

Top-down estimates of European CH₄ and N₂O emissions based on 5 different inverse models

P. Bergamaschi, M. Corazza, A. Segers, A. Vermeulen, A. Manning, M. Athanassiadou, R. Thompson, I. Pison, P. Bousquet, U. Karstens, M. Schmidt, M. Ramonet, F. Meinhardt, T. Alto, L Haszpra, J. Moncrieff, E. Popa, E.G Nisbet, R.E. Fisher, M. Steinbacher, A. Jordan, S. O'Doherty, S. Piacentino E. Dlugokencky

> Presented at the European Geosciences Union, General Assembly 2011, Vienna, Austria, 03 – 08 April 2011

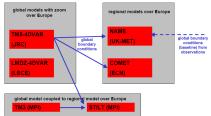
ECN-M--11-044 April 2011

Joint Research Centre

Top-down estimates of European CH₄ and N₂O emissions based on 5 different inverse models

P. Bergamaschi¹, M. Corazza¹, A. Segers¹, A. Vermeulen², A. Manning³, M. Athanassiadou³, R. Thompson⁴, I. Pison⁴, P. Bousquet⁴, U. Karstens⁵, M. Schmidt⁴, M. Ramonet⁴, F. Meinhardt⁶, T. Alto⁷, L Haszpra⁸, J. Moncrieff⁹, E. Popa², E.G Nisbet¹⁰, R.E. Fisher¹⁰, M. Steinbacher¹¹, A. Jordan⁵, S. O'Doherty¹², S. Piacentino¹³, and E. Dlugokencky¹⁴

[1] European Commission Joint Research Centre, Institute for Environment and Sustainability, I-21027 Ispra (Va), Italy, [2] Netherlands Energy Research Foundation (ECN), Petten, Netherlands, [3] Met Office Exeter, Devon, UK, [4] Laboratoire des Sciences du Climat et de l'Environment (LSCE), Gif sur Yvette, France, [5] Max-Planck-Institute for Biogeochemistry, Jena, Germany, [6] Umweltbundesamt, Messstelle Schauinsland, Kirchzarten, Germany, [7] Finnish Meteorological Institute (FMI), Helsinki, Finland, [8] Hungarian Meteorological Service, Budapest, Hungary, [9] Edinburgh University, Edinburgh, UK, [10] Royal Holloway, University of London (RHUL), Egham, UK, [11] Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Switzerland, [12] Atmospheric Chemistry Research Group, University of Bristol, Bristol, Bristol, UK, [13] ENEA, Italy, [14] NOAA Earth System Research Laboratory, Global Monitoring Division, Boulder, CO, USA


Introduction

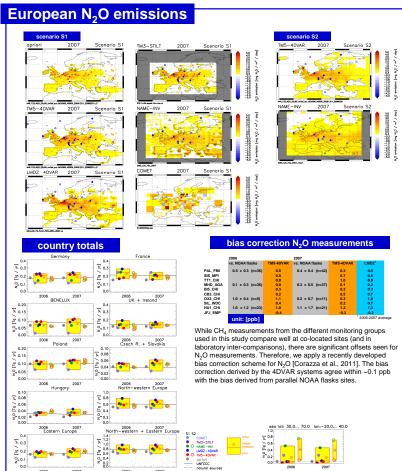
Atmospheric measurements combined with inverse atmospheric models can provide independent top-down estimates of greenhouse gas (GHG) emissions. This is important in particular for N2O and CH4, for which considerable uncertainties of the bottom-up inventories exist (uncertainty estimates of bottom-up emissions reported to UNFCCC: CH4: ~30%; N₂O >100% for annual country totals).

According to UNFCCC inventories, CH₄ and N₂O contributed 'only' ~8% and ~7%, respectively, of total GHG emissions of EU-15 countries (2007). However, the reported reductions of total GHG emissions (1990-2007: -199 Tg CO2 eg) are mainly attributed to CH₄ (-133 Tg CO₂ eq) and N₂O (-105 Tg CO₂ eq).

