performance demonstrated up to 1200 hours (50 days)

Long term stability testing

- Test on two parallel ECN Pd membranes 0.5 m with ECN seals
 - 1-2 micron thick Pd-layer
 - Testing condition: P_{feed} / P_{perm} = 2.1 / 1.1 bar(a) pure hydrogen
 - Operating temperature: 400 and 600°C

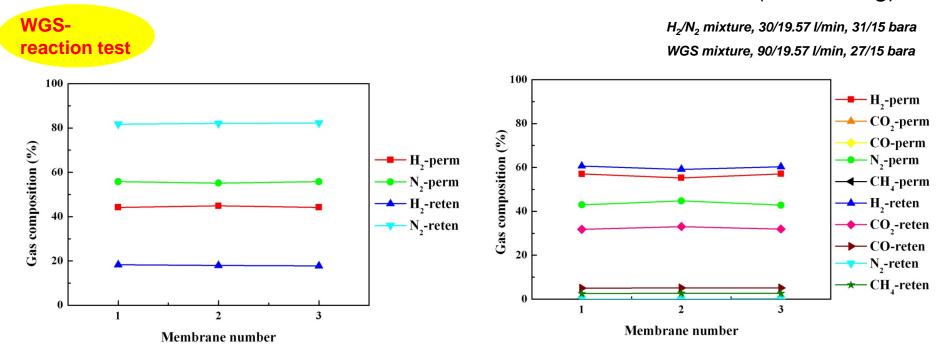
- H_2 flux (400°C, $P_{feed} / P_{perm} = 2.1 / 1.1 bar): 0.8 mol/m².s$
- H₂ permeance stable up to1200 h at 400°C: decrease in selectivity by factor 2.5
- H₂ permeance and selectivity drops after exposure to 600°C
- post test analysis: pinhole/cracks on the membranes and leakage in the seals



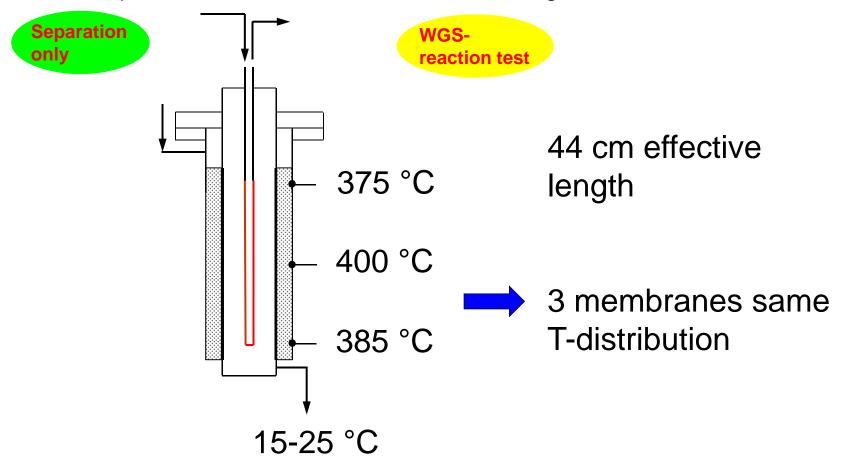

Aim:

- Determination of basic permeance data of membranes:
 - Operating temperatures: 400-600 °C (Accelerated testing)
 - Pressures: around 30 bar
 - Single gases (H₂/N₂), mixtures (H₂ with N₂, CO, CO₂) and syngas.
 - Data will be used as benchmark for reactor model and design tool in WP4
- Screening commercial WGS catalyst:
 - Stable WGS catalyst performance
 - No by-products

- Equipment:
 - Process development unit (PDU) at ECN;
 - 8 membrane reactors in parallel

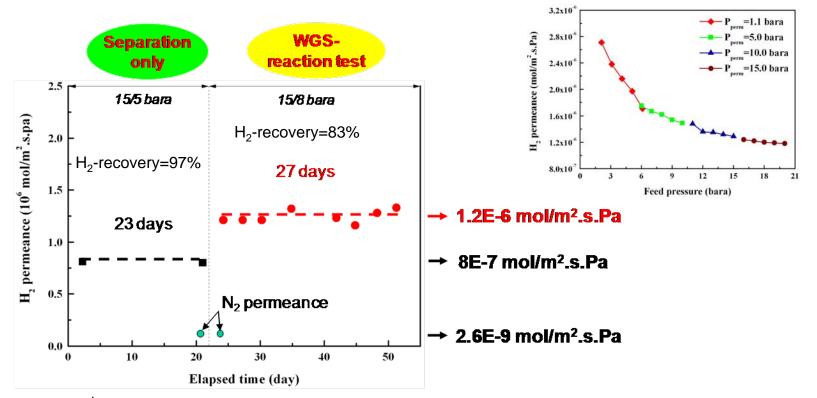


- Validation Process Development Unit (PDU):
 - Flow distribution over 3 different DICP membranes (0.5 m long)


H₂/N₂ mixture

WGS-mixture

Flow distribution: Relative difference <6%



- Validation Process Development Unit (PDU):
 - Temperature distribution over membrane length

- PDU-testing of 3 DICP Pd membranes 0.5 m with ECN HTTP seals
 - Pure H₂/Pure N₂ permeance, separation and shift test (NGCC)

Stable membrane performance for both non-integrated and integrated for a total period of 50 days

- Choice of WGS catalyst (non expensive base metal catalyst):
 - Two commercial catalyst (A (Fe-Cr) and B (alternative)) have been examined
 - Watergas shift stability as function of H₂O/H₂ and H₂O/CO-ratio
- Resulting gas composition for stability catalyst performance:
 - Cat A (Fe-Cr): $H_2O/H_2 > 0.5^*$ (high H_2O/H_2 , prevent reduction) and $H_2O/CO > 2$
 - Cat B: low H_2O/H_2 allowed* and safe operation at $H_2O/CO \le 2$: vulnerable to H_2S

NGCC	Low H ₂ O/H ₂	High H ₂ O/H ₂
S/C ratio in ATR	1.4	1.4
Efficiency, %	45.09	44.41
CO ₂ capture, %	99.9	99.9
Net Electricity, MW	437.4	431.2
H ₂ recovery, %	98.23	98.27
Membrane area, m ²	4560	5900
H ₂ permeated, kmol/hr	11083	11100
Membrane flux, mol/m².s	0.6751	0.5226

*vendor spec

Non expensive commercial catalyst available for M-WGS

Reactor testing

Aim:

- Reactor design for 1 m membranes based on scaled down full scale WGS membrane reactor design from WP4
- 1000 h test with 1 m DICP Pd membranes using ATR gas and/or coal gas
- No test with H₂S
- The reactor will be tested under different conditions, temperatures between 350 and 500 °C, different pressure level for feed and outlet.

Status:

- Design of reactor in progress
- This test will be performed at the end of the project (Q3 and 4 2012)

Overall conclusions

- Membrane upscaling to 1 m length
- Seals in validation process
- Membrane stability proven for 1200 hours at 400°C:
 - Integrated and non-integrated
- Non-expensive commercial WGS catalysts identified

Future activities

- Demonstration stability membrane plus improved seal in 150 days testing
- Long term M-WGS testing
- Benchscale 1 m long membrane WGS reactor testing