Inverse Models

We used 5 independent inverse modeling systems based on different global and regional Eulerian and Lagrangian transport models. The major objective of this model ensemble approach is to provide more realistic estimates of the overall uncertainties in the derived emissions

Scenario S1: Include information from bottom-up emission inventories (as a priori (TM5, LMDZ, STILT), or to redistribute emissions within regions resolved by the inversion (NAME) or to complement regions not resolved by the inversion (COMET)


Scenario S2: 'Free inversion' (TM5 and NAME)

Atmospheric Observations

We use continuous observations from 10 European stations (including several tall towers) for CH, and 8 continuous stations for N2O, complemented by further European and global flask sampling sites.

European CH₄emissions Scenario S1 TM3-STILT 2007 TM5_4DV4R Scenario S1 NAME-INV country totals 2006 200 UK + Ireland BENELUX Continuous measurements provide important information on regional emissions. The figure above shows the the 2006 2007 North-western Europe measurements and model simulations at Mace Head as example

Summary

- The available observations mainly constrain CH₄ and N₂O emissions from north-western and eastern Europe.
- The different inverse models show reasonable consistency regarding the derived emissions for annual totals of countries / larger regions constrained by the observations, but show significant differences on smaller scales.
- Most inverse models yield higher CH, emissions for north-western and eastern Europe compared to bottom-up emissions reported to the UNFCCC (median from 5 inverse models ~40% higher than UNFCCC). Also the bottom-up estimate from EDGARv4.1 is significantly higher than UNFCCC.
- the preliminary top-down estimates of European N₂O emissions are consistent with the bottom-up inventories reported to the UNFCCC, as well as with the EDGAR bottom-up estimates. This good agreement for N₂O is rather surprising, since very large uncertainties are reported for the UNFCCC N₂O inventories (e.g. uncertainties for total N₂O emissions from north-western Europe >160%, mostly due to large uncertainties in emissions from agricultural soils). However, some models (NAME, COMET) attribute significant emissions to the sea (these emissions are not attributed to countries).
- Scenario S2 (without this a priori information) results in very similar country totals as S1. This demonstrate the significant constraints of the observations on the emissions from larger regions within the footprint area of the measurement network

References

- Ramonet, C. Yver, F. Meinhardt, E. G. Nisbet, R. Fisher, S. O'Doherty, and E. J. Dlugokencky, Inverse modeling of European CH4 emissions 2001-2006, J. Geophys. Res., 115(D22309), doi:10.1029/2010JD014180, 2010. Corazza, M., P. Bergamaschi, A. T. Vermeulen, T. Aalto, L. Haszpra, F. Meinhardt, S. O'Doherty, R. Thompson, J
- Moncrieff, E. Popa, M. Steinbacher, A. Jordan, E. J. Dlugokencky, C. Brühl, M. Krol, and F. Dentener, Inverse mod of European N2O emissions: Assimilating observations from different networks, Atmos. Chem. Phys. 11(doi:10.5194/acp-11-2381-2011), 2381-2398, 2011.
- 11(loc/tub-1su/2c5+12-2s1-2m), 2s1-2-2s2, 2ulos, sud R. G. Dervent, Estimating UV methens and nitrous oxide terminations from 1990 to 2007 using in inversion modeling approach, J. Geophys. Res., 11(6)D02365, j. doi:10.1028/2010.D014783, 2011. Simple of the property of
- gas inversions based on independent models, Atmos. Chem. Phys., 9, 5331–5342, 2009. ompson, R. L., C. Gerbig, and C. Rödenbeck, A Bayesian inversion estimate of N2O emissions for western and central

Europe and the assessment of aggregation errors, Atmos. Chem. Phys. Discuss., 10(doi:10.5194/acpd-10-26073-2010) 26073-26115 2010

Contact: Peter Bergamaschi European Commission Joint Research Centre Institute for Environment and Sustainability (IES)

peter.bergamaschi@jrc.ec.europa.eu

